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Preface

Our Planet is continuously monitored by powerful remote sensors nowadays operating 
in wide portions of the electromagnetic spectrum. Our capability of acquiring detailed 
information on the environment has been revolutionized by revealing its inner structure, 
morphology and dynamical changes. The way we now observe and study the evolution of 
the Earth’s status has radically influenced even our perception and conception of the World 
we live in. 

Within this framework, the past few years have been characterized by the rapid introduction 
of advanced remote sensors, the noticeable effort in modeling and simulation activities, the 
increasing development of data processing techniques, and the proliferation of applications 
in operative scenarios. These massive developments have opened new possibilities and 
proposed innovative products for applications relevant to atmosphere, ocean and land 
surfaces, also including pollution and disaster monitoring. Remote sensing applications 
now involve specialized and interdisciplinary approaches, thus requiring a remarkable 
background in geosciences, engineering and information technologies.  

The aim of this book is to bring together contributions from experts in order to present new 
research results and prospects of the future developments in the area of geosciences and 
remote sensing; emerging research directions are discussed. The volume consists of twenty- 
six chapters, encompassing both theoretical aspects and application-oriented studies. An 
unfolding perspective on various current trends in this extremely rich area is offered.  

The book chapters can be categorized along different perspectives: among others, use of 
active or passive sensors, employed technologies and configurations, considered scenario on 
the Earth, scientific research area involved in the studies. 

About one-half of the contributions is specifically relevant to active sensors, whereas five 
chapters involve use of passive ones; the remaining contributions can be considered of 
general validity. In this book the most employed active sensor is the Synthetic Aperture 
Radar (SAR): indeed, the new generation of SAR sensors requires development of new 
techniques for reliable data processing and information extraction. In addition, SAR data are 
continuously available all over the Earth crust thus fully supporting applications to specific 
case studies. SAR techniques are presented with reference to both single- and multiple-pass 
configurations; three chapters are devoted to innovative interferometric SAR techniques. 
Use of scatterometers is taken into account in three chapters devoted to present recent 
developments and key applications for monitoring terrain and sea surfaces. 



VI

A remarkable degree of novelty is testified by the presence of ten chapters presenting theories 
or new approaches relevant to scattering and remote sensing. The remaining chapters discuss 
new applications making use of already existing theories. 

Integration of data is an appealing issue whenever quite mature technologies are employed. 
Within this framework about one-half of the chapters combines data from more than one 
sensor for Earth observation. New ideas, applications or results for single sensors are 
presented in the remaining chapters. 

Approximately one-third of the chapters proposes quite general approaches independent 
from the observed scenario; four contributions concentrate on observation of terrains, in some 
cases proposing application to flooding areas, two chapters deal with sea and sea winds, 
including pollution monitoring, two contributions take into account the sea ice scenario; 
finally, five chapters focus on sensing the Earth atmosphere: theoretical and applicative 
studies on modeling electromagnetic propagation through its constituents are presented. 

With reference to the scientific area, one-half of the chapters deals with applicative issues 
testifying interdisciplinary approaches to remote sensing. The remaining chapters emphasize 
the role of popular specific disciplines usually applied to remote sensing: signal processing 
(seven chapters), informatics (five chapters), and electromagnetics (four chapters).  

In conclusion, the volume collects contributions from researchers throughout the world, 
helping to broaden the views on modern application of remote sensing techniques. The 
collected material is up-to-dated and interests both engineers and academic researchers 
working in the field of geosciences and remote sensing. 

The editors wish to express their thanks to the authors for their direct contribution, as well 
as the appreciation to Aleksandar Lazinica for his contribution to the project coordination. 

Pasquale Imperatore 
Daniele Riccio 

Università di Napoli “Federico II” 
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1. Introduction 
 

The word Radar is the acronym of Radio detection and ranging. Radar is an active 
instrument, which measures the echo of scattering objects, surfaces and volumes illuminated 
by an electromagnetic wave internally generated belonging to the microwave portion of the 
electromagnetic spectrum. It was born just before the second world war for detecting and 
ranging target for non-civilian scopes. In this case the requested spatial resolution was not 
so challenging for the technology available that time. The opening of new technological 
frontiers in the fifties, including the satellites and the space vehicles, demanded a better 
spatial resolution for application in geosciences remote sensing (RS). Synthetic aperture 
radar (SAR) technique was invented to overcome resolution restrictions encountered in 
radar observations from space and generally to improve the spatial resolution of radar 
images. Thanks to the development of this peculiar technique, the radar observations have 
been successfully refined, offering the opportunity of a microwave vision of several natural 
media. Nowadays SAR instruments can produce microwave images of the earth from space 
with resolution comparable to or better than optical systems and these images of natural 
media disclosed the potentials of microwave remote sensing in the study of the earth 
surfaces. The unique feature of this radar is that it uses the forward motion of the spacecraft 
to synthesize a much longer antenna, which in turn, provides a high ground resolution. The 
satellite SEASAT launched in 1978 was the first satellite with an imaging SAR system used 
as a scientific sensor and it opened the road to the following missions: ERS, Radarsat, 
ENVISAT, JERS till the recent TerraSARX and Cosmo-SkyMED. The measurement and 
interpretation of backscattered signal is used to extract physical information from its 
scattering properties. Since a SAR system is coherent, i.e. transmits and receive complex 
signals with high frequency and phase stability, it is possible to use SAR images in an 
interferometric mode. The top benefit from microwave observations is their independence 
from clouds and sunlight but this capability can weaken by using interferometric techniques. 
Among the several applications of SAR images aimed at the earth surface monitoring, in the 
last decades interferometry has been playing a main role. In particular, it allows the detection, 
with high precision, of the displacement component along the sensor–target line of sight. 
The feasibility and the effectiveness of radar interferometry from satellite for monitoring 
ground displacements at a regional scale due to subsidence (Ferretti et al., 2001), 

1
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earthquakes and volcanoes (Zebker et al., 1994 , Sang-Ho, 2007 and Massonnet et al. 1993 
(a)) and landslides (Lanari et al., 2004 ; Crosetto et al., 2005) or glacier motion (Goldenstein 
et al., 1993 ; Kenyi and Kaufmann, 2003) have been well demonstrated. The use of 
Differential Interferometry based on SAR images (DInSAR) was first developed for 
spaceborne application but the majority of the applications investigated from space can be 
extended to observations based on the use of a ground-based microwave interferometer to 
whom this chapter is dedicated. Despite Ground based differential interferometry 
(GBInSAR) was born later, in the last years it became more and more diffused, in particular 
for monitoring landslides and slopes. 
 
After this introduction the first following sections of this chapter resume SAR and 
Interferometry techniques basics, taking largely profit from some educational sources from 
literature (Rosen 2000; Massonnet, 2003a; Askne, 2004, Ferretti, 2007). The following sections 
are devoted to the GBInSAR and to three case studies as examples of application of the 
technique.  

 
2. General radar properties 
 

2.1 The radar equation 
Conventional radar is a device which transmits a pulsed radio wave and the measured time 
for the pulse to return from some scattering object, is used to determine the range. The 
fundamental relation between the characteristics of the radar, a target and the received signal, 
is called the radar equation, a relationship among radar parameters and target characteristics. 
Among the possible formulations we comment that indicated by the following expression: 
 
 

(1) 

              
where Pt is the transmitted power, Gtx and Grx are the transmitting and receiving gains of the 
two antennas, with respect to an isotropic radiator, is the radar cross section, R the distance 
from the target, is the pulse carrier wavelength. In (1) a factor which takes into account the 
reduction in power due to absorption of the signal during propagation to and from the target 
is neglected. This expression allows to estimate the power of the signal backscattered from a 
target at a known range, at a specific radar system configuration. The minimum detectable 
signal of a target, proportional to the received power PR, can be estimated knowing the 
transmitted power, PT, the antennas’ characteristics and the system noise; of note that the 
range strongly influences the strength of the measuring signal. A radar image consists of the 
representation of the received signal in a two dimensional map, obtained through the 
combination of a spatial resolution along two directions, namely range and azimuth or cross-
range, which correspond in a satellite geometry to cross-track and along the track directions. 
Normally the radar transmitting and receiving antennas are coincident or at the same location: 
in this case we speak about a monostatic radar and the measured signal is considered coming 
from the backward direction. In (1) we introduced the radar cross section, the parameter that 
describes the target behavior. The radar cross section of a point target is a hypothetical area 
intercepting that amount of power which, when scattered isotropically, produces an echo 
equal to PR as received from the object. Consequently  can be found by using the radar 
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equation and measuring the ratio PR/PT and the distance R, supposing the system parameters 
 , Gtx, Grx, are known. In RS we are interested in the backscatter from extended targets then 
we normalize the radar cross section with respect to a horizontal unit area, and we define a 
backscattering coefficient, 0, usually expressed in dB. This fundamental information recorded 
by a radar is a complex number namely an amplitude and a phase value at a certain 
polarisation, electromagnetic frequency and incidence angle (Ulaby et al., 1984). The complex 
backscattering coefficient in SAR system is usually measured at four orthogonal polarisation 
states. Normally these polarization states are chosen to be HH (horizontal transmission and 
horizontal reception), HV (horizontal transmission and vertical reception) and analogously 
VH and VV. In this chapter we only consider the case of a single linear polarization, usually 
VV. Finally we remind that the Microwave portion of the electromagnetic spectrum is usually 
subdivided in bands, and Remote Sensing instrumentation mainly operates at L, S, C, X, Ku 
and Ka band, corresponding to the following intervals : L (1GHz-2GHz) S (2GHz-4GHz), C 
(4GHz-8GHz), X (8GHz-12 GHz), Ku (12-18 GHz) and Ka (26.5GHz-40 GHz) spanning in 
vacuum wavelengths from 30. cm to 8.mm. A radar signal is subject to a specific noise, due to 
the echoes coming from different parts of a reflecting body within a resolution cell which will 
have different phases and hence causing in the signal summation constructive or destructive 
interference between the different components. The resulting noise-like behaviour is called the 
speckle noise. To reduce the effect of speckle we may use filters. One way to reduce speckle is to 
use multi look processing which improves the S/N but worsening the spatial resolution 
(Curlander et McDonough, 1991). Temporal coherent averaging is possible in case of large 
number of images as in the Ground Bsed SAR Ground Based SAR – GBSAR case.  

 
2.2 The range resolution  
The range measurement is based on the fact that the signal echo is received after a delay of 
T=2R/c, where R is the distance to the scattering object and c is the speed of the 
electromagnetic pulse. In practice we use a pulse train where pulses are separated by a time 
Tprf ,corresponding to a pulse repetition frequency, PRF = 1/Tprf. This means that we have 
an ambiguity problem: the measured radar echo can be caused by one pulse or the 
subsequent. This translates in the following expression: PRF < c/2Rmax which relates the 
maximum usable Range, Rmax, to PRF. The range resolution is determined by the pulse 
width T of the pulse where the factor 2 is caused by the radar pulse going back and forth. 
Figure 1 shows the working principle of range measurement through radar. 
 

 
Fig. 1. The Radar functioning principle 
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Fig. 1. The Radar functioning principle 



Geoscience	and	Remote	Sensing,	New	Achievements4  

 

The backscattered signal has an extension in time T due to the pulse width and in order to 
obtain a good range resolution we need a short pulse. However, recalling Fourier transform 
properties, a short pulse width means a large frequency bandwidth. At the same time as 
dictated by the radar equation, at large distances, high amplitude is requested as the pulse 
energy determines the detection possibilities of the system i.e. its signal to noise ratio (S/N). 
This means that in designing a radar we are faced with the problem to want a long pulse 
with high energy and a wide bandwidth which implies a short pulse. To reduce these 
difficulties a signal processing technique, namely pulse compression, obtained by using a 
“chirp radar” (Ulaby et al., 1982) can be used. In this case the transmitted frequency is 
varying linearly with time and by correlating the return signal with a frequency modulated 
signal, a sharp peak is obtained for a distance related to the time offset. The resolution 
depends on the ability to sample sufficiently often the returned signals not to be aliased by 
the sampling rate.  

 
Fig. 2. SLAR geometry (after Mohr, 2005) 
 
Active microwave RS observations usually employ a specific configuration: the side looking 
aperture radar ( SLAR), whose line of sight (LOS) corresponds to a lateral view with respect 
to the track direction (see Figure 2). First it introduces a projection factor in the range 
resolution expression depending upon the incidence angle of the beam r =T·c/(2sin). 
Secondly a SLAR image suffers from some distortions due to slant range configuration 
resulting in errors related to the conversion of the measured slant range to the ground range; 
this contributes to make the radar image very different from the optical view (Rosen et al., 
2000). When the surface is not flat, but we have topographic features, the terrain elevation 
distorts the distance to the radar sensor in such a way that slopes facing the radar appear 
shorter than they are when imaged in a normal map projection, while those that face away 
from the radar appear longer than in the map the latter are illuminated by the radar sensor 
very rarely: this is the foreshortening effect. Foreshortened areas appear brighter than their 

 

surroundings because the reflected radar energy from the slope is compressed to correspond 
to fewer pixels; when the slope of the terrain facing the radar is greater than the look-angle, 
the top of the slope is closer to the radar than the bottom we have a layover; finally shadowing 
can occur when terrain area cannot be illuminated and only system noise is imaged in the 
shadowed areas of radar images (Curlander and McDonough, 1991). These errors are of 
minor concern in observations where the slope area is imaged from below, that is to say in 
Ground Based cases. 

 
2.3 The azimuth or cross-range resolution and SAR 
The energy transmitted by a conventional radar is concentrated into a beam with an angular 
dimension, the field of view, , basically determined by the ratio between the operating 
wavelength and its mechanical size (Silver, 1986) and alike happens for the receiver which 
collects the energy coming from the antenna beam. In a radar image targets that differ from 
each other in their azimuth coordinates only, generate overlapping radar echoes and thus 
they cannot be distinguished.  Conceptually azimuth location can be achieved by changing 
the viewing angle of a very directive antenna. In order to produce at a distance R a good 
azimuth resolution, R  , in the along-track direction, we need short ranges and large 
antennas. At the same time to cover a wide swath, S, as requested e.g. in satellite geometry, 
we need a large  meaning a small antenna. Viewing a target during the entire time it is 
within a beamwidth, determines a situation analogous to an artificially long antenna. If we 
acquire the amplitude and phase of the echoes an artificially narrow beamwidth in terms of 
resolution can be realized. The further a target is from the radar, the longer it is within the 
actual beamwidth, the longer the “antenna” and hence the narrower the resolution 
beamwidth. If the sensor is moving towards or away from the scattering object/surface, we 
can measure the velocity of the scattering object by measuring the Doppler effect which 
induces a frequency variation according to the apparent radial velocity of a certain scatterer 
on the ground. In order to make use of the forward motion, both the amplitude and phase of 
the return signal have to be recorded. The timing measurement is used to discriminate 
individual cells across the satellite track while the Doppler-induced variations in the 
frequency of the return signal are employed to provide the along track resolution. The SAR 
platform flies along a straight trajectory with a constant velocity illuminating a strip of 
terrain parallel to the flight track (see Figure 2).  The data set can be stored in a two-
dimensional array according to the SAR imaging geometry. The first step in SAR processing 
includes the pulse compression in range direction, usually denoted as range compression. The 
range compression is followed by the azimuth compression, which also yields the principle 
of the pulse compression technique. The azimuth chirp, which is approximately linear 
frequency modulated, is determined by the wavelength, the forward velocity and the slant 
range distance to the target. If all these parameters are known a priori, the reference function 
for a certain slant range distance is calculated to obtain a desired geometrical resolution 
after pulse compression in azimuth direction. A SAR image with a range independent 
azimuth resolution is obtained (Curlander and McDonough, 1991). Finally the azimuth 
compression is carried out. The final result of this acquisition and processing is a radar 
image with fine spatial resolution both in range and in azimuth directions: a few meter 
square cell from hundreds of kilometers. 
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very rarely: this is the foreshortening effect. Foreshortened areas appear brighter than their 

 

surroundings because the reflected radar energy from the slope is compressed to correspond 
to fewer pixels; when the slope of the terrain facing the radar is greater than the look-angle, 
the top of the slope is closer to the radar than the bottom we have a layover; finally shadowing 
can occur when terrain area cannot be illuminated and only system noise is imaged in the 
shadowed areas of radar images (Curlander and McDonough, 1991). These errors are of 
minor concern in observations where the slope area is imaged from below, that is to say in 
Ground Based cases. 

 
2.3 The azimuth or cross-range resolution and SAR 
The energy transmitted by a conventional radar is concentrated into a beam with an angular 
dimension, the field of view, , basically determined by the ratio between the operating 
wavelength and its mechanical size (Silver, 1986) and alike happens for the receiver which 
collects the energy coming from the antenna beam. In a radar image targets that differ from 
each other in their azimuth coordinates only, generate overlapping radar echoes and thus 
they cannot be distinguished.  Conceptually azimuth location can be achieved by changing 
the viewing angle of a very directive antenna. In order to produce at a distance R a good 
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we need a large  meaning a small antenna. Viewing a target during the entire time it is 
within a beamwidth, determines a situation analogous to an artificially long antenna. If we 
acquire the amplitude and phase of the echoes an artificially narrow beamwidth in terms of 
resolution can be realized. The further a target is from the radar, the longer it is within the 
actual beamwidth, the longer the “antenna” and hence the narrower the resolution 
beamwidth. If the sensor is moving towards or away from the scattering object/surface, we 
can measure the velocity of the scattering object by measuring the Doppler effect which 
induces a frequency variation according to the apparent radial velocity of a certain scatterer 
on the ground. In order to make use of the forward motion, both the amplitude and phase of 
the return signal have to be recorded. The timing measurement is used to discriminate 
individual cells across the satellite track while the Doppler-induced variations in the 
frequency of the return signal are employed to provide the along track resolution. The SAR 
platform flies along a straight trajectory with a constant velocity illuminating a strip of 
terrain parallel to the flight track (see Figure 2).  The data set can be stored in a two-
dimensional array according to the SAR imaging geometry. The first step in SAR processing 
includes the pulse compression in range direction, usually denoted as range compression. The 
range compression is followed by the azimuth compression, which also yields the principle 
of the pulse compression technique. The azimuth chirp, which is approximately linear 
frequency modulated, is determined by the wavelength, the forward velocity and the slant 
range distance to the target. If all these parameters are known a priori, the reference function 
for a certain slant range distance is calculated to obtain a desired geometrical resolution 
after pulse compression in azimuth direction. A SAR image with a range independent 
azimuth resolution is obtained (Curlander and McDonough, 1991). Finally the azimuth 
compression is carried out. The final result of this acquisition and processing is a radar 
image with fine spatial resolution both in range and in azimuth directions: a few meter 
square cell from hundreds of kilometers. 
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3. SAR Interferometry from space 
 

3.1Introduction 
Interferometry is a technique which use the phase information retrieved from the interaction 
of two different waves to retrieve temporal or spatial information on the waves propagation. 
First developed in optics, during the 20th century it has been later applied to radio waves 
and in the last decade to spaceborne SAR images. Since the SAR system is coherent, i.e. 
transmits and receive a complex signal with high stability, it is possible to use its 
interferometric signal, provided that propagation does not introduce decorrelation, namely 
a loss of information in irreversible way. This means that the scattered signal of the two 
images must be sufficiently correlated. We may combine images using different overpasses 
(multi-pass interferometry) where a baseline, a path difference due to satellite track 
separation, is present. In this case interferometric phase contains a contribution of 
topography which can be taken into account through the use of a digital elevation model 
(DEM). A simple scheme of how two images of the same area gathered from two slightly 
different across track positions, interfere and produce phase fringes that can be used to 
accurately determine the variation of the LOS distance is depicted in Figure  3. An 
interferogram is the map whose pixel values, si, are produced by conjugate multiplication of 
every pixel of two complex SAR images I1,i, and I2,i in one image as shown in eq. 2a, where 
I1,i and I2,i are the complex pixel amplitudes, R1,i and R2,i are the two slant range coordinates, 
Bp,i is the baseline described by Bn and Bp, the baseline normal and parallel respectively to 
the line of sight, the last the only component affecting the phase, noise,i is the phase noise 
that is due to speckle and thermal noise and usually including contribution from scattering 
too. 
 
 

  (2a) 
          
 
 

  (2b) 
 
The amplitude of this product contains information on the noise of the phase observations 
and it is related to coherence, discussed in the next paragraph. Starting from the phase in 
equation (2b) and by assuming that the scene is stable, it is possible to derive a linear 
expression for the variations of the interferogram phase, between different pixels (Ferretti J., 
2007; Askne J. et al., 2003): 
 
 

          (3) 
 

 
Here Bn and R are defined above, is the difference in elevation angleR is the slant 
range difference and z is the altitude difference between pixels in the interferogram. The 
noise term is the phase noise, which determines how well the phase variations can be 
determined, also quantified by the coherence as described below.  
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The first term in (3) is purely a systematic effect that can easily be removed in the processing 
by applying “the flat earth compensation". In the second term there is a direct relation 
between the phase and the altitude in the image z. The last term represents the phase 
ambiguity induced by the modulo 2 phase registration. The ambiguity has to be removed 
in the processing by adding the correct integer number of 2 to each measured value. This is 
called phase unwrapping. If the 2 ambiguities are removed this phase difference can be 
used to calculate the off-nadir angle and the height variations i.e. a topographic map. As far 
as the problem of phase unwrapping is concerned, this topic is not tackled with in this 
chapter (see for instance Ghiglia & Romero, 1994). This factor can influence the choice of the 
operating frequency: long wavelengths can represent a good compromise between a 
moderate displacement sensitivity and a reduced occurrence of phase wrapping when the 
expected landslide velocity is high. 
 
Baseline cannot increase over certain limit where the coherence is lost (baseline 
decorrelation effect). The use of the topographic effect which relates to the height of the 
portion of terrain corresponding to a pixel in the interferogram is one of the successful 
InSAR application, aiming at deriving a DEM of the imaged area (Zebker et al., 1986). It 
disappears for image pairs taken exactly from the same position (zero baseline). In this 
simpler case when further sources of phase variation are negligible the displacement of the 
ith point is recovered from the interferometric phase, φi by the following equation. 
 

 
            (4) 

 
In GBInSAR this is the ordinary configuration which provides ‘‘topography-free’’ 
interferogram and whose phase can be directly related to terrain movements.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. (Left) InSAR geometry. The along the track direction is perpendicular to the graph 
plane. (Right) the rationale of the fringes formation due to baseline (Modified from Shang-
Ho, 2008). 
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The first term in (3) is purely a systematic effect that can easily be removed in the processing 
by applying “the flat earth compensation". In the second term there is a direct relation 
between the phase and the altitude in the image z. The last term represents the phase 
ambiguity induced by the modulo 2 phase registration. The ambiguity has to be removed 
in the processing by adding the correct integer number of 2 to each measured value. This is 
called phase unwrapping. If the 2 ambiguities are removed this phase difference can be 
used to calculate the off-nadir angle and the height variations i.e. a topographic map. As far 
as the problem of phase unwrapping is concerned, this topic is not tackled with in this 
chapter (see for instance Ghiglia & Romero, 1994). This factor can influence the choice of the 
operating frequency: long wavelengths can represent a good compromise between a 
moderate displacement sensitivity and a reduced occurrence of phase wrapping when the 
expected landslide velocity is high. 
 
Baseline cannot increase over certain limit where the coherence is lost (baseline 
decorrelation effect). The use of the topographic effect which relates to the height of the 
portion of terrain corresponding to a pixel in the interferogram is one of the successful 
InSAR application, aiming at deriving a DEM of the imaged area (Zebker et al., 1986). It 
disappears for image pairs taken exactly from the same position (zero baseline). In this 
simpler case when further sources of phase variation are negligible the displacement of the 
ith point is recovered from the interferometric phase, φi by the following equation. 
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3.2 Coherence and phase 
The statistical measurability of the interferometric phase from images collected at different 
times is related to its coherence (Bamler and Just, 1993). The spatial distribution of this 
parameter can be associated to the quality of the interferometric phase map. The 
interferometric coherence is the amplitude of the correlation coefficient between the two 
complex SAR images forming the interferogram. In a few words a common measure of the 
degree of statistical similarity of two images can be calculated through the following 
expression:  
 

(5) 
 
 

where c is coherence and the brackets < > mean the average value of the argument and  is 
the corresponding interferometric phase, assuming the ensemble average can be determined 
by spatial averaging. The assumption that dielectric characteristics are similar for both 
acquisitions and have no impact on the interferometric phase cannot be assumed to have 
general validity and deserves a specific analysis taking into account the relevant conditions 
during each acquisition and in particular the time span between them (temporal baseline). 
E.g. vegetated area are usually rapidly decorrelating. On the other hand some features as 
buildings or artificial targets in coherence images may be stable over many years. Targets 
with such performances are called "permanent scatterers ©" (see Ferretti et al. 2001) and by 
using the phase of such reference points one may correct for the atmospheric screen effect 
with specific algorithm (Colesanti et al., 2003). In general the measured phase difference can 
be expressed as the summation of five different terms: 
 
           (6) 

 
The first term base is from baseline, topo is due to topography, defor is the ground 
deformation term, atm is due to atmospheric propagation and noise resumes random 
noise due different sources including the instrumental ones and variations occurring on the 
phase of the scattering surfaces. Limiting factors are due to delays in the ionosphere and 
atmosphere, satellite orbit stability variations occurred on the scattering surfaces during the 
time elapsed between the two acquisitions (Zebker et al., 1992). Although we normally say 
that microwaves are independent of clouds and atmospheric effects this is not entirely true 
and troposphere, and sometimes ionosphere, can affect the phase delay of waves and the 
accuracy of interferometric phase according to the water vapor and temperature 
fluctuations. Lastly it must be remembered that errors introduced by coregistration of the 
images can also affect coherence. The advantage of a ground based approach is mainly due 
to two factors: its zero baseline condition and its elevate temporal sampling both deeply 
reducing the decorrelation sources. 

 
4. Ground Based SAR interferometry 
 

4.1 The landing of a space technique 
It is possible to acquire SAR images through a portable SAR to be installed in stable area. 
The motion for synthesizing the SAR image is obtained through a linear rail where a 
microwave transceiver moves regularly. Ground-based radar installations are usually at 
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their best when monitoring small scale phenomena like buildings, small urban area or single 
hillsides, while imaging from satellite radar is able to monitor a very large area. As for 
satellite cases GBSAR radar images acquired at different dates can be fruitful for 
interferometry when the decorrelation among different images is maintained low. In ground 
based observations with respect to satellite sensors there is the necessity of finding a site 
with good visibility and from where the component of the displacement along the LOS is the 
major part. Recent papers have been issued about the feasibility of airborne (Reigber et al., 
2003), or Ground Based radar interferometry based on portable instrumentation as a tool for 
monitoring buildings or structures (Tarchi et al. 1997), landslides (Tarchi et al., 2003b), (Leva 
et al. 2003), glaciers (Luzi et al. 2007). On the other hand satellite observations are sometimes 
not fully satisfactory because of a lengthy repeat pass time or of changes on observational 
geometry. Satellite, airborne and ground based radar interferometry are derived from the 
same physical principles but they are often characterized by specific problems mainly due to 
the difference of the geometry of the observation. A number of experimental results 
demonstrated the GBSAR effectiveness for remote monitoring of terrain slopes and as an 
early warning system to assess the risk of rapid landslides: here we briefly recall three 
examples taken from recent literature. The first is the monitoring of a slope where a large 
landslide is located. The second deals with an instable slope in a volcanic area where 
alerting procedures are a must. Finally an example of a research devoted to the 
interpretation of interferometric data collected through a GB SAR system to retrieve the 
characteristics of a snow cover is discussed. 

 
4.2 The GB DInSAR instrumentation 
Despite the use of the same physical principle, the satellite and ground based approaches 
differ in some aspects. In particular radar sensors of different kinds are usually employed 
mainly because of technical and operational reasons. While satellite SAR systems due to the 
need of a fast acquisition are based on standard pulse radar, continuous wave step 
frequency (CWSF) radar are usually preferred in ground based observations. The Joint 
Research Center (JRC) has been a pioneer of this technology and here the first prototype was 
born. The first paper about a GB SAR interferometry experiment dates back to 1999 (Tarchi 
et al., 1999), reporting a demonstration test on dam financed by the EC JRC in Ispra and the 
used equipment was composed of a radar sensor based on Vectorial Network Analyser 
(VNA), a coherent transmitting and receiving set-up, a mechanical guide, a PC based data 
acquisition and a control unit. 
 
After some years a specific system, known as GBInSAR LiSA, reached an operative state and 
became available to the market by Ellegi-LiSALab company which on June 2003 obtained an 
exclusive licence to commercially exploit this technology from JRC. The use of VNA to 
realize a scatterometer, i.e. a coherent calibrated radar for RCS measurement, has been 
frequently used by researchers (e.g. Strozzi et al., 1998) as it easily makes a powerful tool for 
coherent radar measurements available. The basic and simplest schematic of the 
radiofrequency set-up used for radar measurements is shown in Figure 4 together with a 
simple scheme of the GBSAR acquisition. Advanced versions of this set-up have been 
realized in the next years to improve stability and frequency capabilities (Rudolf et al., 1999 
and Noferini et al., 2005). This apparatus is able to generate microwave signals at definite 
increasing frequencies sweeping a radiofrequency band. This approach apparently different 
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from that of the standard pulse radar owns the same physical meaning because a temporal 
pulse can be obtained after Fourier anti transforming the frequency data (the so called 
synthetic pulse approach).  
 
The rapid grow of microwave technology occurred in the last years encouraged the 
development and realization of different instruments (Pipia et al., 2007 Bernardini et al., 
2007); recently a ground based interferometer with a non-SAR approach has been designed 
with similar monitoring purposes (Werner et al., 2008). Data are processed in real time by 
means of a SAR processor. An algorithm combines the received amplitude and phase values 
stored for each position and frequency values, to return complex amplitudes (Fortuny J. and 
A.J. Sieber, 1994). The optimization of focusing algorithms has been recently updated by 
Reale et al, 2008; Fortuny, 2009. To reduce the effect of side lobes in range and azimuth 
synthesis (Mensa D.L. , 1991) , data are corrected by means of a window functions (Kaiser, 
Hamming etc), for range and azimuth synthesis. The attainable spatial resolutions and 
ambiguities are related to radar parameters through the relationships shown in Table 1. The 
accuracy of the measured phase is usually a fraction of the operated wavelength: by using 
centimetre wavelengths millimetre accuracy can be attained. As previously introduced, the 
phase from complex images can suffer from the ambiguity due to the impossibility of 
distinguishing between phases that differ by 2. Single radar images are affected by noise 
and related interferometric maps must be obtained through an adequate phase stability 
between the pair of images: only pairs whose coherence loss can not affect the accuracy of 
the interferometric maps are usable. This task is of major difficulty when the considered 
time period is of the order of months.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. A) Basic scheme of the RF section of the C band transceiver based on the Vectorial 
Network Analyser VNA. B) GB SAR acquisition through a linear motion. 
 
A detailed analysis to the possible causes of decorrelation in the specific case of GBInSAR 
observations gathering many images per day for continuous measurements has been 
discussed by some researchers (Luzi et al., 2004 and Pipia et al. ,2007) while for campaigns 
carried out on landslides moving only few centimeters per year, when the sensor is 
periodically installed at repeated intervals several months apart over the observation period, 
a novel method has been proposed (Noferini et al. 2005). 
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Table 1. calculated resolution available from a CWSF radar observation; B radiofrequency 
bandwidth, c in vacuum wavelength, f frequency step, Lx rail length, R range, c light 
velocity. 

 
5. Examples of GB INSAR data collections 
 

5.1. The monitoring of a landslide 
This first example of how to benefit from the use of GBInSAR in Geoscience, is its employ as 
a monitoring tool for instable slopes, a well consolidated application largely reported in 
literature (Leva et al. 2003, Pieraccini et al., 2003, Tarchi et al., 2003a). The investigation and 
interpretation of the patterns of movement associated with landslides have been undertaken 
by using a wide range of techniques, including the use of survey markers: extensometers, 
inclinometers, analogue and digital photogrammetry, both terrestrial and aerial. In general, 
they suffer from serious shortcomings in terms of spatial resolution. GB SAR, thanks to its 
spatial and temporal sampling can overcome the restrictions of the conventional point-wise 
measurement. Here some results of an experimental campaign carried out through a 
portable GB radar to survey a large active landslide, the “Tessina landslide”, near Belluno in 
north-eastern Italy are shown. In this site a exhaustive conventional networks of sensors 
fundamental to validate the proposed technique were at our disposal. For the same reason 
this site has been used by different research teams to test their instrumentation, starting 
since the first campaign carried out by JRC in 2000 (Tarchi et al., 2003a), following with 
University of Florence in Luzi et al. 2006 and later with Bernardini et al., 2007 and Werner et 
al., 2008. The GBInSAR monitoring executes analyzing maps of phase differences or 
equivalently displacements’ map of the observed scenario, obtained from time sequences of 
SAR images.  

 
5.2 The test site 
The area affected by the landslide extends from an elevation of 1200 m a.s.l at the crown 
down to 610 m a.s.l. at the toe of the mudflow . Its total track length is approximately 3 Km, 
and its maximum width is about 500 m, in the rear scar area, with a maximum depth of 
about 50 m. Range measurements in different points were carried out through conventional 
instrumentation with benchmarks positioned in different locations as depicted in Figure 5, 
where a sight from the measurements facility is shown. Two of the optical control points 
correspond to high reflecting radar targets. In particular, point 1 refers to a passive corner 
reflector (PCR), an artificial target usually used as calibrator, which consists of a metal 
trihedral with a size of 50. cm. Point 2 is an active radar calibrator (ARC), specifically 
designed and built for this experimentation: an amplifier of the radar signal which allows 
acquisition of high reflection pixels on the radar image at far distances that are useful for 
amplitude calibration (radiometric calibration) and map geo-referencing. The GB radar 
instrumentation available for the experiments here reported consists of a microwave (C 
band) transceiver unit based on the HP8753D VNA, a linear horizontal rail where the 
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from that of the standard pulse radar owns the same physical meaning because a temporal 
pulse can be obtained after Fourier anti transforming the frequency data (the so called 
synthetic pulse approach).  
 
The rapid grow of microwave technology occurred in the last years encouraged the 
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Fig. 4. A) Basic scheme of the RF section of the C band transceiver based on the Vectorial 
Network Analyser VNA. B) GB SAR acquisition through a linear motion. 
 
A detailed analysis to the possible causes of decorrelation in the specific case of GBInSAR 
observations gathering many images per day for continuous measurements has been 
discussed by some researchers (Luzi et al., 2004 and Pipia et al. ,2007) while for campaigns 
carried out on landslides moving only few centimeters per year, when the sensor is 
periodically installed at repeated intervals several months apart over the observation period, 
a novel method has been proposed (Noferini et al. 2005). 
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Table 1. calculated resolution available from a CWSF radar observation; B radiofrequency 
bandwidth, c in vacuum wavelength, f frequency step, Lx rail length, R range, c light 
velocity. 

 
5. Examples of GB INSAR data collections 
 

5.1. The monitoring of a landslide 
This first example of how to benefit from the use of GBInSAR in Geoscience, is its employ as 
a monitoring tool for instable slopes, a well consolidated application largely reported in 
literature (Leva et al. 2003, Pieraccini et al., 2003, Tarchi et al., 2003a). The investigation and 
interpretation of the patterns of movement associated with landslides have been undertaken 
by using a wide range of techniques, including the use of survey markers: extensometers, 
inclinometers, analogue and digital photogrammetry, both terrestrial and aerial. In general, 
they suffer from serious shortcomings in terms of spatial resolution. GB SAR, thanks to its 
spatial and temporal sampling can overcome the restrictions of the conventional point-wise 
measurement. Here some results of an experimental campaign carried out through a 
portable GB radar to survey a large active landslide, the “Tessina landslide”, near Belluno in 
north-eastern Italy are shown. In this site a exhaustive conventional networks of sensors 
fundamental to validate the proposed technique were at our disposal. For the same reason 
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since the first campaign carried out by JRC in 2000 (Tarchi et al., 2003a), following with 
University of Florence in Luzi et al. 2006 and later with Bernardini et al., 2007 and Werner et 
al., 2008. The GBInSAR monitoring executes analyzing maps of phase differences or 
equivalently displacements’ map of the observed scenario, obtained from time sequences of 
SAR images.  

 
5.2 The test site 
The area affected by the landslide extends from an elevation of 1200 m a.s.l at the crown 
down to 610 m a.s.l. at the toe of the mudflow . Its total track length is approximately 3 Km, 
and its maximum width is about 500 m, in the rear scar area, with a maximum depth of 
about 50 m. Range measurements in different points were carried out through conventional 
instrumentation with benchmarks positioned in different locations as depicted in Figure 5, 
where a sight from the measurements facility is shown. Two of the optical control points 
correspond to high reflecting radar targets. In particular, point 1 refers to a passive corner 
reflector (PCR), an artificial target usually used as calibrator, which consists of a metal 
trihedral with a size of 50. cm. Point 2 is an active radar calibrator (ARC), specifically 
designed and built for this experimentation: an amplifier of the radar signal which allows 
acquisition of high reflection pixels on the radar image at far distances that are useful for 
amplitude calibration (radiometric calibration) and map geo-referencing. The GB radar 
instrumentation available for the experiments here reported consists of a microwave (C 
band) transceiver unit based on the HP8753D VNA, a linear horizontal rail where the 
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antennas move while scanning the synthetic aperture, and a PC controlling the VNA, the 
antenna motion, the data recording, and all the other operations needed to carry out the 
measurement. Collected radar images are used for the calculation of the interferogram and 
converted into multi-temporal maps of the displacement component along the radar line of 
sight in geo-referenced raster format for GIS applications.  
 
The measurement campaign on the Tessina landslide was continuously carried out between 
the 4th of June and the 9th of June 2004. The instrumentation was installed at an elevation of 
997.3 m a.s.l., in a stable area on the opposite slope in front of the landslide, mainly visible at 
a minimum and maximum distance of 100. m and 500. m, respectively. The mechanical 
frame was fixed on a concrete wall. The radar image exhibits a fixed spatial resolution of 2 m 
along the range direction and a variable cross-range spatial resolution better than 6 m. The 
area selected for SAR imaging is a rectangle with size 400m per 1000m. The images obtained 
with the ground-based SAR system are usually projected as a two dimensional image of the 
scenario along two directions, range and azimuth, with a plane representation. 
 

Fig. 5. View from the radar installation of the monitored area. Red figures indicate 
benchmarks for optical measuring (After Luzi et al., 2006). 
 
The interpretation of bi-dimensional SAR images of a complex scenario, where terrain slope 
changes abruptly, is often unsatisfactory for comparison to an optical view. The availability 
of a DEM of the observed scene allows us to obtain SAR images on a three-dimensional 
space where radar and optical features are better detectable. Figure 6 shows an example of 
an intensity SAR image projected on the DEM: all three coordinates of the pixel are 
reconstructed. In this image the position of the radar is marked by a red dot; the signatures 
of the two high reflectivity targets, consisting of the passive corner reflector (PCR) and the 
active radar calibrator (ACR), used for referencing the map, are neat. 

 
5.3 Data analysis 
As previously discussed in GB SAR observations the main source of decorrelation is that one 
due to atmospheric propagation. At the C band radar frequencies the attenuation due to 
atmospheric path is low but the signal propagating through atmosphere suffers anyhow a 
time delay, mainly changing with air humidity and temperature fluctuations which ask for 
correction procedures of the acquired data. Briefly, the applied method consists of 
subtracting the phase value measured on a stable, highly reflecting reference point artificial 

 

or natural, from the measured phase of the selected pixel. In our case the characteristics of 
the observed scenario, mainly composed of sliding bare soil or by sparse vegetation, made it 
difficult to find stable natural scatterers. The passive corner reflector and the active radar 
calibrator were installed in two different positions along the upper contour of the landslide, 
and their positions were continuously checked by means of a theodolite to verify their 
effective stability. The PCR position, measured by theodolite, resulted stable along the entire 
duration of the campaign within +-1mm. The scarce vegetation on the main area under 
investigation allowed to get high coherence values. 
 

 
Fig. 6. Radar intensity image (arbitrary units) of the monitored slope obtained with data 
collected on 6 June 2004 and rendered on Digital Elevation Model of the slope. Two high 
reflectivity targets, the passive corn reflector (PCR) and the active calibrator (ARC) are 
indicated (After Luzi et al., 2006). 
 
Displacements measured by the theodolite and corresponding values retrieved from radar  
data are plotted as a function of time in Figure 7. Some data gaps are due to interruptions 
during heavy rain events or small adjustments on the installation of radar targets. The 
measured phase of point 1 (PCR), whose position was confirmed to be stable within the 
millimetric accuracy of the optical instrumentation, is subtracted from the measured phases 
of the other points to take into account atmospheric induced error. Observing Figure 7, 
agreement appears viable and the displacements measured respectively through optical 
benchmarks and radar show similar trends. A noticeable discrepancy appears for the faster 
points (P10 and P17), whose corresponding pixels include inhomogeneous areas in terms of 
slope and surface characteristics. The uncertainty can be ascribed to the fact that the 
theodolite measures a single point, while radar data are obtained through a spatial 
averaging on an area of some meters.  From these data a maximum 2.5mm/30’ displacement 
rate results. Regarding phase wrapping, this rate value ensures that the phase variation 
occurred between two subsequent measurements (< 30’) is small compared to the centimetre 
half-wavelength. 
Moving from a point-wise analysis to the entire observed surface, the displacement of each 
pixel can be depicted in colour scale corresponding to different values in millimetres, 
making it possible to compare the radar data with an overlapped map of the scenario. In 
Figure 8 is shown the interferometric map obtained through a masking procedure which 
excludes areas with coherence lower than the 0.7 threshold. The geometry of observation 
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Displacements measured by the theodolite and corresponding values retrieved from radar  
data are plotted as a function of time in Figure 7. Some data gaps are due to interruptions 
during heavy rain events or small adjustments on the installation of radar targets. The 
measured phase of point 1 (PCR), whose position was confirmed to be stable within the 
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agreement appears viable and the displacements measured respectively through optical 
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Moving from a point-wise analysis to the entire observed surface, the displacement of each 
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Figure 8 is shown the interferometric map obtained through a masking procedure which 
excludes areas with coherence lower than the 0.7 threshold. The geometry of observation 
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was never changed during the overall campaign, and approximately 300 images were 
collected, one every 16-18 minutes. The map in Figure 8 is obtained considering the data 
collected from 17h.48m GMT+1 to 22h.53m GMT+1 of the 6 June. As mentioned above, these 
data are very interesting because they refer to areas that are inaccessible for the placement of 
benchmarks. For example, we can monitor a minor central area where the movement rate is 
so high as to cause displacement of up to ten centimetres in 5 hours, while the rest of the 
landslide area shows a slower motion, about 1mm/hour.  This map making available an 
estimate of the displacement along the LoS over the entire slope, can be the starting point to 
understand and analyze the behaviour of the landslide. Relationships between slope 
movement and other factors as rain rate, can be studied (Luzi et al., 2006) to understand 
landslide dynamic. 
 

Fig. 7. Displacements measured by the theodolite (solid line) and corresponding values 
retrieved from radar data (symbols) for some reference points supplied with optical 
benchmarks, as a function of time. Figure points refers to Figure 5. (After Luzi et al., 2006) 
 

 
Fig. 8. Displacement map projected on the corresponding cartographic map obtained with 
data from 17:48 to 22:53 of 6 June. Colour bar represents displacement towards radar 
location (approaching), in mm (After Luzi et al., 2006). 

 
 

 

5.4 Volcano deformations monitoring through GBInSAR monitoring 
 

5.4.1 Introduction 
Deformations monitoring through GB SAR has been applied in several different 
circumstances of slope instability. One of the most interesting case is the monitoring of a 
Volcanic area, presently in progress, and herein briefly described. When non-remote 
conventional approach can be inapplicable GB SAR can offer a good opportunity. To 
continuously monitor the behaviour of the morphological depression, known as Sciara del 
Fuoco, SdF, with alerting purposes, a GB-In SAR system, working at Ku band, was set up on 
the stable right flank of the Stromboli volcano in Italy. The monitoring started in March 2003 
(Antonello et al., 2003) and ever since it is continuously acquiring. This lateral location was 
chosen due to the logistic impossibility to place the system in front of the unstable slope and 
permitted to follow the temporal and spatial evolution of the mass movement in the SdF 
and to obtain information about the crater area through interferometric maps acquired with 
ten minutes cadence. This monitoring was arranged as a consequence of the collapse of a 
large landslide which caused a tsunami on December 2002. More generally the presence of 
deformations in a volcanic area can be often related to volcanic activities. Stromboli volcano 
is characterized by a typical “Strombolian activity” which consists of very low energy 
explosions, every 10-15 minutes. The investigation and interpretation of the movement 
associated with deformations have been undertaken by using a wide range of techniques, 
including the use of survey markers, extensometers, inclinometers. However, they often 
incur serious shortcomings in terms of spatial or temporal resolutions. Although these 
techniques provide abundant datasets on movement styles, they are difficult to interpret in 
terms of the overall evolution of movement and cannot be installed in a risky area as the 
slope of an active volcano. GBDInSAR, can provide excellent spatial coverage and temporal 
resolution, and large movement events can be easily captured from remote. 

 
5.4.2 The test site and the experimental data 
The GB SAR installed in Stromboli Island, was designed by the Joint Research Centre of the 
European Commission (Rudolf & Tarchi, 1999) and it is built and supplied by Ellegi/Lisalab  
company. Data are acquired from an elevation of 400 m a.s.l. and at an average distance 
from the target area of about 600 m. The instrument points up toward the NE Crater, with a 
25° inclination angle of the radar antennas. It is continuously active since 20 February 2003 
(Antonello et al., 2003; Antonello et al., 2007) and produces, on average, 120 images per day 
of the area under investigation (NE flank of crater and the upper part of the SdF). With an 
accuracy of the measurement of less than 1 mm it produces a synthesized radar image of the 
observed area every 12 minutes, with a pixel resolution of about 2 m in range, and 2 m on 
average in cross range. The interferometric analysis of sequences of consecutive images 
allows us to derive the entire displacement field of the observed portion of the SdF and of 
the crater along the LoS in the time interval. A negative displacement means a shortening of 
the LoS length. On the crater area this direction of movement corresponds to the inflation of 
the volcanic cone while, on the SdF, this is usually related to a local bulging or to the 
downslope sliding of the volcanoclastic material accumulated on the SdF slope.  
Conversely, a positive value of displacement identifies a movement backward with respect 
to the sensor that on the crater area could be related to the deflation of the volcanic cone. As 
usual the radar image must be interpreted after a carefully understanding of the monitored 
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area. In this case, as shown in Figure 9 different areas can be identified from the power 
image. In particular the SdF slope and the crater areas are well separated. 
 
An example of an interesting and useful achievement from GB SAR data acquisition is here 
briefly recalled. Since 8 March 2007 the velocity recorded on the SdF increased again with 
movements toward the sensor. The interferogram highlighted a very high deformation rate 
(more than 300 mm/h), which exceeds the capability of the correct phase unwrapping. The 
arrangement of the interferometric fringes, clearly detectable in Figure 10, can be related to 
the bulging due to the opening of a new vent, actually occurred at 14.30 UT of 9 March. 
Following the method proposed by Voight (1988), Casagli et al. 2009 discuss how to predict 
in advance the opening of the vent. 
 

 
Fig. 9. Observed scenario from the radar system. (a) Picture of the SdF as viewed from the 
radar installation; (b) radar image projected on a DEM. Four main areas, as indicated by the 
numbering, can be identified: 1) the “Bastimento”, the stable right flank of the SdF; 2) the 
upper part of the SdF; 3) the flank of the NE crater; 4) the outer part of the NE crater. The 
colour scale expresses the power of the backscattered signal. 
 

 
Fig. 10. 3D model of the Stromboli Island superimposed a displacement map obtained from 
the GB-InSAR. Time interval: 11 minutes (from 11.17 UT and 11.28 UT 03.09.2007) showing a 
velocity greater than 300 mm/h enhanced through the fringes density (After Casagli et al., 
2009). 

 

 

5. 5 Interferometric phase and snow water equivalent 
As a last example we report on a not yet consolidated but promising application: the use of 
GB SAR interferometry to retrieve of snow depth (SD) and snow water equivalent (SWE) of 
slopes. Information on the mass of snow through the knowledge of related parameters such 
as, SWE or SD, are important issues for climate studies, hydrology, and water resources 
managing. The spatial and temporal distribution of snow depth is one of the key parameters 
in the assessment of avalanche hazards, snow drift and avalanche modelling, and model 
verification. Most of the conventional methods including snow pits, probing or profiling, 
deliver point information and direct on site measurements are often risky in high mountains 
areas which are exposed to avalanche risk. Nevertheless the several RS available techniques 
for the measurement of SWE of dry snow is yet an open matter. The use of optical data is 
limited by adverse meteorological conditions and they are not well correlated to snow depth 
Microwave radiometry is very sensitive to the presence of snow on soil and is used for 
estimating SWE and melting/refreezing cycles at both basin scale (Macelloni et al., 2005). It 
does however have difficulty in distinguishing wet snow from wet soil and at lower 
frequencies usually suffers from a limited spatial resolution. As far as microwave active 
techniques are concerned, different algorithms have been developed and refined for use in 
multipolarization/multifrequency data sets (Shi et al., 2000 ; Nagler et al., 2000). The use of 
SAR images aimed at snow monitoring from satellite started since the 1990s (Bernier et al., 
1998) but the use of differential SAR Interferometry, DInSAR, to monitor dry snow is a 
relatively recent application (Gunierussen et al., 2001; Oveishgram et al. 2007) and the use of 
ground based SAR sensors is also a novelty (Martinez et al., 2005). As far as the strongly 
related avalanche risk reduction and innovative study has been carried out by JRC 
summarized in the paper from Martinez et al., 2006. 

 
5.5.1 The functioning principle 
The use of SAR interferometry to evaluate snow mass characteristics, is based on relating the 
interferometric phase shift obtained from two or more SAR images to a change in the snow 
mass. Snow is a mixture of air, ice crystals and if melting, liquid water. In wet snow, a 
microwave signal suffers from attenuation due to the presence of liquid water and the 
interaction is complicated owing to the fact that even a very small amount of liquid water 
drastically influences the phase and amplitude of the backscattered field. When snow is dry, 
liquid water is absent and at longer wavelengths (L to C band) it can be considered almost 
transparent with a moderate volume scattering depending on observed frequency and the 
incidence angle. Higher frequencies showed a good sensitivity to dry snow properties but 
they have a limited penetration into snow cover. In the case of dry snow at low frequencies 
(lower than X band) sensitivity of the amplitude of backscattering to variations of the depth 
of a dry snow pack is weak (Strozzi et al., 1998). These considerations invited the start of 
some investigations about the retrieving of dry snow characteristics fom microwave 
interferometric data.  
 
 Dry snow is a mixture of air and ice crystals. The main processes of backscattering from a 
snow pack depicted in Figure 11 are: surface scattering at air-snow interface ( 1 in Figure 11), 
at the ground-snow interface ( 2 in Figure 11), and volume scattering at snow grains within 
the snow-pack ( 3 in Figure 11). Numerical backscatter simulations (Nagler et al., 2004) show 
that in the frequency range from L- to C-Band, surface scattering at the snow – ground 
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2009). 

 

 

5. 5 Interferometric phase and snow water equivalent 
As a last example we report on a not yet consolidated but promising application: the use of 
GB SAR interferometry to retrieve of snow depth (SD) and snow water equivalent (SWE) of 
slopes. Information on the mass of snow through the knowledge of related parameters such 
as, SWE or SD, are important issues for climate studies, hydrology, and water resources 
managing. The spatial and temporal distribution of snow depth is one of the key parameters 
in the assessment of avalanche hazards, snow drift and avalanche modelling, and model 
verification. Most of the conventional methods including snow pits, probing or profiling, 
deliver point information and direct on site measurements are often risky in high mountains 
areas which are exposed to avalanche risk. Nevertheless the several RS available techniques 
for the measurement of SWE of dry snow is yet an open matter. The use of optical data is 
limited by adverse meteorological conditions and they are not well correlated to snow depth 
Microwave radiometry is very sensitive to the presence of snow on soil and is used for 
estimating SWE and melting/refreezing cycles at both basin scale (Macelloni et al., 2005). It 
does however have difficulty in distinguishing wet snow from wet soil and at lower 
frequencies usually suffers from a limited spatial resolution. As far as microwave active 
techniques are concerned, different algorithms have been developed and refined for use in 
multipolarization/multifrequency data sets (Shi et al., 2000 ; Nagler et al., 2000). The use of 
SAR images aimed at snow monitoring from satellite started since the 1990s (Bernier et al., 
1998) but the use of differential SAR Interferometry, DInSAR, to monitor dry snow is a 
relatively recent application (Gunierussen et al., 2001; Oveishgram et al. 2007) and the use of 
ground based SAR sensors is also a novelty (Martinez et al., 2005). As far as the strongly 
related avalanche risk reduction and innovative study has been carried out by JRC 
summarized in the paper from Martinez et al., 2006. 

 
5.5.1 The functioning principle 
The use of SAR interferometry to evaluate snow mass characteristics, is based on relating the 
interferometric phase shift obtained from two or more SAR images to a change in the snow 
mass. Snow is a mixture of air, ice crystals and if melting, liquid water. In wet snow, a 
microwave signal suffers from attenuation due to the presence of liquid water and the 
interaction is complicated owing to the fact that even a very small amount of liquid water 
drastically influences the phase and amplitude of the backscattered field. When snow is dry, 
liquid water is absent and at longer wavelengths (L to C band) it can be considered almost 
transparent with a moderate volume scattering depending on observed frequency and the 
incidence angle. Higher frequencies showed a good sensitivity to dry snow properties but 
they have a limited penetration into snow cover. In the case of dry snow at low frequencies 
(lower than X band) sensitivity of the amplitude of backscattering to variations of the depth 
of a dry snow pack is weak (Strozzi et al., 1998). These considerations invited the start of 
some investigations about the retrieving of dry snow characteristics fom microwave 
interferometric data.  
 
 Dry snow is a mixture of air and ice crystals. The main processes of backscattering from a 
snow pack depicted in Figure 11 are: surface scattering at air-snow interface ( 1 in Figure 11), 
at the ground-snow interface ( 2 in Figure 11), and volume scattering at snow grains within 
the snow-pack ( 3 in Figure 11). Numerical backscatter simulations (Nagler et al., 2004) show 
that in the frequency range from L- to C-Band, surface scattering at the snow – ground 
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interface is the dominating process. In this case the modifications of this signal due to 
scattering at the air-snow interface and within the snow volume are small compared to the 
phase shift resulting from the changes of the propagation path length through the snow 
pack due to refraction. The variation of the path length due to thickening of the snow pack 
can be measured in terms of the interferometric phase shift according to (Gunierussen et al., 
2001): 
 
           (7) 

     
where snow is the interferometric phase (rad),  the in vacuum wavelength(m), z = z2 – 
z1 (m) corresponds to the change in the snow depth, z, between SAR data acquisition 1 and 
2,  is the local incidence angle, and  is the snow permittivity, the physical parameter 
responsible for refraction and corresponding to the square of the refractive index used in 
optics. This parameter in the case of dry snow can be estimated through a third order 
polynomial function for s < 450 kg/m3 (Matzler, 1996). For low local incidence angles (up 
to approximately 50°), the relationship between snow and SWE, estimated as SWE= z 
<s>, can be approximated to a linear relationship but due to the imaging geometry of GB 
SAR systems, slopes are often imaged at incidence angles above 50° and this linearization is 
not applicable. In this case (7) must be used in the not approximated form. Using in-situ 
point measurements or optionally an assumption on the snow density, z can be derived but 
local variations of the snow density value will be reflected in the estimation of the snow 
height.  
 

 

Fig. 11. To the left: simple scheme of the backscattering processes of a snow pack: surface 
scattering at air-snow interface 1); at the ground-snow interface 2); volume scattering at 
snow grains within the snow-pack 3). To the right a picture of the GB SAR apparatus and 
the TLS. 
 
Also in this application we must care of decorrelation and as far as the coherence problem is 
concerned a snow pack can suffer from some decorrelation sources such as: melting, snow 
drift (wind erosion and deposition), snowfall, snow metamorphism and aging. Starting from 
satellite observations coherence over snow covered alpine terrain is lost in most cases after 1 
and 3 days, and generally after 35 days (typical repeat pass of ERS) coherence is very low 
compromising any operational scopes. The measured phase difference of a pixel, consists 
not only of snow estimated by (7), coming from the two-way propagation difference in the 
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snow-pack, but also of other contributions such as the phase difference due to changes in 
propagation through atmosphere and a contribution coming from random noise. Neglecting 
the noise due to instrumental sources and taking advantage of some stable points as corner 
reflectors or stable natural targets, atmospheric effect can be evaluated. By estimating the 
phase as a difference and comparing them, atmospheric artefacts are drastically reduced. 
The most critical fact is that when snow is not fully dry, the suggested formula is 
inapplicable as the effect of melting and refreezing can drastically affect the phase as well. 
Finally phase wrapping can occur if the acquisition is not fast enough or in case of heavy 
snowfall but the high temporal sampling provided by GB SAR (approximately two images 
per hour) largely reduces this occurrence.  

 
5.5.2 The test site 
The test site was a high alpine area at approximately 2000 m elevation, which lies north of 
the main ridge of the Austrian Alps in Tyrol. The monitored area is an east-wards looking 
slope of the Trantaler Köpfe, which is located in the Wattener Lizum, Tuxer Alpen, Tyrol, 
Austria, about 20 km south-east of Innsbruck. The target region is a northeast oriented slope 
between the pinnacles of Tarntaler Köpfe (2767 m) and Lizumer Boeden (approx. 2020 m) at 
the bottom of the valley. The experiments were carried out within the FP6 EC project 
GALAHAD framework (Advanced Remote Monitoring Techniques for Glaciers, Avalanches 
and Landslides Hazard Mitigation) with the support of Department of Natural Hazards and 
Timberline, in Innsbruck, Austria (BFW) which in particular organized the ground truth 
data collections and several Laser scanner measurements (Schaffhauser A., 2009). The RS 
instruments, GB SAR and TLS, were installed on a concrete base at an altitude of 2041: a 
pictures is shown in Figure 11. Four automatic weather stations (AWS) were installed 
providing continuous measurements of the main meteorological parameters (temperature, 
wind, solar irradiation, snow height). The experimental campaign included two periods, 
namely winter 2006 and 2007. The first data collection lasted about three months, from the 
9th of February 2006 to the 4th of April with only C band working. The second period was 
from the 1st of February 2007 to the end of April 2007, during which S band data 
acquisitions were also arranged.  

 
5.5.3 Data analysis 
In the first campaign with a C band operated GB SAR, already described in a previous paper 
(Noferini et al., 2005) was used. The same apparatus was upgraded over the winter of 2007 
as to measure at S-Band as well. The illuminated area is about 1 km × 2 km wide, cross-
range / range respectively. The synthesized image has a slant range resolution of about 7.5. 
m and 5m at C and S bands respectively and a cross-range resolution of about 30m (C band) 
and about 50m (S band) at 1500m distance from the radar. According to the previous 
considerations about coherence a deep analysis of its behaviour at the two different bands 
can be found in the cited paper by (Luzi et al., 2009). The final outcomes are that at C band 
coherence can be considered acceptable for a time interval between acquisitions 
approximately of 14 hours, while at S-Band this interval is definitely more than 2 days. This 
result confirms that temporal decorrelation affects C and S bands in different ways, that the 
latter is more suited for long temporal observations at low sampling rate. To validate the 
proposed interferometric technique, estimates of the snow depth retrieved by using the 
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interface is the dominating process. In this case the modifications of this signal due to 
scattering at the air-snow interface and within the snow volume are small compared to the 
phase shift resulting from the changes of the propagation path length through the snow 
pack due to refraction. The variation of the path length due to thickening of the snow pack 
can be measured in terms of the interferometric phase shift according to (Gunierussen et al., 
2001): 
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to approximately 50°), the relationship between snow and SWE, estimated as SWE= z 
<s>, can be approximated to a linear relationship but due to the imaging geometry of GB 
SAR systems, slopes are often imaged at incidence angles above 50° and this linearization is 
not applicable. In this case (7) must be used in the not approximated form. Using in-situ 
point measurements or optionally an assumption on the snow density, z can be derived but 
local variations of the snow density value will be reflected in the estimation of the snow 
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concerned a snow pack can suffer from some decorrelation sources such as: melting, snow 
drift (wind erosion and deposition), snowfall, snow metamorphism and aging. Starting from 
satellite observations coherence over snow covered alpine terrain is lost in most cases after 1 
and 3 days, and generally after 35 days (typical repeat pass of ERS) coherence is very low 
compromising any operational scopes. The measured phase difference of a pixel, consists 
not only of snow estimated by (7), coming from the two-way propagation difference in the 
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snow-pack, but also of other contributions such as the phase difference due to changes in 
propagation through atmosphere and a contribution coming from random noise. Neglecting 
the noise due to instrumental sources and taking advantage of some stable points as corner 
reflectors or stable natural targets, atmospheric effect can be evaluated. By estimating the 
phase as a difference and comparing them, atmospheric artefacts are drastically reduced. 
The most critical fact is that when snow is not fully dry, the suggested formula is 
inapplicable as the effect of melting and refreezing can drastically affect the phase as well. 
Finally phase wrapping can occur if the acquisition is not fast enough or in case of heavy 
snowfall but the high temporal sampling provided by GB SAR (approximately two images 
per hour) largely reduces this occurrence.  

 
5.5.2 The test site 
The test site was a high alpine area at approximately 2000 m elevation, which lies north of 
the main ridge of the Austrian Alps in Tyrol. The monitored area is an east-wards looking 
slope of the Trantaler Köpfe, which is located in the Wattener Lizum, Tuxer Alpen, Tyrol, 
Austria, about 20 km south-east of Innsbruck. The target region is a northeast oriented slope 
between the pinnacles of Tarntaler Köpfe (2767 m) and Lizumer Boeden (approx. 2020 m) at 
the bottom of the valley. The experiments were carried out within the FP6 EC project 
GALAHAD framework (Advanced Remote Monitoring Techniques for Glaciers, Avalanches 
and Landslides Hazard Mitigation) with the support of Department of Natural Hazards and 
Timberline, in Innsbruck, Austria (BFW) which in particular organized the ground truth 
data collections and several Laser scanner measurements (Schaffhauser A., 2009). The RS 
instruments, GB SAR and TLS, were installed on a concrete base at an altitude of 2041: a 
pictures is shown in Figure 11. Four automatic weather stations (AWS) were installed 
providing continuous measurements of the main meteorological parameters (temperature, 
wind, solar irradiation, snow height). The experimental campaign included two periods, 
namely winter 2006 and 2007. The first data collection lasted about three months, from the 
9th of February 2006 to the 4th of April with only C band working. The second period was 
from the 1st of February 2007 to the end of April 2007, during which S band data 
acquisitions were also arranged.  

 
5.5.3 Data analysis 
In the first campaign with a C band operated GB SAR, already described in a previous paper 
(Noferini et al., 2005) was used. The same apparatus was upgraded over the winter of 2007 
as to measure at S-Band as well. The illuminated area is about 1 km × 2 km wide, cross-
range / range respectively. The synthesized image has a slant range resolution of about 7.5. 
m and 5m at C and S bands respectively and a cross-range resolution of about 30m (C band) 
and about 50m (S band) at 1500m distance from the radar. According to the previous 
considerations about coherence a deep analysis of its behaviour at the two different bands 
can be found in the cited paper by (Luzi et al., 2009). The final outcomes are that at C band 
coherence can be considered acceptable for a time interval between acquisitions 
approximately of 14 hours, while at S-Band this interval is definitely more than 2 days. This 
result confirms that temporal decorrelation affects C and S bands in different ways, that the 
latter is more suited for long temporal observations at low sampling rate. To validate the 
proposed interferometric technique, estimates of the snow depth retrieved by using the 
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described model and the snow depth measurements obtained through the ultrasonic sensor 
at the AWS, were compared. A small plot inside the imaged area, located at 2160 m asl at 
about 1 km distance from the GB SAR is considered. The phase values for the selected points 
were obtained after focusing on an area 400.m x 1800.m wide, with a resulting pixel 
resolution of 2 m x 2 m. Figure 12 shows a data record from the 24th February (0:00h) 2006 
to 1st March (0:00h) 2006: the snow depth measured by means of the ultrasonic sensor at the 
closest station is compared to the snow depth retrieved from interferometric data measured 
at the same time in some points. The points depicted in Figure 12 show the SD retrieved 
through the equations (1) and (2) for an incidence angle=60° and a snow density=100 kg/m3 
. It is worth noting that the snow was dry with a low probability of melting. To retrieve 
snow depth from interferometric phase, and removing the atmospheric component, the 
measured values were subtracted from the phase measured on a passive corner reflector, 
which is a metal trihedral 0.5 m in size and located at a distance of 1766 m from the radar. 
Observing Figure 12, according to the assumed model, the snow fall induces a regular 
increase of the SD retrieved from interferometric phases and also taking into account the 
non-coincident location of the two measurements, we obtain a consistent agreement 
between the value retrieved from interferometric phase and those measured at the AWS. In 
the last part of the plot there is an inversion of the two curves: retrieved values are first 
lower than US values and then they get higher. A possible explanation is the settlement of 
the snow pack which can reduce the height of the snow measured by US without changing 
the SWE, while the values retrieved from interferometric phases stand, being sensitive to 
SWE. The agreement can be considered satisfactory if we take into account both the general 
variability of the snow depth and secondly the not-coincidental location of the ground truth 
with radar pixels.  
 

Fig. 12. Temporal record of the snow depth (grey filled points) measured through an US 
sensor and SD retrieved by means of GBInSAR at different points (∆, ◊, □); elapsed time 
from 0h0m 24.02.2006 to 0h0m 01.03.2006 (After Luzi et al., 2009). 
 
In winter the of 2006/2007 similar data were obtained confirming the effectiveness of the 
approach. The retrieval approach tested on the selected points has also been applied to the 
entire slope, the aiming at comparing TLS data and GB SAR observations. The local 
incidence angle for each pixel was calculated through the DEM of the observed area, 
provided to BFW by the Federal Office of Metrology and Surveying (10m resolution), 

 

assuming that the air to snow interface is parallel to terrain surface. Considering the same 
time interval elapsed between the two TLS scans (9 to 14 February 2007), a snow depth map 
was calculated both at C and S band. The results, corresponding to an area of 1000m x2000m 
in front of the GB SAR location, are shown in Figure 13A and 14B respectively. A circle 
locates in Figure 13 the area surrounding the automatic weather station where the data 
analysis is focused. The data are depicted on a section of the map together with a coherence 
map calculated at C band for the same area (Figure 13D). The difference in data coverage 
between Figure 13A and Figure 13B is due to the antenna pattern which at S band is coarser. 
The TLS map provided by BFW of the SD variation that occurred between the two dates is 
shown in Figure 13C: a SD increase of about 0.25 m is measured. 

Fig. 13. A) Map of snow depth difference with respect to the initial value, obtained through 
cumulative interferogram starting 09.02.2007 and ending 14.02.2007: S band; snow 
density=100 kg/m3 ; B) C band C) Snow depth difference compared to the initial value 
measured through TLS from 9 to14 February 2007; D) Coherence map calculated at C band 
corresponding to the time interval from 9 to14 February 2007. The green circle highlights the 
area where the US was placed (After Luzi et al., 2009). 
 
Maps retrieved from microwave data (Figure 13A and Figure 13B) show a discontinuous 
texture compared to TLS; this is due to different factors: the coarser spatial resolution, a 
certain noise as testified by a barely homogeneous coherence behaviour (Figure 13D) and 
the presence of possible residuals of atmospheric effect after correction. At the same time 
and for the same area, the maps indicate similar SD values, with S band closer to TLS 
estimates and C band lower. It is worth noting that GB SAR and the TLS use a different time 
sampling; a TLS map is obtained by using two measurements (scans) only while the GB SAR 
differential phase is the result of the summation of an interferogram series acquired with an 
hourly sampling over the whole period, and secondly, their governing physical principle 
differs as well. TLS refers directly to the SD and it is affected by the first few millimetres of 
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assuming that the air to snow interface is parallel to terrain surface. Considering the same 
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Maps retrieved from microwave data (Figure 13A and Figure 13B) show a discontinuous 
texture compared to TLS; this is due to different factors: the coarser spatial resolution, a 
certain noise as testified by a barely homogeneous coherence behaviour (Figure 13D) and 
the presence of possible residuals of atmospheric effect after correction. At the same time 
and for the same area, the maps indicate similar SD values, with S band closer to TLS 
estimates and C band lower. It is worth noting that GB SAR and the TLS use a different time 
sampling; a TLS map is obtained by using two measurements (scans) only while the GB SAR 
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hourly sampling over the whole period, and secondly, their governing physical principle 
differs as well. TLS refers directly to the SD and it is affected by the first few millimetres of 
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the snow layer surface while through the microwave interaction (at large incidence angles), 
we are not able to separate depth and density effects.  
Notwithstanding the difficulty of providing both lengthy data record in dry snow 
conditions and detailed knowledge of the observed snow characteristics, the obtained 
results confirmed the presence of a clearly measurable interferometric phase variation in 
relation to the growing height of the snow layer. 

 
6. Conclusions 
 

The brief introduction of the GBInSAR here presented is certainly incomplete but it was 
simply aimed at introducing the reader to this novel tool. In the discussed examples we 
focused on the slope monitoring because this is nowadays the most consolidated and 
operative use. At the same time we introduced the snow monitoring application as an 
opposite case where the technique is yet at a research stage. The spreading of new 
instrumentations, and the related issued papers, confirm that Remote Sensing community is 
more and more convicted that this technique can be very useful often providing a 
complementary information to the more popular spaceborne SAR interferometry. Some 
papers have been issued about the DEM retrieval and GBDInSAR but the application is still 
in progress.Finally a set of applications addressed to buildings and civil structures as 
bridges and dam, have not been tackled here but they represent further hopeful frontiers for 
GB SAR interferometry. 
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the snow layer surface while through the microwave interaction (at large incidence angles), 
we are not able to separate depth and density effects.  
Notwithstanding the difficulty of providing both lengthy data record in dry snow 
conditions and detailed knowledge of the observed snow characteristics, the obtained 
results confirmed the presence of a clearly measurable interferometric phase variation in 
relation to the growing height of the snow layer. 

 
6. Conclusions 
 

The brief introduction of the GBInSAR here presented is certainly incomplete but it was 
simply aimed at introducing the reader to this novel tool. In the discussed examples we 
focused on the slope monitoring because this is nowadays the most consolidated and 
operative use. At the same time we introduced the snow monitoring application as an 
opposite case where the technique is yet at a research stage. The spreading of new 
instrumentations, and the related issued papers, confirm that Remote Sensing community is 
more and more convicted that this technique can be very useful often providing a 
complementary information to the more popular spaceborne SAR interferometry. Some 
papers have been issued about the DEM retrieval and GBDInSAR but the application is still 
in progress.Finally a set of applications addressed to buildings and civil structures as 
bridges and dam, have not been tackled here but they represent further hopeful frontiers for 
GB SAR interferometry. 
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1. Introduction     
 

Nowadays, air pollution becomes a very serious problem with the rapid growth of 
industrialization and urbanization (Kim Oanh et al., 2006, Wu et al., 2006). This air pollution 
is not only continues to damage our environment, it also endanger our health (Pope et al., 
2008, Pope et al., 2007, Banauch et al., 2006, Brunekreef et al., 2002). Evidence gathered to 
date indicates that the most harmful component of this pollution is the microscopic 
atmospheric aerosols with an aerodynamic diameter below 10 micrometers (PM10) (Pope et 
al., 2008, Pope et al., 2007, Pope et al., 2004, Donaldson et al., 2000, Pope et al., 1995). Only 
particles less than 10 micrometers in diameter can be inhaled deep into the lungs, then 
embed themselves in the lungs to cause adverse health effects. These effects have been 
linked to respiratory disease, cancer and other potentially deadly illnesses. This is the reason 
for both the WHO and the United Nations have declared that atmospheric aerosols poses 
the greatest air pollution threat globally. 
In order to monitor the levels of air pollution, so that early warning will be provided to 
prevent long exposure to this type of harmful air pollution. Many researchers attempt to 
develop more efficient techniques to monitor this atmospheric aerosols air pollution. This 
includes the techniques of Atmospheric Optical Thickness (AOT) and satellite images 
(Hadjimitsis, 2009, Hadjimitsis, 2008, Sifakis et al., 1992, Kaufman et al., 1983, Lim et al., 
2009). Satellite images were normally used by researchers in their remote sensing air quality 
studies, but the main drawback of using satellite images is the difficulty in obtaining cloud-
free scenes especially for the Equatorial region. 
In order to overcome cloud-free scenes problem, aerial photographic imagery technique is 
used to obtain air pollution map. This technique utilizes fundamental optical theory like 
light absorption, light scattering and light reflection. This technique has long been used for 
visibility monitoring (Middleton, 1968, Noll et al., 1968, Horvath et al., 1969, Diederen et al., 
1985). The continuous and rapid evolution of digital technologies in the last decade fostered 
an incredible improvement in digital photography technology, in information and 
communication technologies (ICT) and personal computer technology. This modern digital 
technology allows image data transfer over the internet protocol, which provides real time 
observation and image processing (Wong et al., 2009, Wong et al., 2007). This has made it 
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possible to monitor real time PM10 air pollution at multi location. This is an attempt to fulfill 
the need for preventing long exposure to this harmful air pollution. 
The object of this study is to develop a state-of-the-art technique to enhance the capability of 
the internet surveillance camera for temporal air quality monitoring. This technique is able 
to detect particulate matter with diameter less than 10 micrometers (PM10). An empirical 
algorithm was developed and tested based on the atmospheric characteristic to determine 
PM10 concentrations using multispectral data obtained from the internet surveillance 
camera. A program is developed by using this algorithm to determine the real-time air 
quality information automatically. This development showed that the modern Information 
and Communications Technologies (ICT) and digital image processing technology could 
monitor temporal development of air quality at multi location simultaneously from a central 
monitoring station. 

 
2. Description of the Algorithm 
 

In this study, we developed an algorithm based on the fundamental optical theory, that is 
light absorption, light scattering and light reflection. This algorithm is used to perform 
image processing on the captured digital images to determine the concentration of 
atmospheric aerosols. 
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from sunlight towards the known reference, and then reflected to propagate towards the 
internet surveillance camera penetrating through the interaction in atmospheric pollutant 
column. 
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single scattering of visible electromagnetic radiation by aerosol in atmosphere, Liu et al. 
showed that the atmospheric reflectance due to molecules scattering, Rr is proportional to 
the optical thickness for molecules, τr (Liu et al., 1996). This atmospheric reflectance due to 
molecule scattering, Rr can be written as 
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where Pr(Θ)  is the scattering phase function for molecules, µv is the cosine of viewing angle, 
and µs is the cosine of solar zenith angle. 
In the same paper, Liu et al. also showed that the atmospheric reflectance due to particles 
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where Pa(Θ) is scattering phase function for aerosols. 
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Camagni et al. expressed the optical depth,  in term of absorption, σ and finite path, s 
(Camagni et al., 1983). Equation (5) showed this optical depth,  as 
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where σ is absorption,  is density and s is finite path. 
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In the same paper, Camagni et al. also showed that this optical depth,  is the sum of the 
optical depth for particle aerosols, a and the optical depth for molecule aerosols, r 
(Camagni et al., 1983). This optical depth,  also can be written as 
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As the optical depths for particle aerosols, a and for molecule aerosols, r can be written in 
the form of equation (5). Thus the optical depths for particle aerosols, a and for molecule 
aerosols, r are written as 
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Equations (7) and (8) are substituted into equation (4). The atmospheric reflectance, Ratm 
become 
 

 )()(
4

 rrraaa
vs

atm PρσPρσ
μμ
sR  (9) 

 
Ratm, a,r, P a(Θ) and Pr(Θ) are dependent on wavelength, , thus equation (9) can be 
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when a is particle aerosols concentration (PM10), P andr is molecule aerosols 
concentration, G. Equation (10) can be written as  
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Equation (11) is extended into a two bands algorithm for wavelength,1 and wavelength,2. 
These two bands algorithm are as shown in equation (12) and equation (13). 
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where Ratm(i) is atmospheric reflectance, i = 1, 2 are the band numbers. 
 
Solving equation (12) and (13) simultaneously and we obtain particle concentration of PM10, 
P as  
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where aj is algorithm coefficients, j = 0, 1 are then empirically determined. 
 
From the equation (14); the PM10 concentration is linearly related to the atmosphere 
reflectance for band 1 and band 2. This algorithm was generated based on the linear 
relationship between τ and reflectance. Retalis et al. also found that the PM10 was linearly 
related to τ and the correlation coefficient for the linear model was better than exponential 
(Retalis et al., 2003). This means that reflectance was linear with the PM10. In order to 
simplify the data processing, the air quality concentration was used in our analysis instead 
of using density, ρ, values.  

 
3. Methodology 
 

3.1 Equipment Set-Up 
As shown in Figure 2, an internet surveillance camera was used as remote sensing sensor to 
monitor the concentrations of particles less than 10 micrometers in diameter. This internet 
surveillance camera is a Bosch’s auto dome 300 series PTZ camera system. It is a 0.4 mega 
pixel (PAL) Charge-Couple-Device CCD camera, which allows image data transfer over the 
standard computer networks (Ethernet networks), internet. Therefore it can be used as a 
remote sensing sensor to monitor air quality. 
 

 
Fig. 2. A 0.4 mega pixel (PAL) Charge-Couple-Device CCD, internet surveillance camera 
used in this study is a Bosch’s auto dome 300 series PTZ camera system 
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optical depth for particle aerosols, a and the optical depth for molecule aerosols, r 
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This internet surveillance camera was calibrated by using a spectroradiometer with Pro 
Lamp light source and colour papers. This calibration enabled us to convert the digital 
numbers (DN) of the images captured by the internet surveillance camera to irradiance. The 
coefficients of calibrated internet surveillance camera are as listed below 
 

0278000030 .N.L RR   (15) 
 

0263000040 .N.L GG   (16) 
 

0248000040 .N.L BB   (17) 
 
where LR is irradiance for red band (Wm-2 nm-1), LG is irradiance for green band (Wm-2 nm-1) 
, LB is irradiance for blue band (Wm-2 nm-1), NR is digital number for red band, NG is digital 
number for green band and NB is digital number for blue band. 
The schematic set-up of the internet surveillance camera is shown in Figure 3.  This set-up 
provides a continuous, on-line, real-time monitoring for air pollution at multiple locations. It 
is able to detect the present of particulates air pollution immediately, in the air and helps to 
ensure the continuing safety of environmental air for living creatures.  
 

 
Fig. 3. The schematic set-up of internet surveillance camera as remote sensor to monitor air 
quality 

 
 

 

3.2 Study Location 
The internet surveillance camera was installed at the top floor of the Chancellery building, 
Universiti Sains Malaysia’s campus. It is located at longitude of 100° 18‘20.67“ and latitude 
of 5° 21‘28.50“ as shown in Figure 4 and Figure 5. This internet surveillance camera is 
looking to the direction of the Penang bridge (Figure 5). As shown in Figure 5 and Figure 6, 
the reference target that we used in this study is green vegetation. 
 

 
Fig. 4. The internet surveillance camera is installed at the top floor of Chancellery building 
in Universiti Sains Malaysia (USM). 
 

 
Fig. 5. The satellite image showed the location of internet surveillance camera capture 
photograph and the location of the reference target 
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This internet surveillance camera was calibrated by using a spectroradiometer with Pro 
Lamp light source and colour papers. This calibration enabled us to convert the digital 
numbers (DN) of the images captured by the internet surveillance camera to irradiance. The 
coefficients of calibrated internet surveillance camera are as listed below 
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Fig. 6. The reference target of green vegetation captured by the internet surveillance camera 
 
Figure 6 shows a sample from the digital images captured by the IP camera. The target of 
interest is the green vegetation grown on a distant hill. Digital images were separated into 
three bands (red, green and blue). Digital numbers (DN) of the target were determined from 
the digital images for each band. Equations 9, 10 and 11 were used to convert these DN 
values into irradiance. 

 
4. Determine Algorithm Coefficients and Atmospheric Aerosol Concentration 
 

A handheld spectroradiometer was used to measure the sun radiation at the ground surface. 
The reflectance values recorded by the sensor was calculate using equation (18) below. 
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where L(λ) is irradiance of each visible bands recorded by the internet surveillance camera 
(Wm-2 nm-1) [can be determined by equation (15), (16), (17)] and E(λ) is sun radiation at the 
ground surface measured by a hand held spectroradiometer (Wm-2 nm-1). 
From the skylight model showed in Figure 1, the reflectance recorded by the internet 
surveillance camera (Rs) was subtracted by the reflectance of the known surface (Rref) to 
obtain the reflectance caused by the atmospheric components (Ratm). 
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The DustTrak meter used to determine atmospheric aerosol concentration of PM10. The 
relationship between the atmospheric reflectance and the corresponding atmospheric 
aerosol concentration data for the pollutant was established by using regression analysis as 
shown in Table 1. Thus, algorithm coefficients in equation (14) can be determined to 
calculate the atmospherics aerosol concentration of PM10. 
 

Algorithm R2 
RMS 

( µg/m3) 
2
1211010 RaRaaMP   0.5662 12 
2
2221010 RaRaaMP   0.2238 14 
2
3231010 RaRaaMP   0.4627 17 
 21211010 RlnaRlnaaMP   0.4536 17 
 22221010 RlnaRlnaaMP   0.1426 16 
 23231010 RlnaRlnaaMP   0.5129 13 

   2312311010 R/RaR/RaaMP   0.3196 15 
   2212211010 R/RaR/RaaMP   0.3243 14 
   2322321010 R/RaR/RaaMP   0.2983 15 
   2312311010 R/RlnaR/RlnaaMP   0.5326 16 
   2212211010 R/RlnaR/RlnaaMP   0.4283 12 
   2322321010 R/RlnaR/RlnaaMP   0.2734 16 

    232123211010 R/RRaR/RRaaMP   0.3834 17 
    223122311010 R/RRaR/RRaaMP   0.4273 18 
    213221321010 R/RRaR/RRaaMP   0.3826 16 
    232123211010 R/RRaR/RRaaMP   0.4826 16 
    223122311010 R/RRaR/RRaaMP   0.5372 17 
    213221321010 R/RRaR/RRaaMP   0.6532 15 
   2122121010 RRaRRaaMP   0.6215 17 
   2322321010 RRaRRaaMP   0.3782 16 
   2312311010 RRaRRaaMP   0.4725 13 

332211010 RaRaRaaMP   0.7321 9 

311010 RaRaMP       (Proposed) 0.7852 6 
* R1, R2 and R3 are the reflectance for red, green and blue band respectively for PM10 
 

Table 1. Regression results using different forms of algorithms to determine algorithm 
coefficients 
 
Figure 7 shows three photographs of Penang Bridge at different atmospheric aerosol 
concentration level. These photographs were captured at around 10.30 am to 11.00 am but 
on different date. Photograph at Figure 7 (a) was captured during low atmospheric aerosol 
concentration. This atmospheric aerosol concentration level can be determined from the 
equation (14) after we determine the algorithm coefficients. The atmospheric aerosol 
concentration level for photograph at Figure 7 (a) is 34 ± 6 µg/m3.  
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concentration level. These photographs were captured at around 10.30 am to 11.00 am but 
on different date. Photograph at Figure 7 (a) was captured during low atmospheric aerosol 
concentration. This atmospheric aerosol concentration level can be determined from the 
equation (14) after we determine the algorithm coefficients. The atmospheric aerosol 
concentration level for photograph at Figure 7 (a) is 34 ± 6 µg/m3.  
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Fig. 7. Three photographs of Penang Bridge at different atmospheric aerosol concentration 
level 

 

For Figure 7 (b) and Figure (c), the atmospheric aerosol concentration levels are 56 ± 6 
µg/m3 and 93 ± 6 µg/m3 respectively. 
The relationship between the atmospheric reflectance and the corresponding atmospheric 
aerosol concentration data for the pollutant was established by using regression analysis. 
The correlation coefficient (R2) between the predicted and the measured PM10 values, and 
root-mean-square-error (RMS) value were determined. Figure 8 shows the correlation 
between the estimated measurement of atmospheric aerosol concentration by the internet 
surveillance camera and the measurement of atmospheric aerosol concentration by the 
DustTrak meter.  
 

 
Fig. 8. Correlation coefficient and RMS error of the measured and estimated PM10 (µg/m3) 
values for the internet surveillance camera 
 
The correlation coefficient (R2) produced by the internet surveillance camera data set was 
0.791. The RMS value for internet surveillance camera was ± 8 µg/m3. 
Figure 9 shows the temporal development of real time air quality of PM10 in a day measured 
by the internet surveillance camera and DustTrak meter. The data were obtained on 21 Ju1 
2008 from 8.00am to 5.00pm. 
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The correlation coefficient (R2) produced by the internet surveillance camera data set was 
0.791. The RMS value for internet surveillance camera was ± 8 µg/m3. 
Figure 9 shows the temporal development of real time air quality of PM10 in a day measured 
by the internet surveillance camera and DustTrak meter. The data were obtained on 21 Ju1 
2008 from 8.00am to 5.00pm. 
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Fig. 9. Graph of atmospheric aerosol concentration concentration versus Time (21 Jul 2008) 

 
5. Conclusion 
 

This study has shown that by using image processing technique with new developed 
algorithm, internet surveillance camera can be used as temporal air quality remote 
monitoring sensor. It produced real time air quality information with high accuracies. This 
technique uses relatively inexpensive equipment and it is easy to operate compared to other 
air pollution monitoring instruments. This showed that the internet surveillance camera 
imagery gives an alternative way to overcome the difficulty of obtaining satellite image in 
the equatorial region and provides real time air quality information. 

 
Acknowledgements 
 

This project was supported by the Ministry of Science, Technology and Innovation of 
Malaysia under Grant 01-01-05-SF0139 “Development of Image Processing Technique via 
Wireless Internet for Continuous Air Quality Monitoring”, and also supported by the 
Universiti Sains Malaysia under short term grant “Membangunkan Algorithma Untuk 
Pengesanan Pencemaran Udara Melalui Rangkaian Internet”. We would like to thank the 
technical staff who participated in this project. Thanks are also extended to USM for support 
and encouragement. 
 
 

 

6. References 
 

Banauch, G.I.; Hall, C.; Weiden, M.; Cohen, H.W.; Aldrich, T.K.; Christodoulou, V.; 
Arcentales, N.; Kelly, K.J. & Prezant, D.J. (2006). Pulmonary function after exposure 
to the World Trade Center collapse in the New York Fire department. Am Respir 
Crit Care Med, Vol. 174, No. 3, 1 Aug 2006, Pages 312-19, PMID: 16864714 

Brunekreef, B.; & Holgate, S.T. (2002). Air pollution and health. Lancet, Vol. 360, No. 9341, 
19 Oct 2002, Pages 1233-42, PMID: 12401268. 

Camagni, P. & Sandroni, S. (1983). Optical Remote sensing of air pollution, Joint Research 
Centre, Ispra, Italy, Elsevier Science Publishing Company Inc. 

Charlson, R.J.; Horvath, H. & Pueschel, R.F. (1967). The direct measurement of atmospheric 
light scattering coefficient for studies of visibility and pollution. Atmospheric 
Environment (1967). Vol. 1, No. 4, July 1967, Pages 469-478, doi:10.1016/0004-
6981(67)90062-5.  

Diederen, H.S.M.A.; Guicherit, R. & HolLonder, J.C.T. (1985). Visibility reduction by air 
pollution in The Netherlands. Atmospheric Environment (1967). Vol. 19, No. 2, 
1985, Pages 377-383, doi:10.1016/0004-6981(85)90105-2. 

Donaldson, K.; Gilmour, M.I. & MacNee, W. (2000). Asthma and PM10. Respiratory 
Research. Vol. 1, No. 1, 3 July 2000, Pages 12–15, ISSN 1465-9921. 

Fukushima, H.; Toratani, M.; Yamamiya, S. & Mitomi, Y. (2000). Atmospheric correction 
algorithm for ADEOS/OCTS acean color data: performance comparison based on 
ship and buoy measurements. Adv. Space Res, Vol. 25, No. 5, 1015-1024. 

Hadjimitsis, D.G. (2009). Aerosol optical thickness (AOT) retrieval over land using satellite 
image-based algorithm. Air Qual., Atmos. Health. Vol. 2, No. 2, 25 March 2009., 
Pages 89-97, ISSN 1873-9318. 

Hadjimitsis, D.G. (2008). Description of a new method for retrieving the aerosol optical 
thickness from satellite remotely sensed imagery using the maximum contrast 
value principle and the darkest pixel approach. Trans. GIS J. Vol. 12, No. 5, Oct 
2008, Pages 633–644. doi:10.1111/j.1467-9671. 2008.01121.x. 

Horvath, H. & Noll, K.E. (1969). The relationship between atmospheric light scattering 
coefficient and visibility. Atmospheric Environment (1967). Vol. 3, No. 5, Sept 1969, 
Pages 543-550, doi:10.1016/0004-6981(69)90044-4. 

Kaufman, Y.J. & Fraser, R.S. (1983). Light extinction by aerosols during summer air 
pollution. J. of Climate & Appl. Meteorol. Vol. 22, No. 10, Oct 1983, Pages 1694–
1706. doi:10.1175/1520-0450(1983)022<1694:LEBADS>2.0.CO;2 

Kim Oanh, N.T.; Upadhyay, N.; Zhuang, Y.H.; Hao, Z.P.; Murthy, D.V.S.; Lestari, P.; 
Villarin, J.T.; Chengchua, K.; Co, H.X.; Dung, N.T. & Lindgren, E.S. (2006).        
Particulate air pollution in six Asian cities: Spatial and temporal distributions, and 
associated sources. Atmospheric Environment, Vol. 40, No. 18, June 2006, Pages 
3367-3380, ISSN 1352-2310.  

King, M. D.; Kaufman, Y. J.; Tanre, D. & Nakajima, T. (1999). Remote sensing of tropospheric 
aerosold form space: past, present and future, Bulletin of the American 
Meteorological society, 2229-2259. 

Lim, H.S.; MatJafri, M.Z.; Abdullah, K; Wong, C.J. & Mohd. Saleh, N. (2009). Aerosol Optical 
Thickness Data Retrieval Over Penang Island, Malaysia, Proceeding of the 2009 
IEEE Aerospace Conference, pp. 1-6, ISBN: 978-1-4244-2621-8, 7-14 March 2009, 
IEEE International, Big Sky, MT, USA. 



Internet	Surveillance	Camera	Measurements	of	Atmospheric	Aerosols	Concentration 39

 

 
Fig. 9. Graph of atmospheric aerosol concentration concentration versus Time (21 Jul 2008) 

 
5. Conclusion 
 

This study has shown that by using image processing technique with new developed 
algorithm, internet surveillance camera can be used as temporal air quality remote 
monitoring sensor. It produced real time air quality information with high accuracies. This 
technique uses relatively inexpensive equipment and it is easy to operate compared to other 
air pollution monitoring instruments. This showed that the internet surveillance camera 
imagery gives an alternative way to overcome the difficulty of obtaining satellite image in 
the equatorial region and provides real time air quality information. 
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1. Introduction 
 

Since 1957, when the first man made satellite opened the space age of human history, 
satellite earth observation has been taking advantage of high altitude to look at the globe 
and have applications in the areas of weather forecasting, oceanography, land survey and 
resource discovery, environmental and disaster monitoring, as well as applications in the 
area of defence. The observational frequency bands have coverage in microwave, through 
infrared and visible light, up to ultraviolet.  
 

Among all frequency bands, microwave has special characteristics. Besides its all weather 
and all time ability, it also has the ability to penetrate the surface canopy and even the 
ground while the frequency is approaching the low end. It is also capable and easy to realize 
polarized measurement which increases the ability to identify the internal information of the 
observed targets. The spatial resolution for synthetic aperture radar has already reached the 
level in the order of meters or decimetres, comparable to optical sensors. 
 

However, the active microwave sensors, such as synthetic aperture radar, have 
disadvantage in its high power consumption due to high transmission power and heavy 
mass which require many resources from spacecraft. 
 

Another kind of microwave sensor is a passive sensor, also called a radiometer. It is 
basically a very high sensitivity noise receiver. By integrating the received noise from the 
observed scene over time, the characteristics of different scenes and targets, for example if 
the water content in clouds or soil changed, will be abstracted by the sensor through the 
variations of the integrated noise levels. The longer the integration is done, the more 
sensitivity the sensor would have. According to Planck’s Law, all natural objects with 
temperature should have radio emissions independent of the Sun and any active radio 
illumination. This radio emission is called the brightness temperature and is related to both 
the physical temperature and the characteristics of the materials. The brightness 
temperature in the microwave bands are a very sensitive parameter to water, no matter 
whether it is in the air or in the soil. If different microwave band is applied, the brightness 
temperature is also sensitive enough to reflect the surface roughness that has a correlation 
length around the wavelength. Once the polarization information is acquired, more 
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information can be abstracted from the emission such as ocean surface wind direction. Since 
the radiometer is a receiver only, it does not require high power. In fact, a radiometer takes 
much less power and mass resources from a spacecraft than that of active microwave 
sensors.  
 

The passive microwave sensor also has disadvantages. Due to its nature as a passive sensor 
and the incoherent feature of the noise signal from microwave emission of the ground 
materials, the radiometer cannot apply the principle of synthetic aperture radar (SAR) to 
reach very high spatial resolution. Its spatial resolution is closely related to the physical size 
of the receiving antenna, i.e. the half power beam width of the antenna at the working 
frequency. For instance, if an L band (fo = 1.4 GHz) radiometer has a receiving antenna of 2 
meters in diameter, and working in a low Earth orbit at an altitude of 800km, the spatial 
resolution on the surface of the ground is no better than 85km. For this reason, in spite of the 
many advantages of passive microwave remote sensing, microwave radiometers can only be 
used in the area of ocean, atmosphere and land soil moisture observations where no high 
spatial resolution is required. 
 

The same difficulty had already been recognized in the area of astronomy where the 
location of stars with strong radio emission would likely be detected. From the 1950s to the 
1960s, a technology called interferometric imaging had been developed (Thompson et al, 
1986). The basic principle is to measure the scene indirectly, not in its spatial domain but in 
its spatial frequency domain, called the u-v plane. After the measurement, a Fourier 
transform is performed to get the original scene. The quantity which has been measured in 
the Fourier domain is called the Visibility Function by the astronomers. This name was 
carried on when this technology was introduced to the area of Earth observation in the 
1980’s (Ruf et al, 1988). 
 

The measurements, or sampling, in the spatial frequency domain can be carried out with a 
basic tool of two coherent receiving channels with small element antennas and a complex 
correlator. The coherent receiving channels mean they use the same local oscillator. The 
complex correlator carries a multiplication function with the output signals from the two 
receivers and giving two outputs I and Q representing the real part and the imaginary part 
of the complex value of the multiplication output. The two small element antennas form a 
baseline in space. The length of it (the distance between the phase centres of the two 
antennas) represents the radius of a sampling point in the u-v plane, while the orientation of 
the baseline represents the polar angle of this sampling point in the u-v plane. With these 
two values, i.e. the module and polar angle, a sampling point is exclusively defined. In 
practice, one element can be used more than one time to take many samples while 
combining with other different elements and forming different baselines. In this way, the 
antenna array with small antenna elements can be much thinned. As astronomers did, a Y 
shaped two dimensional linear array can definitely represent a full 2-D array and there is no 
need to scan the antenna mechanically since field of view of this system is the element 
antenna pattern which already covers a wide area of interest. 
 

Another attractive quality of the interferometric imaging technology is that the physical 
aperture of the thinned array of the interferometric imaging system can be reduced by half 
compared with traditional radiometers. A direct explanation of this is because the beam 
width of each of the grating-lobes of the interferometer is only 1/2 of a traditional two 

 

element array where the outputs of the two elements are added, not multiplied. 
Mathematical explanation will be given in the following section. 
 

These are what interested Earth observation sensor engineers. A large thinned array can be 
folded during launch and redeployed in orbit and no mechanical scan during the 
observation is needed. Plus the characteristics of having only 1/2 of the traditional physical 
aperture, the interferometric imaging radiometer can reach a much higher spatial resolution 
than traditional radiometer technology can do. In order to avoid confusion with the already 
established phrase ‘synthetic aperture’ for active microwave radars, this technology is called 
interferometric imaging technology most of the time. Occasionally it is also called the 
interferometric synthetic aperture radiometer, or simply synthetic aperture radiometer. 
 

In this chapter, we will start with the basic principles of this technology by talking about the 
spatial frequency property of an image. This approach is different from other 
documentation dealing with this topic and easy to understand by the readers with basic 
knowledge of Fourier transformation. In the third Section, we deal with the basic sampling 
technologies and its characteristics. In the fourth Section, the sampling technique is 
integrated into systems. Different sampling systems are introduced with emphases on time 
shared systems, particularly on the clock scan system which is our original contribution to 
this technology. In Section five, image reconstruction algorithms are introduced with the 
emphases on interpolation technology when the samples in the u-v plane are not on a 
rectangular grid. In Section six, some future applications of this new technology are 
introduced. All of them are associated with current real mission studies and some of them 
will certainly become real missions in the future. 

 
2. Basic theorem 
 

If we look down, what we see from space is the Earth. For middle or low resolution earth 
observation, the images that we get are mainly the scenes of the land or the oceans. In this 
Chapter, only gray scale image or fake colour image that represent brightness temperature 
levels are discussed. 
 

The variations of the image’s gray scale and texture represent the variations in spatial 
frequencies. Fast variations (with fine texture) correspond to high spatial frequencies, while 
gentle variations (with coarse texture) correspond to low spatial frequencies. The 
directionality of the texture variation represents the two-dimensional property of the spatial 
frequency. The contrast of the texture represents the intensity of the corresponding spatial 
frequency. The Fourier transform of a two-dimensional image is its spatial frequency 
spectrum, as illustrated in Fig. 1, in which the coordinates of the original spatial image are 
represented by (x-y), while the coordinate of the spatial frequency spectrum are represented 
by (u-v). The spatial frequency spectrum is also known as spatial frequency domain image, 
or u-v domain image. 
 

The spatial frequency domain image is centred at the origin, and each point corresponds to a 
spatial frequency of the original image. For a vector from origin to a point in spatial 
frequency domain, the length represents the value of the spatial frequency, i.e. the spatial 
frequency becomes lower when the vector moves toward the origin, which can be defined as 
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information can be abstracted from the emission such as ocean surface wind direction. Since 
the radiometer is a receiver only, it does not require high power. In fact, a radiometer takes 
much less power and mass resources from a spacecraft than that of active microwave 
sensors.  
 

The passive microwave sensor also has disadvantages. Due to its nature as a passive sensor 
and the incoherent feature of the noise signal from microwave emission of the ground 
materials, the radiometer cannot apply the principle of synthetic aperture radar (SAR) to 
reach very high spatial resolution. Its spatial resolution is closely related to the physical size 
of the receiving antenna, i.e. the half power beam width of the antenna at the working 
frequency. For instance, if an L band (fo = 1.4 GHz) radiometer has a receiving antenna of 2 
meters in diameter, and working in a low Earth orbit at an altitude of 800km, the spatial 
resolution on the surface of the ground is no better than 85km. For this reason, in spite of the 
many advantages of passive microwave remote sensing, microwave radiometers can only be 
used in the area of ocean, atmosphere and land soil moisture observations where no high 
spatial resolution is required. 
 

The same difficulty had already been recognized in the area of astronomy where the 
location of stars with strong radio emission would likely be detected. From the 1950s to the 
1960s, a technology called interferometric imaging had been developed (Thompson et al, 
1986). The basic principle is to measure the scene indirectly, not in its spatial domain but in 
its spatial frequency domain, called the u-v plane. After the measurement, a Fourier 
transform is performed to get the original scene. The quantity which has been measured in 
the Fourier domain is called the Visibility Function by the astronomers. This name was 
carried on when this technology was introduced to the area of Earth observation in the 
1980’s (Ruf et al, 1988). 
 

The measurements, or sampling, in the spatial frequency domain can be carried out with a 
basic tool of two coherent receiving channels with small element antennas and a complex 
correlator. The coherent receiving channels mean they use the same local oscillator. The 
complex correlator carries a multiplication function with the output signals from the two 
receivers and giving two outputs I and Q representing the real part and the imaginary part 
of the complex value of the multiplication output. The two small element antennas form a 
baseline in space. The length of it (the distance between the phase centres of the two 
antennas) represents the radius of a sampling point in the u-v plane, while the orientation of 
the baseline represents the polar angle of this sampling point in the u-v plane. With these 
two values, i.e. the module and polar angle, a sampling point is exclusively defined. In 
practice, one element can be used more than one time to take many samples while 
combining with other different elements and forming different baselines. In this way, the 
antenna array with small antenna elements can be much thinned. As astronomers did, a Y 
shaped two dimensional linear array can definitely represent a full 2-D array and there is no 
need to scan the antenna mechanically since field of view of this system is the element 
antenna pattern which already covers a wide area of interest. 
 

Another attractive quality of the interferometric imaging technology is that the physical 
aperture of the thinned array of the interferometric imaging system can be reduced by half 
compared with traditional radiometers. A direct explanation of this is because the beam 
width of each of the grating-lobes of the interferometer is only 1/2 of a traditional two 

 

element array where the outputs of the two elements are added, not multiplied. 
Mathematical explanation will be given in the following section. 
 

These are what interested Earth observation sensor engineers. A large thinned array can be 
folded during launch and redeployed in orbit and no mechanical scan during the 
observation is needed. Plus the characteristics of having only 1/2 of the traditional physical 
aperture, the interferometric imaging radiometer can reach a much higher spatial resolution 
than traditional radiometer technology can do. In order to avoid confusion with the already 
established phrase ‘synthetic aperture’ for active microwave radars, this technology is called 
interferometric imaging technology most of the time. Occasionally it is also called the 
interferometric synthetic aperture radiometer, or simply synthetic aperture radiometer. 
 

In this chapter, we will start with the basic principles of this technology by talking about the 
spatial frequency property of an image. This approach is different from other 
documentation dealing with this topic and easy to understand by the readers with basic 
knowledge of Fourier transformation. In the third Section, we deal with the basic sampling 
technologies and its characteristics. In the fourth Section, the sampling technique is 
integrated into systems. Different sampling systems are introduced with emphases on time 
shared systems, particularly on the clock scan system which is our original contribution to 
this technology. In Section five, image reconstruction algorithms are introduced with the 
emphases on interpolation technology when the samples in the u-v plane are not on a 
rectangular grid. In Section six, some future applications of this new technology are 
introduced. All of them are associated with current real mission studies and some of them 
will certainly become real missions in the future. 

 
2. Basic theorem 
 

If we look down, what we see from space is the Earth. For middle or low resolution earth 
observation, the images that we get are mainly the scenes of the land or the oceans. In this 
Chapter, only gray scale image or fake colour image that represent brightness temperature 
levels are discussed. 
 

The variations of the image’s gray scale and texture represent the variations in spatial 
frequencies. Fast variations (with fine texture) correspond to high spatial frequencies, while 
gentle variations (with coarse texture) correspond to low spatial frequencies. The 
directionality of the texture variation represents the two-dimensional property of the spatial 
frequency. The contrast of the texture represents the intensity of the corresponding spatial 
frequency. The Fourier transform of a two-dimensional image is its spatial frequency 
spectrum, as illustrated in Fig. 1, in which the coordinates of the original spatial image are 
represented by (x-y), while the coordinate of the spatial frequency spectrum are represented 
by (u-v). The spatial frequency spectrum is also known as spatial frequency domain image, 
or u-v domain image. 
 

The spatial frequency domain image is centred at the origin, and each point corresponds to a 
spatial frequency of the original image. For a vector from origin to a point in spatial 
frequency domain, the length represents the value of the spatial frequency, i.e. the spatial 
frequency becomes lower when the vector moves toward the origin, which can be defined as 
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the low frequency component; and conversely, the spatial frequency becomes higher when 
the vector moves away from the origin, which can be defined as the high frequency 
component. As illustrated in Fig.2, the angle between the vector and v-axis in the spatial 
frequency domain corresponds to the angle between the image texture and the x-axis in the 
spatial domain, while the amplitude at the vector point in the spatial frequency domain 
represents the amplitude of the corresponded image texture in spatial domain. So, each 
point in spatial frequency domain contains its own practical physical meaning, and the 
information it takes covers all over the image in spatial domain, not only to one single point. 

         
Fig. 1. Original Spatial image (a) and its spatial frequency spectrum image (b) 
 

         
Fig. 2. Image texture and its spatial frequency 
 
The basic principle of the interferometric passive imaging technology is to conduct 
measurement in spatial frequency domain, and then retrieve the original image in spatial 
domain by Fourier transform. 
 

As same as the direct measurement on the original image in spatial domain, the spatial 
resolution of any measurement system is limited. An interferometric passive imaging 
system can get only limited samples in spatial frequency domain. The maximum u-v value 
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sampled is the highest spatial frequency which corresponds to the highest spatial resolution 
of the retrieved image. According to the sampling principle, the least sampling spacing can 
also be determined. 
 

According on the Fourier transform theory, the spatial frequency spectrum has the 
following properties: 
 

1. Conjugate symmetry: F(u,v) =F *(-u,-v) 
2. Periodicity: F(u,v) =F(u+M,v) =F(u,v+N) =F(u+M,v+N) 
 

The complex conjugate symmetry property implies that, when we conduct sampling in the 
spatial frequency domain, only half of the frequency spectrum in u-v plane is needed, and 
another half can be achieved mathematically by conjugate symmetry. In other words, once 
we sample a point in spatial frequency domain, we simultaneously get another sample at 
the conjugate symmetric point. By this method, the sampling efficiency can be significantly 
improved. 
 

The conjugate symmetry property also explains why the interferometric imaging system has 
only 1/2 of the physical aperture than traditional ones but still get the same spatial 
resolution. This is because, due to the symmetry, the areas sampling points are doubled in 
the spatial frequency domain, the u-v plane. Once the Fourier transform is done, one gets 
the same number of points in the spatial domain, which means the retrieved image also gets 
double points. Put in simplified terms, this means measure one half, but get one. The size of 
the physical aperture in the interferometric sampling system is naturally reduced by half. 
 

The periodicity property implies that, periodical extension, or namely aliasing, will appear 
after the Fourier transform in the retrieved image. Therefore, we must pay attention to the 
concerned image region, in which aliasing should not be included. In addition to selecting 
proper sample spacing, element antenna patterns can also be used to weigh the observation 
field of view, and then restrict the unwanted aliasing image. 

 
3. Sampling measurement in spatial frequency domain 
 

The purpose of sampling measurement in the spatial frequency domain is to get every point 
on a sampling grid in the spatial frequency domain, except the ones that can be obtained by 
complex conjugate symmetry. Since a single point in the spatial frequency domain 
corresponds to a specific image texture, as shown in Fig. 2, it can be measured by a 
two-element array which has a fringe-shaped beam. This array is also called a two-element 
interferometer, whose block diagram and fringe-shape pattern are illustrated in Fig. 3. 
 

In the figure, the coherent receiving channels are simplified to two antennas only. The 
function of the complex correlator is to conduct complex multiplication of the signals 
received from the two antennas, with their original phases. The pattern of this 
interferometer is called the fringe function. If the length of the baseline is increased, the 
number of the grating-lobes of the Fringe Function increases too, and the width of each lobe 
decreases. 
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the low frequency component; and conversely, the spatial frequency becomes higher when 
the vector moves away from the origin, which can be defined as the high frequency 
component. As illustrated in Fig.2, the angle between the vector and v-axis in the spatial 
frequency domain corresponds to the angle between the image texture and the x-axis in the 
spatial domain, while the amplitude at the vector point in the spatial frequency domain 
represents the amplitude of the corresponded image texture in spatial domain. So, each 
point in spatial frequency domain contains its own practical physical meaning, and the 
information it takes covers all over the image in spatial domain, not only to one single point. 

         
Fig. 1. Original Spatial image (a) and its spatial frequency spectrum image (b) 
 

         
Fig. 2. Image texture and its spatial frequency 
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double points. Put in simplified terms, this means measure one half, but get one. The size of 
the physical aperture in the interferometric sampling system is naturally reduced by half. 
 

The periodicity property implies that, periodical extension, or namely aliasing, will appear 
after the Fourier transform in the retrieved image. Therefore, we must pay attention to the 
concerned image region, in which aliasing should not be included. In addition to selecting 
proper sample spacing, element antenna patterns can also be used to weigh the observation 
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In the figure, the coherent receiving channels are simplified to two antennas only. The 
function of the complex correlator is to conduct complex multiplication of the signals 
received from the two antennas, with their original phases. The pattern of this 
interferometer is called the fringe function. If the length of the baseline is increased, the 
number of the grating-lobes of the Fringe Function increases too, and the width of each lobe 
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Since different spatial frequencies correspond to different image textures, the 
interferometers with different baseline lengths can measure the image texture characteristics 
corresponding to different Fringe Functions. When the baseline’s length is increasing, the 
number of grating-lobes and the spatial frequency are both increasing. In other words, the 
long baseline interferometer can measure the high frequency component in the spatial 
frequency domain of the original image, while the short baseline interferometer can measure 
the low frequency component. So, by utilizing the combination of all the interferometers 
with different baselines’ lengths and directions, the full sampling coverage on the spatial 
frequency domain of an original image can be achieved. 

 
Fig. 3. Schematic diagram of two-element interferometer (a) and its pattern (b) 
 

It should be mentioned here that the beam width of a lobe of the fringe function is 1/2D, 
which is half of the traditional two element array. This enables the interferometric imaging 
radiometer to use only 1/2 of the physical array aperture, i.e. the longest baseline in the 
system, to get the same spatial resolution that can be reached by the traditional radiometer. 
 
Further theoretical analysis on the interferometric measurement can be applied. The ideal 
measurement output of a two-element interferometer is expressed as (Corbella et al, 2004), 
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in which V(u, v) is the so-called visibility function, (u, v) = (x1-x2,y1-y2) is the baseline vector 
normalized by the wavelength, (ξ, η)=(sinθcosφ, sinθsinφ) is the direction cosine of the 
incident wave, TB(ξ, η) is the brightness temperature distribution of the scene and the 
targets. The Fourier relationship between the visibility functions and the brightness 
temperature distribution is obvious. Each baseline corresponds to two spatial frequency 
sampling positions in the u-v plane, i.e. (u, v) and (-u, -v). The brightness temperature 
distribution of the scene and the targets can be retrieved by Fourier transform after a full 
sampling measurement in the spatial frequency domain. 
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Only some discrete points in the spatial frequency domain can be sampled by 
interferometric measurement. According to Fourier transform principle, the maximum 
sample spacing umax (longest baseline) determines the spatial resolution of the retrieved 
image, while the lowest sample spacing Δu (shortest baseline) determines the aliasing-free 
field of view (AF-FOV), as illustrated in Fig. 4. 

 
Fig. 4. Visibility function sampling and image aliasing 
 
In order to realize spatial resolution Δξ, and also ensure no aliasing in the 2ξmax region, the 
longest and shortest baselines of the interferometric measurement should satisfy the 
following requirements, 
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Limited sampling coverage is equivalent to a sharp cut-off in the spatial frequency domain, 
which can cause the so-called Gibb’s phenomenon. In general, the Gibb’s phenomenon can 
be mitigated by a windowing operation on visibility functions. Some specific window 
functions can be applied on the measured visibility function samples, which can reduce the 
side-lobe level of the synthesized pattern, but also broaden the main beam and reduce the 
spatial resolution of the image. Some commonly used window functions include: Hanning, 
Hamming, Blackman, Kaiser and some other functions (Harris, 1978 and Anterrieu et al, 
2002). Different window functions can achieve a different balance between the side-lobe 
level and main beam width. Another purpose of introducing window functions is to realize 
multi-resolution observation with the same observational dataset: to retrieve images with 
different spatial resolutions according to different application requirements (Ribo, 2003). 
Taking MIRAS of the SMOS mission as an example, the spatial resolution for land 
applications and ocean applications are different. 

 
4. Passive interferometric imaging system 

Array configuration plays a key role in an interferometric imaging system. One of the major 
goals of the interferometric imaging radiometer design is to take as much coverage of the 
u-v plane as possible while at the same time to use as few element antennas as possible. 
Since the observation target is located in the far field of the antenna array, the correlation 
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Since different spatial frequencies correspond to different image textures, the 
interferometers with different baseline lengths can measure the image texture characteristics 
corresponding to different Fringe Functions. When the baseline’s length is increasing, the 
number of grating-lobes and the spatial frequency are both increasing. In other words, the 
long baseline interferometer can measure the high frequency component in the spatial 
frequency domain of the original image, while the short baseline interferometer can measure 
the low frequency component. So, by utilizing the combination of all the interferometers 
with different baselines’ lengths and directions, the full sampling coverage on the spatial 
frequency domain of an original image can be achieved. 

 
Fig. 3. Schematic diagram of two-element interferometer (a) and its pattern (b) 
 

It should be mentioned here that the beam width of a lobe of the fringe function is 1/2D, 
which is half of the traditional two element array. This enables the interferometric imaging 
radiometer to use only 1/2 of the physical array aperture, i.e. the longest baseline in the 
system, to get the same spatial resolution that can be reached by the traditional radiometer. 
 
Further theoretical analysis on the interferometric measurement can be applied. The ideal 
measurement output of a two-element interferometer is expressed as (Corbella et al, 2004), 
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incident wave, TB(ξ, η) is the brightness temperature distribution of the scene and the 
targets. The Fourier relationship between the visibility functions and the brightness 
temperature distribution is obvious. Each baseline corresponds to two spatial frequency 
sampling positions in the u-v plane, i.e. (u, v) and (-u, -v). The brightness temperature 
distribution of the scene and the targets can be retrieved by Fourier transform after a full 
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Only some discrete points in the spatial frequency domain can be sampled by 
interferometric measurement. According to Fourier transform principle, the maximum 
sample spacing umax (longest baseline) determines the spatial resolution of the retrieved 
image, while the lowest sample spacing Δu (shortest baseline) determines the aliasing-free 
field of view (AF-FOV), as illustrated in Fig. 4. 
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which can cause the so-called Gibb’s phenomenon. In general, the Gibb’s phenomenon can 
be mitigated by a windowing operation on visibility functions. Some specific window 
functions can be applied on the measured visibility function samples, which can reduce the 
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level and main beam width. Another purpose of introducing window functions is to realize 
multi-resolution observation with the same observational dataset: to retrieve images with 
different spatial resolutions according to different application requirements (Ribo, 2003). 
Taking MIRAS of the SMOS mission as an example, the spatial resolution for land 
applications and ocean applications are different. 
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in length and direction) no matter where they are locally placed. This means that the 
correlation output is independent of the location from which the interferometer takes the 
visibility samples. To acquire the entire coverage of the harmonics in the spatial frequency 
domain, only one visibility is necessary for each harmonic. Therefore, the designer of an 
interferometric imaging radiometer system always tries to reduce the redundant baselines 
and use as few element antennas as possible. This is also one of the major jobs for the design 
of the system. 

 
4.1 One dimensional push-broom imaging system 
 

A one dimensional push-broom is a combined design of both traditional radiometers and 
interferometric imaging radiometers. In other words, the interferometric imaging 
technology is only applied in the cross track direction, the resolution in the along track 
direction is still obtained by traditional real aperture technology. Therefore, the element 
antennas of the array should be a fan beam with a broad beam in the cross track direction 
and narrow beam in the along track direction. For this kind of beam, the most common 
design is to have a slotted waveguide as the stick element antenna at the commonly used 
microwave bands. The waveguides are placed in the along track direction, as see in Fig. 5. In 
the cross track direction, the waveguides are arranged according to the design principle of 
interferometric technology which will be discussed below. This kind of imaging system is 
usually called 1 D push-broom imaging system. In this case, the spatial frequency domain 
reduced also from 2D to 1D, i.e. the u-v plane became u-axis only. 
 

               
Fig. 5. One dimensional push-broom imaging system 
 
As it is discussed in the previous sections, the ultimate objective of applying interferometric 
technology is to reduce the number of array elements. It is also known that the sampling of 
each special frequency component need not be duplicated, although there is always some 
redundancy in practice. An array configuration design example of a one dimensional 
push-broom imaging system is shown in Fig. 6. There one can see, with a 5 element antenna 
placed in a special way, all frequency components from 1u up to 9u are all sampled by 
taking different combinations of the element antennas. The dashed lines show the missing 
elements from a full array if a conventional array design was applied. You can also fund 
that there are redundant baselines, such as between elements 2 and 3, the baseline is also 3 
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u, the same that is shown between elements 3 and 4. However, the redundant baselines 
cannot be further eliminated, we can take advantage of having them by averaging the 
outputs given by the redundant baselines. In this way the sensitivity of the system will be 
increased. 

       
Fig. 6. 5 antenna elements comprise 9 baselines 
 
In general, for a N elements antenna system, if we take the combination of any two of them, 
there are N(N-1)/2 different ways. If those baselines are all independent from each other, i.e. 
if they cover from 1u to N(N-1)/2u in the 1-D case, this system is called a zero 
redundancy array system. Unfortunately zero redundancy exists only if the number of 
antenna’s elements is less than 4 for 1-D case, as shown in Fig.7.  

    
Fig. 7. A zero redundant thinned array with 4 element antennas 
 
When there are more than 4 antenna elements, an optimization process is necessary in order 
to find the best design that uses as few elements as possible. The optimization process 
becomes complicated when the spatial resolution gets better thus the size of the array 
increases. A mathematic algorithm to compute the minimum redundancy array for any size 
has so far not been found (Ishiguro, 1980). An effective tool to search the minimum 
redundancy array is with the aid of a computer. Non-linear methods such as the simulated 
annealing algorithm and genetic algorithm have been developed to optimize the array 
configuration. Optimum configuration of element antenna positions with an array element 
N≤30 are given by (Ruf, 1993), which can be applied in different applications. 
 

The first ever 1 D interferometric imaging system for Earth observation is the Electronically 
Scanned Thinned Array Radiometer - ESTAR. ESTAR was developed as part of the 
cooperative research between the NASA/Goddard Space Flight Center and the University 
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in length and direction) no matter where they are locally placed. This means that the 
correlation output is independent of the location from which the interferometer takes the 
visibility samples. To acquire the entire coverage of the harmonics in the spatial frequency 
domain, only one visibility is necessary for each harmonic. Therefore, the designer of an 
interferometric imaging radiometer system always tries to reduce the redundant baselines 
and use as few element antennas as possible. This is also one of the major jobs for the design 
of the system. 

 
4.1 One dimensional push-broom imaging system 
 

A one dimensional push-broom is a combined design of both traditional radiometers and 
interferometric imaging radiometers. In other words, the interferometric imaging 
technology is only applied in the cross track direction, the resolution in the along track 
direction is still obtained by traditional real aperture technology. Therefore, the element 
antennas of the array should be a fan beam with a broad beam in the cross track direction 
and narrow beam in the along track direction. For this kind of beam, the most common 
design is to have a slotted waveguide as the stick element antenna at the commonly used 
microwave bands. The waveguides are placed in the along track direction, as see in Fig. 5. In 
the cross track direction, the waveguides are arranged according to the design principle of 
interferometric technology which will be discussed below. This kind of imaging system is 
usually called 1 D push-broom imaging system. In this case, the spatial frequency domain 
reduced also from 2D to 1D, i.e. the u-v plane became u-axis only. 
 

               
Fig. 5. One dimensional push-broom imaging system 
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technology is to reduce the number of array elements. It is also known that the sampling of 
each special frequency component need not be duplicated, although there is always some 
redundancy in practice. An array configuration design example of a one dimensional 
push-broom imaging system is shown in Fig. 6. There one can see, with a 5 element antenna 
placed in a special way, all frequency components from 1u up to 9u are all sampled by 
taking different combinations of the element antennas. The dashed lines show the missing 
elements from a full array if a conventional array design was applied. You can also fund 
that there are redundant baselines, such as between elements 2 and 3, the baseline is also 3 
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u, the same that is shown between elements 3 and 4. However, the redundant baselines 
cannot be further eliminated, we can take advantage of having them by averaging the 
outputs given by the redundant baselines. In this way the sensitivity of the system will be 
increased. 
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there are N(N-1)/2 different ways. If those baselines are all independent from each other, i.e. 
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redundancy array system. Unfortunately zero redundancy exists only if the number of 
antenna’s elements is less than 4 for 1-D case, as shown in Fig.7.  
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of Massachusetts at Amherst (Le Vine, 1994, 2004). ESTAR is an L-band (1.4GHz) 
instrument. Five antenna elements comprise 7 baselines and result in an equivalent half 
power beam width (HPBW) of 7º. ESTAR flew on the NASA P-3B Orion aircraft in the 90’s 
to demonstrate the imaging principles. Lots of measurement data were obtained for retrieval 
of soil moisture (Le Vine et al, 2001; Guha et al, 2003) and ocean salinity (Le Vine et al, 
2000a). Results are consistent with values of soil moisture observed in-situ at the observed 
sites with previous measurements in the same area. ESTAR demonstrated that the passive 
interferometric technique is feasible. A follow-up project to ESTAR, called HydroSTAR, was 
proposed by NASA in 1998. It would have been a space borne 1-D interferometric imager 
for the Earth System Science Pathfinder (ESSP) mission (Le Vine, 1999). HydroSTAR was 
later cancelled due to technical risk and other none technical reasons. 
 

One dimensional interferometric radiometers at higher frequency bands were built at the 
Center for Space Science and Applied Research (CSSAR), Chinese Academy of Sciences 
(CAS). Push-broom type C-band and X-band radiometers were completed in 2001 and 2004, 
respectively (Dong, 2000; Liu, 2004; Wu, 2005a), as shown in Fig.8. Flight tests were 
conducted and the brightness temperature images were acquired. The C-band 
interferometric radiometer works at 6.6GHz. Its 6 antenna elements form 10 baselines (zero 
baseline was not taken into account). The HPBW of the C-band radiometer is 4º. The X-band 
imager works at 9.4GHz with 8 antenna elements and 19 baselines resulting in a 2º HPBW. 

 
Fig. 8. One dimensional interferometric radiometers built by CSSAR 
 
Another X-band interferometric radiometer, the X-Band Lightweight Rainfall Radiometer 
(LRR-X) is an airborne microwave sensor that is developed for the NASA Earth Science 
Technology Office by Goddard Space Flight Center and the University of Michigan (Ruf & 
Principe, 2002, 2003). LRR-X is intended to address several pressing issues related to the 
Global Precipitation Measurement (GPM) Mission. It is a science and technology testbed 
instrument. LRR-X is also a push-broom imager operating at 10.7 GHz with a ±45 cross 
track field of view and a nominal 1.5°angular resolution at its nadir. 
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4.2 Two dimensional snapshot interferometric radiometer 
 

One dimensional interferometric radiometer uses thinned array only in the cross track 
direction. Thus the dimension in along track direction is still large, as it can be seen from 
Fig.8. In order to further reduce the physical size of the antenna, two-dimensional 
interferometric radiometer has been developed. As it is discussed in sections 2 and 3, 2-D 
interferometric radiometer takes measurement in the full u-v plane. Therefore, it will have 
thinned antenna array and 1/2 apertures in both directions. If the sampling baseline can 
cover all angles and lengths within the upper limit that can be provided by the physical 
aperture, the image will be taken like a camera, or called snapshot imaging. 
 

To provide full coverage with samplings distributed in grid in the spatial frequency domain, 
many array configurations are employable, such as T-shape, U-shape, Y-shape, Δ-shape and 
so on. Among those, T and U shaped arrays produce visibility function samples in a 
rectangular grid in the u-v plane, while the Y and Δ-shape arrays produce the visibility 
function samples in a triangular grid. Classical fast Fourier transform in rectangular grid is 
applicable for retrieving the brightness temperature image in the spatial domain. Hexagonal 
fast Fourier transform is also applicable in a triangular grid. Y-shape array has been adopted 
by many systems due to the unique advantage that the array thin factor is the best among all 
the 2-D configurations. However, none of those configurations can reach zero redundancy. 
Redundant baselines, particularly at the lower spatial frequency components, are used to 
average the noise, which is equivalent to an increase in the integration time. 
 

2D-STAR was developed under NASA’s Instrument Incubator Program (IIP) at the Goddard 
Space Flight Center. As the next generation instrument of ESTAR, 2D-STAR is an 
experimental instrument for evaluating techniques and applications of 2D aperture 
synthesis (Le Vine et al, 2000b, 2004). 2D-STAR works at L-band with two polarizations and 
does aperture synthesis in both directions (cross track and along track). Micro-strip patch 
antenna is selected as the element antenna, and the minimum element spacing u is 0.5. A 
square shaped full array of 11×11 elements provide the flexibility to compare between 
different array configurations, including Y, T, U, etc.  The instrument made its maiden 
flight in 2002 and participated in a series of field tests in 2003 and 2004 flying over research 
sites in Alabama, Georgia and Oklahoma during SMEX-03 and SMEX-04 campaigns, 
respectively (Le Vine et al, 2007).  
 

HUT-2D was developed by the Helsinki University of Technology (HUT), Finland 
(Rautiainen et al, 1999, 2003). Development began in the late 1990s and was completed in 
early 2006. It is an airborne L-band 2D Interferometric imaging system with dual 
polarizations. Its U-shape array consists of 36 elements and 575 baselines. The minimum 
element spacing u is 0.7. The angular resolution is between 5°and 7°. HUT-2D is 
recognized as one of the demonstrators of the SMOS (Soil Moisture and Ocean Salinity) 
mission for the ESA (European Space Agency) to validate the feasibility of retrieving soil 
moisture and ocean salinity using 2D interferometric radiometers. Successful ground and air 
based tests were conducted to study the interferometric theory and instrument calibration. 
The first test flight was carried out on May 29, 2006 (Kainulainen et al, 2007). 
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of Massachusetts at Amherst (Le Vine, 1994, 2004). ESTAR is an L-band (1.4GHz) 
instrument. Five antenna elements comprise 7 baselines and result in an equivalent half 
power beam width (HPBW) of 7º. ESTAR flew on the NASA P-3B Orion aircraft in the 90’s 
to demonstrate the imaging principles. Lots of measurement data were obtained for retrieval 
of soil moisture (Le Vine et al, 2001; Guha et al, 2003) and ocean salinity (Le Vine et al, 
2000a). Results are consistent with values of soil moisture observed in-situ at the observed 
sites with previous measurements in the same area. ESTAR demonstrated that the passive 
interferometric technique is feasible. A follow-up project to ESTAR, called HydroSTAR, was 
proposed by NASA in 1998. It would have been a space borne 1-D interferometric imager 
for the Earth System Science Pathfinder (ESSP) mission (Le Vine, 1999). HydroSTAR was 
later cancelled due to technical risk and other none technical reasons. 
 

One dimensional interferometric radiometers at higher frequency bands were built at the 
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Fig. 8. One dimensional interferometric radiometers built by CSSAR 
 
Another X-band interferometric radiometer, the X-Band Lightweight Rainfall Radiometer 
(LRR-X) is an airborne microwave sensor that is developed for the NASA Earth Science 
Technology Office by Goddard Space Flight Center and the University of Michigan (Ruf & 
Principe, 2002, 2003). LRR-X is intended to address several pressing issues related to the 
Global Precipitation Measurement (GPM) Mission. It is a science and technology testbed 
instrument. LRR-X is also a push-broom imager operating at 10.7 GHz with a ±45 cross 
track field of view and a nominal 1.5°angular resolution at its nadir. 
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4.2 Two dimensional snapshot interferometric radiometer 
 

One dimensional interferometric radiometer uses thinned array only in the cross track 
direction. Thus the dimension in along track direction is still large, as it can be seen from 
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aperture, the image will be taken like a camera, or called snapshot imaging. 
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so on. Among those, T and U shaped arrays produce visibility function samples in a 
rectangular grid in the u-v plane, while the Y and Δ-shape arrays produce the visibility 
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applicable for retrieving the brightness temperature image in the spatial domain. Hexagonal 
fast Fourier transform is also applicable in a triangular grid. Y-shape array has been adopted 
by many systems due to the unique advantage that the array thin factor is the best among all 
the 2-D configurations. However, none of those configurations can reach zero redundancy. 
Redundant baselines, particularly at the lower spatial frequency components, are used to 
average the noise, which is equivalent to an increase in the integration time. 
 

2D-STAR was developed under NASA’s Instrument Incubator Program (IIP) at the Goddard 
Space Flight Center. As the next generation instrument of ESTAR, 2D-STAR is an 
experimental instrument for evaluating techniques and applications of 2D aperture 
synthesis (Le Vine et al, 2000b, 2004). 2D-STAR works at L-band with two polarizations and 
does aperture synthesis in both directions (cross track and along track). Micro-strip patch 
antenna is selected as the element antenna, and the minimum element spacing u is 0.5. A 
square shaped full array of 11×11 elements provide the flexibility to compare between 
different array configurations, including Y, T, U, etc.  The instrument made its maiden 
flight in 2002 and participated in a series of field tests in 2003 and 2004 flying over research 
sites in Alabama, Georgia and Oklahoma during SMEX-03 and SMEX-04 campaigns, 
respectively (Le Vine et al, 2007).  
 

HUT-2D was developed by the Helsinki University of Technology (HUT), Finland 
(Rautiainen et al, 1999, 2003). Development began in the late 1990s and was completed in 
early 2006. It is an airborne L-band 2D Interferometric imaging system with dual 
polarizations. Its U-shape array consists of 36 elements and 575 baselines. The minimum 
element spacing u is 0.7. The angular resolution is between 5°and 7°. HUT-2D is 
recognized as one of the demonstrators of the SMOS (Soil Moisture and Ocean Salinity) 
mission for the ESA (European Space Agency) to validate the feasibility of retrieving soil 
moisture and ocean salinity using 2D interferometric radiometers. Successful ground and air 
based tests were conducted to study the interferometric theory and instrument calibration. 
The first test flight was carried out on May 29, 2006 (Kainulainen et al, 2007). 
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Soil Moisture and Ocean Salinity (SMOS) is the first space mission for an interferometric 
imaging radiometer. The Microwave Imaging Radiometer using Aperture Synthesis 
(MIRAS) was proposed to the European Space Agency (ESA) in 1994 and approved in 1998 
as the only payload onboard the SMOS mission (Martin-Neira et al, 1994; Kerr et al, 2000). 
MIRAS adopts a Y-shape 2D array and consists of a central structure and three deployable 
arms, each of which has three segments, see Fig.9.  
 

                         

Fig. 9. Y-shaped antenna array of MIRAS and SMOS spacecraft of ESA 
 

During launch, these arms are folded-up, but soon after separation from the launch vehicle 
they are gently deployed via a system of spring-operated motors and speed regulators. 
There are 69 antenna elements – the so-called LICEF receivers, which are equally distributed 
over the three arms and the central structure at a minimum distance of 0.875. The length of 
each arm is about 4 meters. The scheduled launch date of SMOS was postponed until 
November 2009. From an altitude of 755 km in Sun synchronous orbit, the element antenna 
will view an area of almost 3000 km in diameter. However, due to the interferometric 
principle and the Y-shaped antenna array, the field of view is limited to a hexagonal shape 
about 1000 km across called the 'alias-free zone'. This area corresponds to observations 
where there is no ambiguity in the phase-difference. The ground resolution is better than 
50km for soil moisture and is better than 200km for ocean salinity. 
 

Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is another Y-shaped 
snapshot interferometric imaging radiometer supported by NASA’s IIP program and 
developed by the Jet Propulsion Laboratory (JPL) (Lambridtsen et al, 2004, 2006). This 
microwave atmospheric sounder will be onboard the geostationary GOES weather satellites 
operated by NOAA and will be in orbit by 2014. GeoSTAR will use the same channels as 
AMSU-A/B at 50GHz and 183GHz for oxygen and water vapour sounding. In total, 768 
elements at 183GHz will be equally placed in a Y-shape structure. A more complicated array 
is selected for the 50GHz channel, 3 F-shaped arms with two kinds of aperture sizes are 
employed to avoid the structure interference with 183GHz and to improve the effective 
aperture ratio. Distance between adjacent elements is 3.5, which results in a field of view 
(FOV) of 17.5°from the geostationary orbit. In order to measure global temperature and 
humidity distribution, GeoSTAR is intending to provide continuous observations with a 

 

spatial resolution of 25~30km. It is expected to be the first microwave sounder in 
geostationary orbit for atmospheric measurement. A Y-shape demonstrator with 24 
elements has been completed and a series of experiments are being conducted. The 
demonstrator has 4 channels within 50~55GHz (Tanner et al, 2006). 

 
4.3 2-D time-shared scanning imaging system 
 

The 2-D snapshot imaging systems with high time resolution is very suitable for the 
real-time imaging observations, particularly for the case of observing from a fast moving 
platform at low earth orbit. However, for non-real-time observations, for example, when the 
platform is relatively stationary compared to observational targets and the targets’ natural 
radiation is slowly changing, it would be too expensive to apply the traditional 2-D snap 
short imaging systems. Furthermore, for space borne applications, the overall cost with 
many element and channels, the resources required in power supply and mass of the 2-D 
snap shot systems are all difficult obstacles to overcome. 
 

Recently, the time-shared scanning scheme with low hardware complexity has attracted 
more and more attention. It has potential to overcome the problems caused by the bulky and 
complex hardware of snapshot systems. Time-shared scanning scheme basically refer to 
applying a few antenna elements to compose a simple array, and integrally moving the 
array or separately moving the elements to get more spatial frequency samples. After a 
scanning cycle period, a full u-v sampling coverage can be achieved, and the brightness 
temperature image can be reconstructed by inversing these saved u-v measurement data. 
Time shared imaging schemes can greatly reduce the number of antenna elements and 
receivers. Thus the system cost could be cut down and the imaging spatial resolution could 
also be further increased since the overall complexity of the system has been dramatically 
reduced. 
 

Depending on the means of movement of the thinned array, the time shared scanning 
scheme can be divided into sliding scan and rotating scan. Sliding scan means the antenna 
elements slide along some guide rails back and forth during the sample measurement 
process. The guide rails of every antenna elements are usually straight lines. For example, in 
the T-shaped and Y-shaped sliding scans, see Fig. 10, each antenna element is sliding along 
its respective guide rail at a different pace. After carefully designing the movement strategy 
of each element, all the baselines that needed to cover the full u-v plane will be aligned 
during a scanning cycle period, which have the same sampling effect as a uniformly 
distributed array along the rails. 
 

The sliding scan has some disadvantages. It requires a complicated mechanical control 
system. The heavy mechanical attrition in the sliding process will greatly shorten the 
lifetime of the system. More importantly, it is hard to keep the system’s momentum 
balanced. All these disadvantages limit its space borne application. Therefore, it is only fit 
for the ground-based imaging systems. 
 

The other time-shared sampling scan, the rotation scan, is implemented by rotating all the 
coplanar antenna elements around a fixed axis to obtain more observation baseline vectors 
and more u-v sampling points. It has obvious advantages when compared to sliding scan in 
that it adopts the simpler and more reliable rotation control components, generates less 
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kinetic friction with high system stability, and is easier to achieve rotational balance. It is 
then more appropriate for space borne applications. 
 

 
Fig. 10. Schematic diagrams of T-shaped sliding scan (a) and Y-shaped sliding scan (b) 
 

There are generally two kinds of rotation scans, the synchronous rotation scan and the 
asynchronous rotation scan. The former one means the antenna array is integrally rotating 
around a fixed axis, and all the elements have the same angular rotation speed (Wu et al, 
2005b), see Fig. 11. The latter one means the antenna elements are separately rotating 
around a same axis with different angular rotation speeds. In this type of rotational scan, the 
antenna elements are divided into two groups. The elements in one group have the same 
angular rotation speed and arm length, but different speeds to the elements in another 
group. This configuration is somewhat like a clock, especially when each group has only one 
antenna element, so it is also called a clock scan (Wu et al, 2007), see Fig. 12.  
 

The sampling grid of synchronous rotation scan is composed by concentric circles, as shown 
in Fig. 11 (b). Each sampling circle corresponds to a physical baseline. An N elements array 
can form N(N-1)/2 physical baselines and scan out N(N-1)/2 sampling circles. The more 
uniform the concentric circles are, the better the image reconstruction is. Therefore, in order 
to get a rather uniform grid and reduce the system complexity at the same time, the antenna 
array with nonredundant linear distributed baselines is preferred. For linear arrays, there 
does not exist such an alignment with zero redundant baselines for N>4. For planar arrays, 
the array optimization is needed, and must resort to nonlinear iterative methods. Some good 
results of arbitrary planar array and circular array have been achieved by using simulated 
annealing method (Sun et al, 2005). Same as the traditional 2-D snapshot imaging system, 
the total number of antenna elements of the synchronous rotation scanning system is also 
determined by the required spatial resolution. Because its longest baseline, being about 
N(N-1)/2·∆u, is related to the number of antenna elements N, the system complexity of 
synchronous rotation scan can be reduced to about the square root of the 2-D snapshot 
system complexity, which is in the order of N2. 
 

The scanning tracks of the sampling point on the u-v plane of the clock scan scheme are 
some kind of spiralling curves, as shown in Fig. 12(b). The uniformity and the average gaps 
between the spirals are primarily determined by the speed ratio between the two antenna 
groups. As the speec ratio approaches 1, the more uniform the sampling grid and the longer 
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the scanning cycle period would be. The largest and shortest baselines of a clock scan are 
respectively determined by the sum and difference of the lengths of the long arm and short 
arm. Any length of baselines between the shortest and largest baselines can  

 
Fig. 11. Schematic diagrams of synchronous rotation scan scheme with 5-elements (a) and its 
sampling scanning trajectory (b) 

 
Fig. 12. Schematic diagrams of clock scan scheme with two elements (a) and its sampling 
scanning trajectory (b) 
 

be created by the two antenna groups during their inconsistently rotating scan. Therefore, in 
some particular cases, the system complexity can be optimally reduced to the simplest limit 
of only two antenna elements and receivers. With the simplest two antenna elements 
configuration, the clock scan can still conveniently and efficiently achieve a full u-v 
sampling coverage. This is the most outstanding advantage of the clock scan. However, the 
scanning cycle period can be very long. 
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The number of arms of a clock scan system is determined by the image refresh time limit 
and system required brightness measurement sensitivity. Thus in order to increase the 
system time resolution and measurement sensitivity, the multi-arm configuration can be 
adopted, such as 2–2 arms, 4-4 arms and so on. A 4-4 arms system is shown in Fig. 13. The 
symmetric distributed multi-arm configurations are also helpful to keep the balance of the 
rotating system. According to the basic concepts of the clock scan, it can be extended to 
various specific transformations, such as step rotation scan, variable speed continuous 
rotation scan and swing rotation scan, etc. 
 

        
(a)              (b) 

Fig. 13. 4-4 arms clock scan system (a) and its sampling tracks on the u-v plane (b) 

 
5. Brightness temperature retrieval methods 
 

The visibilities or the samplings in the spatial frequency domain, measured by complex 
cross correlating between the signals received by two element antennas, are the primary 
measurements of synthetic aperture interferometric radiometers. They are related to the 
observed scene or target brightness temperature by a Fourier type transform. Accurate and 
fast inversion of the visibility data into the brightness temperature image is a critical step of 
the interferometric imaging technology. Due to different sampling schemes, there are still 
problems needing to be further explored. 
 

In the ideal case, the visibilities and the brightness temperature are correlated by Fourier 
transform. However, in practice, the imperfections of the sampling process and various 
errors in receiving channels will influence the visibility measurement and damage the 
Fourier relationship. These system imperfections are mainly the channel imbalance and 
mutual coupling, antenna pattern distortion and mismatches, band width fringe washing 
effects and so on. All the distortions and amplitude/phase errors must be characterized and 
calibrated even though it is hard work. These calibration techniques include the distributed 
in-phase/out-phase noise injection technique applied in MIRAS system (Lemmetyinen et al, 
2007) and I/Q vectors modulator technique applied in CAS-C/X system (Wu et al, 2004 and 
Liu et al, 2005b). After all the receiver channel errors have been corrected, the image 
reconstruction algorithms can be applied to the revised visibility data. In the following 
sub-sections, a few general brightness temperature retrieval approaches are introduced. 

 

 

5.1 G-matrix inversion method  
The G-matrix inversion method is a combination of system calibration and imaging 
reconstruction. It is very effective and convenient for small array systems, especially for 1-D 
imaging systems. It has been applied in the ESTAR system (Ruf et al, 1988 and Le Vine et al, 
1994). The G-matrix inversion is based on numerical computation. Since the integral relation 
between the visibilities and brightness temperatures can be made discrete to a summation 
equation when considering that the brightness temperature distribution is represented by a 
sequence of discrete point sources. Then associate with the sampling theorem, the integral 
can be replaced by a vector product, and the set of visibility samples can be combined in 
matrix form, 
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where V2N+1 is the column vector of 2N+1 visibility components including the zero-baseline 
and the real and imaginary part of other N baselines visibilities; TM is the column vector of 
M discrete brightness temperature; G is the system modulation matrix including system 
errors. Each element of the G matrix corresponds to a measured spatial impulse response of 
each baseline correlation. The G matrix can also be recovered by deconvolving the 
measurements of known models of a brightness temperature scene. All the system 
imperfections and errors as well as the Fourier relations are embedded in the G matrix. 
Other calibration and revision works are not necessary any longer after the G matrix was 
measured. 
 

The image reconstruction is a matter of inversing Equation (3). Generally the G matrix is not 
square, and the M brightness temperatures are as many as more than 3 times of the 
measured 2N+1 visibility components. For this unconditioned problem, the inversion has to 
be computed by using a minimization algorithm in the least square sense. A direct way is to 
use the Moore-Penrose pseudo inverse method, which is expressed as 
 

(4))( VGGGT -HH  1  
 

where H denotes the conjugate transpose. It is difficult to apply the G matrix method to a 
large 2-D array system, because the complexities of physically measuring the impulse 
response and mathematically inversing the G matrix are both increased with the square of 
the number of array elements. In addition, the drifts of receiver parameters require a 
periodic calibration. It is impractical to periodically refresh the large G matrix for 
space-borne applications. 

 
5.2 Fourier Transform inversion method 
When the receiver amplitude/phase errors can be calibrated and the system imperfection is 
small, the Fourier based inversion algorithms can be applied. The standard rectangular FFT 
can be directly applied to the rectangular sampling grid arrays, such as the U-shaped, 
T-shaped and X-shaped arrays. From signal theory it is known that the hexagonal sampling 
grid requires the minimum density of u-v samples to recover the image with a specified 
aliasing level. It has 13.4% less samples than rectangular sampling grid. Thus in order to 
process the visibilities sampled on hexagonal grids given by Y-shaped or triangular-shaped 
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where V2N+1 is the column vector of 2N+1 visibility components including the zero-baseline 
and the real and imaginary part of other N baselines visibilities; TM is the column vector of 
M discrete brightness temperature; G is the system modulation matrix including system 
errors. Each element of the G matrix corresponds to a measured spatial impulse response of 
each baseline correlation. The G matrix can also be recovered by deconvolving the 
measurements of known models of a brightness temperature scene. All the system 
imperfections and errors as well as the Fourier relations are embedded in the G matrix. 
Other calibration and revision works are not necessary any longer after the G matrix was 
measured. 
 

The image reconstruction is a matter of inversing Equation (3). Generally the G matrix is not 
square, and the M brightness temperatures are as many as more than 3 times of the 
measured 2N+1 visibility components. For this unconditioned problem, the inversion has to 
be computed by using a minimization algorithm in the least square sense. A direct way is to 
use the Moore-Penrose pseudo inverse method, which is expressed as 
 

(4))( VGGGT -HH  1  
 

where H denotes the conjugate transpose. It is difficult to apply the G matrix method to a 
large 2-D array system, because the complexities of physically measuring the impulse 
response and mathematically inversing the G matrix are both increased with the square of 
the number of array elements. In addition, the drifts of receiver parameters require a 
periodic calibration. It is impractical to periodically refresh the large G matrix for 
space-borne applications. 

 
5.2 Fourier Transform inversion method 
When the receiver amplitude/phase errors can be calibrated and the system imperfection is 
small, the Fourier based inversion algorithms can be applied. The standard rectangular FFT 
can be directly applied to the rectangular sampling grid arrays, such as the U-shaped, 
T-shaped and X-shaped arrays. From signal theory it is known that the hexagonal sampling 
grid requires the minimum density of u-v samples to recover the image with a specified 
aliasing level. It has 13.4% less samples than rectangular sampling grid. Thus in order to 
process the visibilities sampled on hexagonal grids given by Y-shaped or triangular-shaped 
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arrays, the hexagonal FFT algorithm has been developed (Camps et al, 1995 and 1997). 
Hexagonal FFT can use the standard rectangular FFT routines to quickly implement a 
reversible transform between the hexagonal grid in spatial domain and another hexagonal 
grid in spatial frequency domain without interpolation processes. It is noted that, the 
Y-shaped array is better than the triangular-shaped array because when having the same 
hardware complexity it has a larger sampling coverage and associated better spatial 
resolution. Therefore, as the optimal 2-D snapshot array configuration, the Y-shaped array 
was adopted by the MIRAS/SMOS system. 
 

On the other hand, for the polar girds and spiral grids sampled by rotation scanning system, 
it seems no such fast direct algorithms exist to do Fourier transformations on such non 
rectangular grids. What one can do is to apply interpolation method to convert these 
irregular girds to a uniform grid that is proper for FFT routines and then use FFT to do the 
reconstruction. Such kind of methods are called interpolation based Fourier methods. There 
are mainly two interpolation based Fourier methods that have been proposed so far, the 
rectangular grid based Gridding method (Beatty et al, 2005) and the pseudo-polar grid 
based 1-D interpolation pseudo-polar FFT method (Zhang et al, 2007). 
 

The Gridding method is a convolution based resampling technique which is widely used to 
convert the random non-uniform data to a rectangular grid. The procedure is that, firstly 
estimating the sampling density of the non-uniform data and compensating the data by 
dividing their density; then convolving the compensated data with a specific kernel function 
to recover the corresponding initial function and resample it on the required Cartesian grid, 
finally performing the standard IFFT to reconstruct the brightness temperature image. The 
density estimation and convolution kernel are the most important factors that are 
responsible for the reconstruction accuracy. Generally the Voronoi diagram method can be 
used to calculate the sampling density and the widely accepted Kaiser-Bessel kernel 
function can be used to do the convolution. 
 

The interpolation pseudo-polar FFT method is specifically proposed for the polar grid of 
concentric circles sampled by synchronous rotation scanning system. Using two steps of 1-D 
interpolations, the angular interpolation and radial interpolation, the polar grid can be 
converted to a pseudo-polar grid, which is composed by concentric rectangles and 
equi-sloped rays, as shown in Fig. 14. Then applying 1-D FFT and fast FRFT (Fractional 
Fourier Transform), the spatial frequency data in pseudo-polar grid can be transformed to a 
Cartesian grid in the spatial domain. The interpolation pseudo-polar FFT method has a 
promising imaging performance by virtue of high accuracy of 1-D interpolations and fast 
computational operations.  

 
5.3 Non linear iterative optimization method 
For the systems without accurate calibration or missing some baselines, especially when 
large antenna pattern errors and large sampling non-uniformity exist, the inversion of the 
visibility equation dose not have an analytical solution. In this case, iterative optimization 
techniques, such as the Clean method and maximum entropy method (MEM), can be used 
to deal with this kind of problems. 

 

                      
Fig. 14. Schematic diagram of pseudo-polar grid 
 

The Clean method is the most popular method used in radio astronomy with interferometric 
imaging systems. Because of incomplete sampling in the u-v plane and atmosphere path 
distortion, the directly reconstructed image has large amount of noise. Consequently, the 
direct reconstruction is called dirty image and the equivalent array factor AF is called a dirty 
beam. The Clean method is to extract the useful information and remove the noise to obtain 
a high quality image. It first assumes the radio source is represented by a number of point 
sources, the stars, in an empty FOV, then it finds the position and strength of the most 
brilliant peak in the dirty image and subtracts the dirty beam centered at this point with a 
damping factor from the dirty image. This process is repeated until the residual image is no 
longer significantly above the noise-level. Finally the clean image is obtained by convolving 
the accumulated point sources model with an idealized clean beam, usually a Gaussian 
beam with the same half-power beam width as the dirty beam. From the principles it is clear 
that, the Clean method would have difficulties to directly applied for earth observation case 
because the earth targets appears as an extended thermal source filling the FOV and not a 
set of point sources. Although extensions of the Clean method for extended targets imaging 
are studied (Camps et al, 1998), regardless whether it is effective, it still requires much prior 
knowledge of the targets in the FOV. 
 

The maximum entropy method (MEM) is another effective method applied to optimizing 
the synthetic aperture images in radio astronomy (Skilling & Bryan, 1984). It originated from 
maximum probability distribution in statistical physics, and particularly useful in solving 
the ill-posed problem with incomplete measurement data. The MEM tries to define a 
concept of entropy to characterize the solutions as well as prior knowledge and then obtains 
a solution which has the maximum entropy among all the solutions in a certain noise level. 
In order to successfully find the best solution being closest to the real one, enough constrains 
must be imposed to the infinite solution space, such as the positive constraint (all the 
elements are positive), the smoothness constraint (minimum variance of its second 
derivative) or other prior knowledge. 
 

The Clean method and MEM method are both nonlinear, and consequently not easy to treat 
mathematically. It requires time consuming iterative procedures and large storage space. 
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elements are positive), the smoothness constraint (minimum variance of its second 
derivative) or other prior knowledge. 
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mathematically. It requires time consuming iterative procedures and large storage space. 



Geoscience	and	Remote	Sensing,	New	Achievements60  

Moreover, the prior knowledge of the observation scene is necessary even for extended 
targets. The practical applications of these nonlinear iterative methods for earth 
observations are not yet mature. 

 
6. Application prospects 
 

The interferometric passive microwave imaging system has a wide area of applications, 
including all the traditional microwave radiometer application areas and some other specific 
areas, such as high spatial resolution earth observation in geostationary Earth orbit or low 
frequency band, security detection of hidden weapons or other contrabands on the ground. 
 

Geostationary earth orbit (GEO) microwave observation is an attractive potential 
application for interferometric imaging techniques. In order to implement accurate and 
timely monitoring of disastrous weathers such as typhoons, rainstorms or other severe 
convective weather events and increase weather forecasting precision, some prestigious 
government space agencies such as NASA and ESA are devoted in developing GEO 
meteorological satellite with microwave imaging system. China is also planning to launch a 
microwave imaging sounder on a GEO weather satellite. The main challenge of GEO 
applications is to realize a high spatial resolution at such a high orbit. One will meet great 
difficulty if they simply adopt the traditional real aperture microwave radiometer because 
the physical size of antenna will be too large even in millimeter band, not to mention how to 
scan it in order to get an image. Applying interferometric imaging technique is a promising 
way to overcome this problem. Especially if the scene becomes a slow moving/variable 
target, the time shared scan scheme, such as rotation scanning scheme, can be applied. This 
will further reduce the complexity of the system. Now the foresight study for rotation 
scanning interferometric millimeter atmospheric temperature imaging sounders for GEO 
satellite application have been carried out by NASA, ESA and also in China. The 
breakthroughs of this technology will help human beings understand the global weather 
system better and also giving more precise weather forecasts in the future. 
 
Another important potential application of the interferometric imaging technique is the 
solar wind observation in solar polar orbit. The solar wind plays an essential role in shaping 
and stimulating planetary magnetospheres and ionic comet tails. It is a prime source of 
space weather. Coronal Mass Ejections (CMEs) produce the largest transient disturbances in 
the solar wind, which are closely related to solar activity, interplanetary shocks and 
geospace environment changes. With the development of Aerospace technology, precise 
forecasts of large disturbance events are being put on the agenda. Several solar-terrestrial 
space exploration projects are proposed in China, for example, the Solar Polar Orbit Radio 
Telescope (SPORT) project proposed by CSSAR/CAS (Center for Space Science and Applied 
Research, Chinese Academy of Sciences) (Wu et al, 2005c, 2006). In the SPORT mission, it is 
planned to launch a space-based observatory into solar polar orbit, and implement the first 
ever remote sensing measurements of the solar wind from the polar region above the sun 
outside of the ecliptic plane. The main objectives of SPORT are tracing the propagation of 
high density plasma clouds within about 1 square AU area near the ecliptic plane, imaging 
its intensity distribution and forecasting the propagation and intensity trend. Therefore, it is 
very helpful for geospace weather and environment forecast, and also for solar physics and 

 

plasma physics studies. The sensitive frequency of plasma clouds is very low. If using 
conventional real aperture radiometry technique, the required physical aperture of the 
antenna would be far exceed the mechanical production ability and rocket load capacity. 
Therefore, the interferometric imaging technique with rotational scanning scheme is 
adopted in SPORT project. It will apply the clock scan scheme with two sets of rotating 
arms. Each set of arms is composed of four long booms extended for 70-80 meters and 90 
degree apart. The spacecraft is located in the rotational centre and will rotate together with 
one set of the arms. It is therefore a spin stabilized spacecraft. The rotation axis is pointing to 
the Sun all the time. More details can be read in (Wu et al, 2005c, 2006). 

 
7. Conclusions 
 

Interferometric imaging radiometer technology was introduced into the area of Earth 
observation from radio astronomy technology more than 20 years ago. Due to the 
differences between astronomy observation and that of the earth observation, the 
technology has gone through redevelopment over the past 20 years.  
 

During redevelopment, there have been two main technical trends. The first one is to be 
more and more complicated by increasing the number of elements to reach higher spatial 
resolutions and at the same time to keep its radiometric sensitivity, such as the snapshot 2-D 
Y-shape designs. This technical trend has relied on the fast development of IC technology 
that enables us to integrate thousands of correlators into one chip. A representative of this 
technical approach is the MIRAS payload on SMOS mission by ESA. The other technical 
trend is trying to reduce the number of elements and using time shared scan scheme in 
order to cover the complete u-v plane. The initial driving force behind this trend is the 
necessity to keep the system design simple and manageable. Along this line, as described in 
this chapter, we have discovered the secrets inside the technology, i.e. the very basic 
configuration of the interferometric imaging system. It, in fact, can be represented by only 
two element antennas using the clock scan scheme. Any spatial resolution and radiometric 
sensitivity can be reached by using this two-element clock scan as basic building blocks in 
principle.  
 

In November 2009, the first ever space mission SMOS using this new technology for earth 
observation will be launched. We expect a successful demonstration of this technology by 
SMOS mission. After this, in the near future, we expect to see more missions using this 
technology such as the geo-sounder on board of either a US weather satellite or a Chinese 
weather satellite since both are working on it. We would also expect the SPORT mission to 
be launched before 2020 using 4-4 element clock scan to take images of the interplanetary 
CMEs and also the universe background emission at 15MHz. It is certainly an exciting 
technology but perhaps not the dominating technology in the area of passive microwave 
remote sensing due to its complexity compared to tradition real aperture radiometers. 
Therefore, the traditional microwave radiometer will still exist. The users will select from 
both in order to keep the best performance over cost and technical feasibility. 
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1. Introduction 
 

Understanding the climate of our planet and how human activities are changing it is one of 
the greatest scientific challenges facing humanity nowadays. The rise of global average 
surface temperature by 0.6 ºK since the late 19th century, attributed to radiative forcing (i.e. 
perturbation of the Earth’s energy balance) by anthropogenic greenhouse gases and 
aerosols, underline the current concern about consequences of climate system modification. 
A quantitative assessment of the human contribution to climate change requires not only to 
establish possible future emission scenarios, but also a synthesis of uncertainties along the 
cause-effect chain from emissions to temperatures. The up-to-date scientific understanding 
of the topic, summarized in the fourth assessment report of the Intergovernmental Panel on 
Climate Change, establish the very likely human contribution to the climate change, but it 
also points out the wide range of uncertainty inherent in current model prediction 
associated with the radiative effect of aerosols, still labelled in the report as low level of 
scientific understanding. 
The three known effects of aerosols on climatic processes, namely the direct effect caused by 
scattering and absorption of solar radiation by aerosols, the indirect effect that produce the 
modification of cloud properties, such as size distribution of droplets, by aerosols acting as 
cloud condensation nuclei, and finally the recently investigated semi-direct effect due to 
evaporation of cloud droplets in aerosol-rich layers because of the rise in temperature 
caused by absorption of solar radiation by aerosols, still requires a better constraining 
estimates of their magnitude. 
The characterization of these effects, taken into account the large variability in geographical 
and seasonal distributions of the different types of aerosols (marine, anthropogenic 
pollution, desert dust), requires the use of long-term, detailed global measurements from 
distributed networks of ground-based instruments and satellites, and also comprehensive 
regional experiments in clean and polluted environments. 
The long-term monitoring of aerosol microphysical properties on a global scale will improve 
the current knowledge of the influence of aerosols on climate, allowing a more accurate 
understanding of how the climate system will respond to the anthropogenic forcing. This 
chapter will comment about recent advances in the characterization of aerosol vertical 
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distribution by means of optical remote sensing systems coordinated in networks of 
continental scales and onboard satellites. 

 
2. Effects of aerosols and clouds on climate change 
 

The increasing concentration of greenhouse gases in the atmosphere has caused most of the 
warming observed worldwide over the last century. The fourth assessment report of the 
Intergovernmental Panel on Climate Change (Solomon et al., 2007) established the very 
likely human contribution to the climate change, but it also points out the wide range of 
uncertainty inherent in current model prediction associated with the radiative effect of 
aerosols and clouds, still labelled in the report as low level of scientific understanding. The 
complexity of aerosol processes and their interaction with clouds in our environment yields 
large uncertainties in quantitative understanding of their role in many of the major 
environmental issues. Not only an appropriate quantification of aerosol and clouds on a 
global scale, including vertical distribution, is required, but also, further studies are needed 
to tackle the difficulties to adequately representing the radiative properties of the aerosol-
cloud interaction. 
Suspended particulate matter in the atmosphere, commonly known as aerosol, have many 
sources ranging from sea spray and mineral dust, that are mechanically generated by wind 
at the Earth’s surface, or biogenic aerosols such as pollen, mold spores, and airborne bacteria 
and viruses, to secondary aerosols like sulphates, nitrates and organics produced primarily 
by chemical reaction of gases in the atmosphere that condense to form particulate mass. 
Aerosols typically range in size from around 10 nanometres to around 100 micrometers and 
have limited lifetimes in the atmosphere. Aerosols in the lower part of the atmosphere 
normally last for only several days before being washed out by rain or settled by gravity. In 
the upper parts of the atmosphere, aerosols can persist much longer. Volcanic eruptions, 
that release tons of aerosols into the atmosphere, can propel these particles into the 
stratosphere, where they can persist for several years. These aerosols are created as a result 
of natural processes, and their sources and sinks have remained fairly stable in the last 
century, apart from the influence of human activities such as soil use modification. In 
addition to these sources, human activities can generate concentrations of aerosols far in 
excess of natural sources. In fact, there is compelling evidence that anthropogenic activity is 
increasing the concentration of tropospheric aerosols. Major cities produce large amounts of 
pollution aerosols as a result of industrial activity and automobile emissions. The burning of 
fossil fuels (primarily oil and coal) to produce energy emits large quantities of aerosols into 
the atmosphere. Fires set by humans around the world for agricultural purposes, such as 
clearing cropland, are also major sources of biomass burning aerosols. Unlike the long-lived 
greenhouse gases, which are distributed uniformly over the globe, aerosol distribution have 
substantial spatial and temporal variations, with largest concentration of pollution aerosols 
found near industrial regions in the northern hemisphere. The effects of aerosols tend to be 
localized and larger near their source regions, which makes it difficult to estimate the net 
global impact of aerosols on climate. Scientific evidence indicates that in regions with high 
anthropogenic aerosol concentrations, aerosol forcing is of the same magnitude, but 
opposite in sign, to the combined effect of all greenhouse gases. Also, this regionally-
concentrated distribution can directly alter the general circulation patterns. 

 

Estimating the effects of aerosols on climate is particularly challenging, because the 
radiative response to aerosol particles varies with size and chemical composition of the 
particles relative to the wavelength of the incident radiation (Dubovik, 2002). Experimental 
evidences has shown that all of these properties can and do change with time, such as when 
mineral-based desert dust moves over an urban area and black-carbon based aerosols attach 
to the mineral core. Aerosols influence the atmospheric energy budget through direct, semi-
direct and indirect radiative effects. Direct effect is caused by the scattering and absorption 
of incoming solar radiation. Scattering of radiation reduces solar heating at the surface 
immediately below, causing regional “solar dimming” (Liepert, 2002), that somehow 
counteract some greenhouse-gas warming. The amount of cooling depends on the above 
mentioned aerosol parameters, but also on the type of underlying surface. Another likely 
consequence of the aerosol surface cooling is a reduction of evaporation and precipitation. 
To further complicate matters, the forcing can switch from negative values (cooling) in clear-
sky conditions to positive values (warming) at a cloud cover of about 25%, because the 
energy distribution due to the presence of the cloud is different than a clear sky 
(Ramanathan et al. 2001). 
The semi-direct effect is related with the absorption of solar radiation by aerosols, such as 
black-carbon and some mineral-based aerosols, that heats the surrounding atmosphere and 
can actually suppress the formation of clouds by elevating the atmospheric temperature, 
preventing the condensation of water vapor. This forcing can strengthen the low-level 
thermal inversion of the boundary layer, which can perturb low-level clouds, enhance 
aerosol lifetimes, and alter the boundary layer moisture. This has been observed in events 
related with the South Asian haze, where the warming in the aerosol layer can nearly totally 
desiccate stratocumulus cloud layers and alter the properties of the trade wind cumulus 
layer (Ackerman et al., 2000) 
Finally, the indirect effect involves the influence of aerosols on the properties of clouds, such 
as the microstructure, dynamics, coverage and stability of cloud layers. An increase in 
aerosols, acting as cloud-condensation nuclei or ice nuclei, creates larger concentrations of 
clouds droplets, which leads to increased cloud lifetime and albedo. This is because 
normally the droplets grow, collide and coagulate until they grow large enough to fall as 
raindrops, but as the amount of aerosols in the cloud is relatively low, the cloud will consist 
of relatively fewer but larger droplets. If the amount of aerosols is increased, the cloud 
droplets that form tend to be smaller and more numerous; it takes longer for raindrops to 
form, and the clouds last longer. Clouds consisting of smaller droplets also reflect more 
sunlight back to space and contribute to increased cooling of the underlying surface 
(Twomey, 1977). As anthropogenic aerosols are most highly concentrated in the lower 
atmosphere, the indirect effect is expected to be most important in low-level clouds. The 
most obvious impact of clouds on the hydrological cycle is that of precipitation. In removing 
water from the atmosphere, precipitation modifies cloudiness and cloud structure. 
Moreover, the latent heating associated with precipitation is a driving force for atmospheric 
circulations. Precipitation frequencies can also be affected by aerosols, for instance by the 
suppression of raindrops in shallow and deep convective clouds, which are the major 
sources of thermodynamic forcing of the general atmospheric circulation (Levin, 2009). 
The effect of clouds on the global radiative balance depends on the competition between the 
reflection of incoming solar radiation and the absorption of Earth's outgoing infrared 
radiation. The overall impact of high-altitude clouds is to warm the planet while the low-
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distribution by means of optical remote sensing systems coordinated in networks of 
continental scales and onboard satellites. 

 
2. Effects of aerosols and clouds on climate change 
 

The increasing concentration of greenhouse gases in the atmosphere has caused most of the 
warming observed worldwide over the last century. The fourth assessment report of the 
Intergovernmental Panel on Climate Change (Solomon et al., 2007) established the very 
likely human contribution to the climate change, but it also points out the wide range of 
uncertainty inherent in current model prediction associated with the radiative effect of 
aerosols and clouds, still labelled in the report as low level of scientific understanding. The 
complexity of aerosol processes and their interaction with clouds in our environment yields 
large uncertainties in quantitative understanding of their role in many of the major 
environmental issues. Not only an appropriate quantification of aerosol and clouds on a 
global scale, including vertical distribution, is required, but also, further studies are needed 
to tackle the difficulties to adequately representing the radiative properties of the aerosol-
cloud interaction. 
Suspended particulate matter in the atmosphere, commonly known as aerosol, have many 
sources ranging from sea spray and mineral dust, that are mechanically generated by wind 
at the Earth’s surface, or biogenic aerosols such as pollen, mold spores, and airborne bacteria 
and viruses, to secondary aerosols like sulphates, nitrates and organics produced primarily 
by chemical reaction of gases in the atmosphere that condense to form particulate mass. 
Aerosols typically range in size from around 10 nanometres to around 100 micrometers and 
have limited lifetimes in the atmosphere. Aerosols in the lower part of the atmosphere 
normally last for only several days before being washed out by rain or settled by gravity. In 
the upper parts of the atmosphere, aerosols can persist much longer. Volcanic eruptions, 
that release tons of aerosols into the atmosphere, can propel these particles into the 
stratosphere, where they can persist for several years. These aerosols are created as a result 
of natural processes, and their sources and sinks have remained fairly stable in the last 
century, apart from the influence of human activities such as soil use modification. In 
addition to these sources, human activities can generate concentrations of aerosols far in 
excess of natural sources. In fact, there is compelling evidence that anthropogenic activity is 
increasing the concentration of tropospheric aerosols. Major cities produce large amounts of 
pollution aerosols as a result of industrial activity and automobile emissions. The burning of 
fossil fuels (primarily oil and coal) to produce energy emits large quantities of aerosols into 
the atmosphere. Fires set by humans around the world for agricultural purposes, such as 
clearing cropland, are also major sources of biomass burning aerosols. Unlike the long-lived 
greenhouse gases, which are distributed uniformly over the globe, aerosol distribution have 
substantial spatial and temporal variations, with largest concentration of pollution aerosols 
found near industrial regions in the northern hemisphere. The effects of aerosols tend to be 
localized and larger near their source regions, which makes it difficult to estimate the net 
global impact of aerosols on climate. Scientific evidence indicates that in regions with high 
anthropogenic aerosol concentrations, aerosol forcing is of the same magnitude, but 
opposite in sign, to the combined effect of all greenhouse gases. Also, this regionally-
concentrated distribution can directly alter the general circulation patterns. 

 

Estimating the effects of aerosols on climate is particularly challenging, because the 
radiative response to aerosol particles varies with size and chemical composition of the 
particles relative to the wavelength of the incident radiation (Dubovik, 2002). Experimental 
evidences has shown that all of these properties can and do change with time, such as when 
mineral-based desert dust moves over an urban area and black-carbon based aerosols attach 
to the mineral core. Aerosols influence the atmospheric energy budget through direct, semi-
direct and indirect radiative effects. Direct effect is caused by the scattering and absorption 
of incoming solar radiation. Scattering of radiation reduces solar heating at the surface 
immediately below, causing regional “solar dimming” (Liepert, 2002), that somehow 
counteract some greenhouse-gas warming. The amount of cooling depends on the above 
mentioned aerosol parameters, but also on the type of underlying surface. Another likely 
consequence of the aerosol surface cooling is a reduction of evaporation and precipitation. 
To further complicate matters, the forcing can switch from negative values (cooling) in clear-
sky conditions to positive values (warming) at a cloud cover of about 25%, because the 
energy distribution due to the presence of the cloud is different than a clear sky 
(Ramanathan et al. 2001). 
The semi-direct effect is related with the absorption of solar radiation by aerosols, such as 
black-carbon and some mineral-based aerosols, that heats the surrounding atmosphere and 
can actually suppress the formation of clouds by elevating the atmospheric temperature, 
preventing the condensation of water vapor. This forcing can strengthen the low-level 
thermal inversion of the boundary layer, which can perturb low-level clouds, enhance 
aerosol lifetimes, and alter the boundary layer moisture. This has been observed in events 
related with the South Asian haze, where the warming in the aerosol layer can nearly totally 
desiccate stratocumulus cloud layers and alter the properties of the trade wind cumulus 
layer (Ackerman et al., 2000) 
Finally, the indirect effect involves the influence of aerosols on the properties of clouds, such 
as the microstructure, dynamics, coverage and stability of cloud layers. An increase in 
aerosols, acting as cloud-condensation nuclei or ice nuclei, creates larger concentrations of 
clouds droplets, which leads to increased cloud lifetime and albedo. This is because 
normally the droplets grow, collide and coagulate until they grow large enough to fall as 
raindrops, but as the amount of aerosols in the cloud is relatively low, the cloud will consist 
of relatively fewer but larger droplets. If the amount of aerosols is increased, the cloud 
droplets that form tend to be smaller and more numerous; it takes longer for raindrops to 
form, and the clouds last longer. Clouds consisting of smaller droplets also reflect more 
sunlight back to space and contribute to increased cooling of the underlying surface 
(Twomey, 1977). As anthropogenic aerosols are most highly concentrated in the lower 
atmosphere, the indirect effect is expected to be most important in low-level clouds. The 
most obvious impact of clouds on the hydrological cycle is that of precipitation. In removing 
water from the atmosphere, precipitation modifies cloudiness and cloud structure. 
Moreover, the latent heating associated with precipitation is a driving force for atmospheric 
circulations. Precipitation frequencies can also be affected by aerosols, for instance by the 
suppression of raindrops in shallow and deep convective clouds, which are the major 
sources of thermodynamic forcing of the general atmospheric circulation (Levin, 2009). 
The effect of clouds on the global radiative balance depends on the competition between the 
reflection of incoming solar radiation and the absorption of Earth's outgoing infrared 
radiation. The overall impact of high-altitude clouds is to warm the planet while the low-
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altitude clouds tend to cool it. Research to date suggests that, globally averaged, the overall 
cooling caused by clouds is more powerful than the warming they cause. Anyhow, these 
behaviours are strongly linked to microphysical processes in clouds because changes in 
those processes can modify the spatial extent, spatial distribution, and lifetimes of clouds, 
the water vapor distribution outside of clouds, and the fluxes of water and radiation 
through the atmosphere. Another reason why modelling clouds is difficult is that clouds  

Fig. 1. Evidence of the indirect effect of aerosols: The image from the Moderate Resolution 
Imaging Spectroradiometer captured on January 27, 2003 and processed to create a true-
color image using bands 1 (650 nm), 4 (555 nm), and 3 (469 nm) shows an unusually high 
number of ship tracks (thin white lines), visible in the clouds off of the coasts of France (Left) 
and Spain (Bottom). (Image courtesy of J. Descloitres, MODIS rapid response team, 
NASA/GSFC, Greenbelt, Maryland) 
 
change almost instantaneously compared to the rest of the climate system and on very small 
scales. Most models are not capable of representing phenomena that change so rapidly or 
impact such a small portion of Earth at any given time (Baker, 1997). 
Owing to the typically high altitude and often remote location, the nucleation of ice is the 
less well-understood process. Atmospheric ice formation at temperatures warmer than 
about 40 ºK below the equilibrium freezing temperature, requires the presence of a special 
solid particle that acts as an ice nucleus, enhancing the stability of an ice embryo due to the 

 

 

presence of a surface. Materials that can act as ice nuclei include, but are not limited to, 
mineral dust, anthropogenic metal oxides, pollen and bacteria. 
The clearest observational evidence for an indirect aerosol effect is provided by ship tracks, 
which are trails in ambient low-level clouds that result from the effluent from ships. 
Although ships are not significant sources of pollution themselves, they release enough 
aerosols from their smokestacks to modify overlying clouds. Those aerosols act as cloud 
condensation nuclei, which may either produce new cloud particles where none existed 
before, or may attract water from existing cloud particles, creating brighter clouds due to the 
enhancement of liquid-water content, possibly caused by suppression of drizzle, and 
smaller droplets. An example of this is shown in figure 1; in this satellite image of clouds 
over the Atlantic Ocean, the thin white lines are bright clouds consisting in small droplets 
that form due to aerosols emitted by ships. Another example is the pollution tracks as 
viewed by the Advanced Very High Resolution Radiometer satellite imagery (Rosenfeld, 
2000). Perhaps the most significant aspect of the analysis of these pollution tracks is the 
conspicuous absence of them over the United States and Europe, implying that these regions 
are so heavily polluted that local sources can not be distinguished from the widespread 
pollution-induced narrow droplet spectra in those regions. A striking example is provided 
by anthropogenic lead-containing particles, one of the most efficient ice-forming substances 
commonly found in the atmosphere. Post-industrial emissions of particulate lead have been 
estimated to offset a proportion of the warming attributed to greenhouse gases, by 
“supercharging” pre-existing particles, making them highly efficient ice nuclei that allow 
clouds to form at lower altitudes (Cziczo, 2009). But after the regulation of tetraethyl lead, 
an additive to automotive petrol, in the mid-1980, total lead has dropped significantly, with 
a 20-fold decrease reported in the continental United States in the two decades since 1980. 
This might imply a drastic reduction in the offset, although a proper estimation of the 
climatic effect is still pending. Like the ship tracks and contrails produced by aircraft, the 
impact of those pollution tracks on regional and global climate is not yet known, but recent 
satellite observations of these phenomena are providing new information. 
The main uncertainties in climate model simulations are due to the difficulties in adequately 
representing the interdependent microphysical, chemical, and dynamic processes that 
characterize the aerosol-cloud system in the atmosphere, that must be better understood in 
order to quantify the effects of anthropogenic aerosols on the albedos, emissivities, cloud-
top temperatures and extent of clouds. Present models do not have sufficient sophistication 
in cloud microphysics to include those aerosol influences (Grabowski, 2009). As global 
climate models have not included all these complexities, the simulation of impact of aerosols 
on global climate is not possible yet. 
First and foremost, a reliable global inventory of aerosol emission rates, lifetimes, global 
distribution and concentrations is urgently needed. The aerosol vertical distribution 
depends on the distributions of the emissions, on chemical production for secondary 
aerosols, on the distribution of clouds, precipitation and wet deposition processes, and 
finally, on the transport characteristics determined by the flow field. On the theoretical and 
experimental side, further investigations regarding the microphysical processes and 
radiative effects in clouds and aerosols are required. Another large uncertainty in climate 
studies is the effect of cloud multilayering. It has been observed that the largest variations in 
predictions of climate warming are due to the different ways the models specify how clouds 
are vertically distributed and overlap, which influence both the magnitude and vertical 
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altitude clouds tend to cool it. Research to date suggests that, globally averaged, the overall 
cooling caused by clouds is more powerful than the warming they cause. Anyhow, these 
behaviours are strongly linked to microphysical processes in clouds because changes in 
those processes can modify the spatial extent, spatial distribution, and lifetimes of clouds, 
the water vapor distribution outside of clouds, and the fluxes of water and radiation 
through the atmosphere. Another reason why modelling clouds is difficult is that clouds  
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and Spain (Bottom). (Image courtesy of J. Descloitres, MODIS rapid response team, 
NASA/GSFC, Greenbelt, Maryland) 
 
change almost instantaneously compared to the rest of the climate system and on very small 
scales. Most models are not capable of representing phenomena that change so rapidly or 
impact such a small portion of Earth at any given time (Baker, 1997). 
Owing to the typically high altitude and often remote location, the nucleation of ice is the 
less well-understood process. Atmospheric ice formation at temperatures warmer than 
about 40 ºK below the equilibrium freezing temperature, requires the presence of a special 
solid particle that acts as an ice nucleus, enhancing the stability of an ice embryo due to the 

 

 

presence of a surface. Materials that can act as ice nuclei include, but are not limited to, 
mineral dust, anthropogenic metal oxides, pollen and bacteria. 
The clearest observational evidence for an indirect aerosol effect is provided by ship tracks, 
which are trails in ambient low-level clouds that result from the effluent from ships. 
Although ships are not significant sources of pollution themselves, they release enough 
aerosols from their smokestacks to modify overlying clouds. Those aerosols act as cloud 
condensation nuclei, which may either produce new cloud particles where none existed 
before, or may attract water from existing cloud particles, creating brighter clouds due to the 
enhancement of liquid-water content, possibly caused by suppression of drizzle, and 
smaller droplets. An example of this is shown in figure 1; in this satellite image of clouds 
over the Atlantic Ocean, the thin white lines are bright clouds consisting in small droplets 
that form due to aerosols emitted by ships. Another example is the pollution tracks as 
viewed by the Advanced Very High Resolution Radiometer satellite imagery (Rosenfeld, 
2000). Perhaps the most significant aspect of the analysis of these pollution tracks is the 
conspicuous absence of them over the United States and Europe, implying that these regions 
are so heavily polluted that local sources can not be distinguished from the widespread 
pollution-induced narrow droplet spectra in those regions. A striking example is provided 
by anthropogenic lead-containing particles, one of the most efficient ice-forming substances 
commonly found in the atmosphere. Post-industrial emissions of particulate lead have been 
estimated to offset a proportion of the warming attributed to greenhouse gases, by 
“supercharging” pre-existing particles, making them highly efficient ice nuclei that allow 
clouds to form at lower altitudes (Cziczo, 2009). But after the regulation of tetraethyl lead, 
an additive to automotive petrol, in the mid-1980, total lead has dropped significantly, with 
a 20-fold decrease reported in the continental United States in the two decades since 1980. 
This might imply a drastic reduction in the offset, although a proper estimation of the 
climatic effect is still pending. Like the ship tracks and contrails produced by aircraft, the 
impact of those pollution tracks on regional and global climate is not yet known, but recent 
satellite observations of these phenomena are providing new information. 
The main uncertainties in climate model simulations are due to the difficulties in adequately 
representing the interdependent microphysical, chemical, and dynamic processes that 
characterize the aerosol-cloud system in the atmosphere, that must be better understood in 
order to quantify the effects of anthropogenic aerosols on the albedos, emissivities, cloud-
top temperatures and extent of clouds. Present models do not have sufficient sophistication 
in cloud microphysics to include those aerosol influences (Grabowski, 2009). As global 
climate models have not included all these complexities, the simulation of impact of aerosols 
on global climate is not possible yet. 
First and foremost, a reliable global inventory of aerosol emission rates, lifetimes, global 
distribution and concentrations is urgently needed. The aerosol vertical distribution 
depends on the distributions of the emissions, on chemical production for secondary 
aerosols, on the distribution of clouds, precipitation and wet deposition processes, and 
finally, on the transport characteristics determined by the flow field. On the theoretical and 
experimental side, further investigations regarding the microphysical processes and 
radiative effects in clouds and aerosols are required. Another large uncertainty in climate 
studies is the effect of cloud multilayering. It has been observed that the largest variations in 
predictions of climate warming are due to the different ways the models specify how clouds 
are vertically distributed and overlap, which influence both the magnitude and vertical 
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profile of heating in the atmosphere, and also the predicted precipitation. However, the 
interaction between aerosols and clouds is sufficiently complex that even cloud-resolving 
models have difficulty in accurately simulating their physics and dynamics. Therefore, 
detailed vertical profiles of aerosol and clouds will be relevant parameters to evaluate 
aerosol forcing, understand the effect of aerosol on cloud microphysics and precipitation, 
assess the degree of interaction of aerosols with the cloud layer and also the effect of clouds 
on aerosols, due to the major role of water in determining aerosol optical properties. The 
vertical profiles will also help to better understand aerosol lifetimes, their source regions 
through backtrajectory analysis and long-range transport events, which occur at elevated 
layers, decoupled from the ground. 

 
3. Characterization of the aerosol vertical distribution on a global scale 
 

As above-mentioned, altitude-resolved information on aerosols, including long-range 
transport in the free troposphere, and cloud observations including cirrus clouds, are 
essential for understanding the climate role of atmospheric aerosols. The most promising 
source of routine information on the vertical distribution of aerosols are lidar systems. Other 
possible options to provide altitude-resolved information are aerosol balloon sondes 
instruments and aircraft measurements, but they are not yet widely available and they are 
also less economical. The lidar technique, which stands for LIght Detection And Ranging, 
operates in a similar way as radar, but using light instead of microwaves. Lidars have been 
used for several years to determine the planetary boundary layer height because of the large 
gradient in aerosol concentration that occurs between the top of the boundary layer and the 
free troposphere. Therefore, ground-based lidars may fill the ongoing need for insight into 
the structure of the atmosphere and its variability with time. There are only a few lidar 
instruments planned for deployment on satellites, as it will be discussed below. In contrast, 
there are several research lidar measurement stations and networks that are well organized 
with high standards regarding quality control, ongoing development of new controlling 
measures, and data archival. The integration of aerosol lidar observations with other 
measurements by radiosonde, ozone sonde, sunphotometer and satellite is most useful 
allowing for a maximum synergy of information. Also, the informational content of lidar 
observations is greatly enhanced by air parcel trajectory analysis. 

 
3.1 Light Detection And Ranging 
Remote sensing by lidar has received wide application in investigation of atmospheric trace 
constituents, clouds, wind and temperature since its invention a few decades ago. The lidar 
technique provides information on several aerosol and clouds properties with high spatial 
and temporal resolution, working in a similar way as radar. The system typically consists of 
a laser transmitter and an optical receiver in parallel or collinear arrangement. Figure 2 
shows a schematic depict of a lidar system with three emitting wavelengths, a typical 
configuration when Nd:YAG lasers, the most reliable and widely used type of laser, are 
used, that typically emits at 1064, 532 and 355 nm. The system transmits intense, short-
duration light pulses of linear polarization at a high repetition rate into the atmosphere 
within the receiver field of view. The intensity of the light elastically backscattered by 
molecules and aerosols is measured versus time through the telescope receiver, collimating 

 

optics, a narrow bandpass filter for daylight suppression, and an appropriate detector. In 
the figure, several detection channels are shown, in a typical configuration of advanced lidar 
systems for measuring backscatter intensity, molecular or Raman signals and polarization 
components of the signal, as it will be discussed below. The signal profile will be stored by a 
fast analog-to-digital converter or by a photon counting device. Relative intensity data are 
accumulated separately from all altitude intervals for a selected averaging period, which 
may include thousands of individual laser shots. 
The lidar of lowest complexity measures the aerosol backscatter signal at one wavelength. 
This lidar allows the retrieval of the aerosol backscatter coefficient, although critical 
assumptions have to be made in the inversion of the lidar signal in order to obtain aerosol 
optical properties. The procedure, with all its subsequent modifications and improvements, 
simply suffers from the fact that from only one observable (the energy returned as a 
function of time), two unknowns (the aerosol backscatter coefficient of the aerosol and the 
two-way transmission losses through the atmosphere due to light extinction by molecules 
and aerosols between transmitter, backscattering volume at a certain range and the receiver) 
must be determined, therefore, the system is underdetermined. Many techniques have been 
discussed in the literature to work around this difficulty (the slope method, Collis and  
 

 
Fig. 2. Schematic of a lidar system showing the laser transmitter on the left, the optical 
receiver in biaxial configuration on the right. Several different returns are presented as 
photons. On the right, a photograph of the actual implementation of the Madrid station 
lidar, showing the laser on first term, three mirrors for the three different Nd:YAG 
wavelengths send to the atmosphere through the ceiling window, and the telescope and 
detection line behind. 
 
Russell, 1976; the Bernoulli solution to the equation, Klett, 1981, Fernald, 1984; and column 
closure by the use of ancillary optical depth information, Welton et al., 2001). Nevertheless, 
the measurement remains only an estimate of either the backscatter or the extinction 
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profile of heating in the atmosphere, and also the predicted precipitation. However, the 
interaction between aerosols and clouds is sufficiently complex that even cloud-resolving 
models have difficulty in accurately simulating their physics and dynamics. Therefore, 
detailed vertical profiles of aerosol and clouds will be relevant parameters to evaluate 
aerosol forcing, understand the effect of aerosol on cloud microphysics and precipitation, 
assess the degree of interaction of aerosols with the cloud layer and also the effect of clouds 
on aerosols, due to the major role of water in determining aerosol optical properties. The 
vertical profiles will also help to better understand aerosol lifetimes, their source regions 
through backtrajectory analysis and long-range transport events, which occur at elevated 
layers, decoupled from the ground. 

 
3. Characterization of the aerosol vertical distribution on a global scale 
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transport in the free troposphere, and cloud observations including cirrus clouds, are 
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also less economical. The lidar technique, which stands for LIght Detection And Ranging, 
operates in a similar way as radar, but using light instead of microwaves. Lidars have been 
used for several years to determine the planetary boundary layer height because of the large 
gradient in aerosol concentration that occurs between the top of the boundary layer and the 
free troposphere. Therefore, ground-based lidars may fill the ongoing need for insight into 
the structure of the atmosphere and its variability with time. There are only a few lidar 
instruments planned for deployment on satellites, as it will be discussed below. In contrast, 
there are several research lidar measurement stations and networks that are well organized 
with high standards regarding quality control, ongoing development of new controlling 
measures, and data archival. The integration of aerosol lidar observations with other 
measurements by radiosonde, ozone sonde, sunphotometer and satellite is most useful 
allowing for a maximum synergy of information. Also, the informational content of lidar 
observations is greatly enhanced by air parcel trajectory analysis. 

 
3.1 Light Detection And Ranging 
Remote sensing by lidar has received wide application in investigation of atmospheric trace 
constituents, clouds, wind and temperature since its invention a few decades ago. The lidar 
technique provides information on several aerosol and clouds properties with high spatial 
and temporal resolution, working in a similar way as radar. The system typically consists of 
a laser transmitter and an optical receiver in parallel or collinear arrangement. Figure 2 
shows a schematic depict of a lidar system with three emitting wavelengths, a typical 
configuration when Nd:YAG lasers, the most reliable and widely used type of laser, are 
used, that typically emits at 1064, 532 and 355 nm. The system transmits intense, short-
duration light pulses of linear polarization at a high repetition rate into the atmosphere 
within the receiver field of view. The intensity of the light elastically backscattered by 
molecules and aerosols is measured versus time through the telescope receiver, collimating 

 

optics, a narrow bandpass filter for daylight suppression, and an appropriate detector. In 
the figure, several detection channels are shown, in a typical configuration of advanced lidar 
systems for measuring backscatter intensity, molecular or Raman signals and polarization 
components of the signal, as it will be discussed below. The signal profile will be stored by a 
fast analog-to-digital converter or by a photon counting device. Relative intensity data are 
accumulated separately from all altitude intervals for a selected averaging period, which 
may include thousands of individual laser shots. 
The lidar of lowest complexity measures the aerosol backscatter signal at one wavelength. 
This lidar allows the retrieval of the aerosol backscatter coefficient, although critical 
assumptions have to be made in the inversion of the lidar signal in order to obtain aerosol 
optical properties. The procedure, with all its subsequent modifications and improvements, 
simply suffers from the fact that from only one observable (the energy returned as a 
function of time), two unknowns (the aerosol backscatter coefficient of the aerosol and the 
two-way transmission losses through the atmosphere due to light extinction by molecules 
and aerosols between transmitter, backscattering volume at a certain range and the receiver) 
must be determined, therefore, the system is underdetermined. Many techniques have been 
discussed in the literature to work around this difficulty (the slope method, Collis and  
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closure by the use of ancillary optical depth information, Welton et al., 2001). Nevertheless, 
the measurement remains only an estimate of either the backscatter or the extinction 
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coefficient as long as elastic lidar-only data is available, because the relation between these 
magnitudes, that must be assumed constant in the above mentioned techniques, actually 
depends on the microphysical, chemical, and morphological properties of the aerosols, 
which, in turn, depend on relative humidity. Thus, even in the well-mixed layer, the relation 
might not be constant with height because the relative humidity usually increases with 
height. There is value, however, in the backscatter lidar, providing range to a target and 
structural information on the atmosphere once corrected for detector non-linearity, 
background and range. Basic lidar products are mixed-layer and cloud-base heights and 
qualitative information of aerosol layers in the free troposphere, visible and subvisible cirrus 
and stratospheric aerosol layers after major volcanic eruptions. Figure 3 shows the so-called 
quicklook or colour plot obtained by representing the range corrected signals taken along a 
certain period of time in a height-time display. It provides an overview of the atmospheric 
situation in terms of evolution of the boundary layer, lofted aerosol layer, like the Saharan 
dust intrusion at 5 Km, and cloud distribution, such as the cirrus clouds detected as a thick 
layer at the beginning of the measurements, 03:20 UTC, on the left part of the image, and 
disappears an hour later, right part. 
 

 
 

In the near-range, the signal is affected by losses due to the incomplete overlap of laser beam 
and receiver field of view. A good knowledge of this overlap is an important prerequisite 
for a proper retrieval of the backscatter coefficient in the lowest and usually most polluted 
part of the atmosphere. Due to this limitation, the reference range required in the inversion 
of the lidar signal is chosen at altitudes where the aerosol backscatter coefficient is negligible 
compared to the known molecular backscatter value, the so-called aerosol-free layer, and the 
equation is solved using the backward integration solution proposed by Klett (Klett, 1981). 

Profile at 3:24         

Fig. 3. Lidar profile and Quicklook at 532 nm, obtained over Madrid (40.45ºN, 3.73ºW) 
on the 21st of June, 2009, between 3:20 and 4:40 am. The background substracted and 
range-corrected signals shows relevant features at 5 Km, caused by a Saharan dust 
intrusion over the site, and between 8 and 12 Km, due to cirrus, that dissapear along the 
measuring time. 

 

This far-end calibration also leads to more stable solution than the near-end calibration, but 
clear air conditions are needed at some range to calibrate the signal. They are normally 
found in the free troposphere for laser wavelengths < 700 nm, but it might be critical for 
longer wavelengths (e.g., 1064 nm or the eyesafe wavelength of 1550 nm) because of weak 
Rayleigh scattering. The inversion procedure also includes the calculation of the molecular 
backscatter profile. Standard-atmosphere assumptions, nearby radiosonde data of 
temperature and pressure, or weather prediction model outputs for the lidar site are used to 
compute the entire Rayleigh scattering profile along the laser beam.  

 
3.2 Advanced lidar systems 
Accurate retrieval of extinction and backscatter profiles without making assumptions about 
the aerosol is only possible when measurements of two independent signals are performed. 
Recent developments of the technique, such as the use of the atmospheric nitrogen Raman 
return (Ansmann et al., 1990), or the broadening of the lidar return by molecules in a 
technique called High Spectral Resolution Lidar (HSRL) (Shipley et al., 1983), allow the 
independent determination of aerosol backscattering and extinction coefficient profiles. Both 
methods are based in the direct determination of the extinction coefficient profile by means 
of a channel that detects a pure molecular signal, and a second channel that provides the 
backscatter coefficient from a signal detecting aerosols and molecules. These advanced lidar 
systems determine the aerosol optical properties in a quantitative way and permit the 
estimation of main microphysical properties. Rapid progress in laser technology and data 
acquisition is supporting an increasing specialization in the design of lidar systems, leading 
to the point where systems can be built or certain purposes with high reliability and 
durability. Even several lidar systems for some specific applications are now becoming 
available commercially. 

 
3.2.1. Raman lidar technique 
 The independent determination of backscatter and extinction coefficient profiles can be 
achieved by the measurement of pure molecular backscatter signal, because the molecular 
extinction profile and the backscatter coefficient can be calculated a priori with sufficient 
accuracy so that the aerosol extinction, the only remaining unknown, can be retrieved from 
the molecular signal. The use of the vibrational Raman scattering signal from nitrogen (or 
oxygen) offers the technologically easiest implementation, due to the large Raman shift 
(2331 cm-1) that allows a reliable separation from the elastic aerosol signal with standard 
filters. Due to the low values of the nitrogen backscattering coefficient, that produce weak 
Raman signals, approximately by a factor of 500 compared to Rayleigh signals, this 
technique works best in the absence of the strong daylight sky background, therefore most 
Raman lidars operate only at nighttime in this mode. Anyhow, high power laser (>250 
mJ/pulse) Raman lidars equipped with 0.3-nm interference filters to block sunlight, allow 
daytime operation at least throughout the convective boundary layer. For nighttime 
operation the filter bandwidth can be broad and the technical implementation is quite 
straightforward and it has been widely used, mainly at 355nm and 532nm, the second and 
third harmonics of the Nd:YAG laser. Recent applications of the technique provide the 
water vapor profile using its Raman signal (3652 cm-1), which may be very interesting for 
studies of the aerosol-cloud interaction 
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compared to the known molecular backscatter value, the so-called aerosol-free layer, and the 
equation is solved using the backward integration solution proposed by Klett (Klett, 1981). 

Profile at 3:24         

Fig. 3. Lidar profile and Quicklook at 532 nm, obtained over Madrid (40.45ºN, 3.73ºW) 
on the 21st of June, 2009, between 3:20 and 4:40 am. The background substracted and 
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clear air conditions are needed at some range to calibrate the signal. They are normally 
found in the free troposphere for laser wavelengths < 700 nm, but it might be critical for 
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Rayleigh scattering. The inversion procedure also includes the calculation of the molecular 
backscatter profile. Standard-atmosphere assumptions, nearby radiosonde data of 
temperature and pressure, or weather prediction model outputs for the lidar site are used to 
compute the entire Rayleigh scattering profile along the laser beam.  

 
3.2 Advanced lidar systems 
Accurate retrieval of extinction and backscatter profiles without making assumptions about 
the aerosol is only possible when measurements of two independent signals are performed. 
Recent developments of the technique, such as the use of the atmospheric nitrogen Raman 
return (Ansmann et al., 1990), or the broadening of the lidar return by molecules in a 
technique called High Spectral Resolution Lidar (HSRL) (Shipley et al., 1983), allow the 
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methods are based in the direct determination of the extinction coefficient profile by means 
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acquisition is supporting an increasing specialization in the design of lidar systems, leading 
to the point where systems can be built or certain purposes with high reliability and 
durability. Even several lidar systems for some specific applications are now becoming 
available commercially. 
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 The independent determination of backscatter and extinction coefficient profiles can be 
achieved by the measurement of pure molecular backscatter signal, because the molecular 
extinction profile and the backscatter coefficient can be calculated a priori with sufficient 
accuracy so that the aerosol extinction, the only remaining unknown, can be retrieved from 
the molecular signal. The use of the vibrational Raman scattering signal from nitrogen (or 
oxygen) offers the technologically easiest implementation, due to the large Raman shift 
(2331 cm-1) that allows a reliable separation from the elastic aerosol signal with standard 
filters. Due to the low values of the nitrogen backscattering coefficient, that produce weak 
Raman signals, approximately by a factor of 500 compared to Rayleigh signals, this 
technique works best in the absence of the strong daylight sky background, therefore most 
Raman lidars operate only at nighttime in this mode. Anyhow, high power laser (>250 
mJ/pulse) Raman lidars equipped with 0.3-nm interference filters to block sunlight, allow 
daytime operation at least throughout the convective boundary layer. For nighttime 
operation the filter bandwidth can be broad and the technical implementation is quite 
straightforward and it has been widely used, mainly at 355nm and 532nm, the second and 
third harmonics of the Nd:YAG laser. Recent applications of the technique provide the 
water vapor profile using its Raman signal (3652 cm-1), which may be very interesting for 
studies of the aerosol-cloud interaction 
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 Pure rotational Raman scattering by nitrogen and oxygen offers a scattering cross section 
that is about a factor of 30 higher than vibrational Raman scattering. The drawback is that 
the Raman shift is quite small, about 30 cm-1 only, so that separation from the elastic aerosol 
backscatter is more challenging, keeping in mind that out-of-band blocking has to be on the 
order of 10-8. Both filter techniques and double grating polychromators have been 
demonstrated for this approach. In particular the combination with a Fabry-Perot comb 
filter can suppress daylight sufficiently to allow daytime operation. A more sophisticated 
setup also allows one to retrieve the temperature profile simultaneously. 

 
3.2.2 High Spectral Resolution Lidar Technique 
 High Spectral Resolution Lidar (HSRL) is based on the Doppler broadening of the Rayleigh 
line, leading to an about 0.01cm-1 wide line surrounding the much narrower peak from 
aerosol scattering. In the HSRL technique, one channel detects the molecular signal by 
suppressing the centre part of the backscatter spectrum, containing the aerosol return, with 
an ultra-narrowband filter, generally an iodine vapour cell. A second channel records the 
total signal from aerosol plus molecular scattering. The combination of both signals allows 
determining extinction and backscatter profiles independently. The advantage of this 
technique is that it suitable for daytime operation because the Rayleigh scattering cross 
section of air is more than three orders of magnitude greater than that for vibrational Raman 
scattering. The drawback is high system complexity and high demands on system 
adjustment as well as on performance control.  
 Both techniques have been operated successfully for aerosol profiling. Data analysis 
schemes have been developed to retrieve vertical profiles of aerosol optical properties. The 
algorithms are well-tested and are nowadays almost routinely applied. Another important 
advantage of Raman lidars and HSRLs is that the profile of the backscatter coefficient is 
determined from a signal-ratio profile so that the overlap effect cancels out, regarding that 
the two channels are well adjusted and show the same overlap characteristics. As a 
consequence, the retrieval of the backscatter coefficient is possible down to heights rather 
close to the surface. In combination with Sun photometers, a comprehensive set of vertically 
and spectrally resolved optical properties can be determined. Anyhow, the requirements of 
expertise of the operating personnel with optical systems and inversion algorithms are still a 
limitation for the automation and network operation of these systems. 
Once reliable extinction and backscattering coefficient profiles are obtained, the extension of 
the technique to multiple wavelengths offers the opportunity to determine vertically-
resolved microphysical properties, such as size distribution parameters, volume 
concentrations and refractive index (Böckmann et al. 2005). During the past decade 
sophisticated inversion techniques have been developed and successfully tested that permit 
the retrieval of microphysical properties of aerosols from their optical properties provided 
by advanced multiwavelength lidar observations. For aerosol sizes in the typical range of 
the accumulation mode, measurements of the backscatter and extinction coefficients at the 
Nd:YAG wavelength (1064, 532 and 355nm) are necessary and sufficient to estimate the 
aerosol volume and surface density as well as the refractive index (Müller et al., 1999). The 
retrieval procedure is ill-posed and requires sophisticated regularization methods, so that 
presently the procedures are still experimental and applied for selected cases only. The low 
number of measured aerosol optical properties requires introducing physical and 
mathematical constraints in the inversion algorithms in order to come up with sensible 

 

microphysical aerosol parameters. These algorithms do not attempt to accurately derive the 
exact shape of aerosol size distributions, which might not be achievable even in the near 
future due to the low number of measured optical information and the lack of appropriate 
mathematical tools. However it is possible to derive mean parameters such as the effective 
radius of the aerosol size distribution with comparably high accuracy. At present it does not 
seem possible to fully retrieve aerosols in the so-called coarse mode of aerosol size 
distributions which is largely determined by aerosols from natural sources such as mineral 
dust. However, aerosols from anthropogenic activities are mainly present in the fine mode 
fraction which is accessible to the inversion algorithms (Müller et al., 2007). 
The combination of advanced lidar products with Sun photometer data offers another 
approach, as the potential of Sun photometry to derive optical, microphysical, and radiative 
properties of aerosols is already well-documented (Eck et al., 1999). Also, depolarization 
observations can be used to improve the identification of aerosol types, such as desert dust. 
The emitted laser light is linearly polarized and the return signals are measured in two 
polarization channels which are parallel- and perpendicular-oriented to the laser 
polarization. From the linear total (aerosol + molecular) depolarization ratio of the scattering 
volume that is obtained from the ratio of the perpendicular- to the parallel-polarized signal 
component, the aerosol depolarization ratio can be calculated if the aerosol backscatter 
coefficient and the respective linear molecular depolarization ratio are known. Spherical 
aerosols as water droplets produce an aerosol depolarization ratio of almost zero in the case 
of 180° scattering. Dust aerosols cause a depolarization ratio of 25%-35%. Smoke, urban 
haze, and maritime aerosols show depolarization ratios of <10%. Ice aerosols (ice clouds) 
lead to depolarization ratios typically >40%-50% (at off-zenith laser beam angles). Present 
inversion algorithms assume spherical shape of the aerosols. Only recently efforts have been 
undertaken to introduce methods that allow for a characterization of aerosols of non-
spherical shape, such as mineral dust. However, the underlying theoretical aspects of light-
scattering by irregularly shaped aerosols still are in a rather exploratory status. Last but not 
least, profiles of microphysical aerosol properties can be derived with the available 
algorithms, however with an extreme consumption of computer and human operator time. 
Thus it is desirable to extend the available algorithms toward an efficient processing of 
profiles of optical data, which in turn delivers profiles of microphysical aerosol properties. 
Schemes with higher degree of automation are under development. 

 
4. Networks of lidar stations 
 

Following the example of AERONET, a global network of systematic column-integrated 
aerosol optical depth observations using surface-based sun-tracking photometers, different 
attempts exist to characterize the vertical distribution of aerosols on continental scales and 
further extent to global scale within the initiative of the Global Atmosphere Watch (GAW) 
aerosol programme (Bosenberg & Hoff, 2007). It is the goal of the GAW programme to 
coordinate and homogenize the different existing network in order to determine the spatio-
temporal distribution of aerosol properties related to climate forcing and air quality on 
multi-decadal time scales and on regional, hemispheric and global spatial scales. Such 
initiative is being discussed nowadays under the frame of GAW Aerosol Lidar Observation 
Network (GALION). 
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 Pure rotational Raman scattering by nitrogen and oxygen offers a scattering cross section 
that is about a factor of 30 higher than vibrational Raman scattering. The drawback is that 
the Raman shift is quite small, about 30 cm-1 only, so that separation from the elastic aerosol 
backscatter is more challenging, keeping in mind that out-of-band blocking has to be on the 
order of 10-8. Both filter techniques and double grating polychromators have been 
demonstrated for this approach. In particular the combination with a Fabry-Perot comb 
filter can suppress daylight sufficiently to allow daytime operation. A more sophisticated 
setup also allows one to retrieve the temperature profile simultaneously. 

 
3.2.2 High Spectral Resolution Lidar Technique 
 High Spectral Resolution Lidar (HSRL) is based on the Doppler broadening of the Rayleigh 
line, leading to an about 0.01cm-1 wide line surrounding the much narrower peak from 
aerosol scattering. In the HSRL technique, one channel detects the molecular signal by 
suppressing the centre part of the backscatter spectrum, containing the aerosol return, with 
an ultra-narrowband filter, generally an iodine vapour cell. A second channel records the 
total signal from aerosol plus molecular scattering. The combination of both signals allows 
determining extinction and backscatter profiles independently. The advantage of this 
technique is that it suitable for daytime operation because the Rayleigh scattering cross 
section of air is more than three orders of magnitude greater than that for vibrational Raman 
scattering. The drawback is high system complexity and high demands on system 
adjustment as well as on performance control.  
 Both techniques have been operated successfully for aerosol profiling. Data analysis 
schemes have been developed to retrieve vertical profiles of aerosol optical properties. The 
algorithms are well-tested and are nowadays almost routinely applied. Another important 
advantage of Raman lidars and HSRLs is that the profile of the backscatter coefficient is 
determined from a signal-ratio profile so that the overlap effect cancels out, regarding that 
the two channels are well adjusted and show the same overlap characteristics. As a 
consequence, the retrieval of the backscatter coefficient is possible down to heights rather 
close to the surface. In combination with Sun photometers, a comprehensive set of vertically 
and spectrally resolved optical properties can be determined. Anyhow, the requirements of 
expertise of the operating personnel with optical systems and inversion algorithms are still a 
limitation for the automation and network operation of these systems. 
Once reliable extinction and backscattering coefficient profiles are obtained, the extension of 
the technique to multiple wavelengths offers the opportunity to determine vertically-
resolved microphysical properties, such as size distribution parameters, volume 
concentrations and refractive index (Böckmann et al. 2005). During the past decade 
sophisticated inversion techniques have been developed and successfully tested that permit 
the retrieval of microphysical properties of aerosols from their optical properties provided 
by advanced multiwavelength lidar observations. For aerosol sizes in the typical range of 
the accumulation mode, measurements of the backscatter and extinction coefficients at the 
Nd:YAG wavelength (1064, 532 and 355nm) are necessary and sufficient to estimate the 
aerosol volume and surface density as well as the refractive index (Müller et al., 1999). The 
retrieval procedure is ill-posed and requires sophisticated regularization methods, so that 
presently the procedures are still experimental and applied for selected cases only. The low 
number of measured aerosol optical properties requires introducing physical and 
mathematical constraints in the inversion algorithms in order to come up with sensible 

 

microphysical aerosol parameters. These algorithms do not attempt to accurately derive the 
exact shape of aerosol size distributions, which might not be achievable even in the near 
future due to the low number of measured optical information and the lack of appropriate 
mathematical tools. However it is possible to derive mean parameters such as the effective 
radius of the aerosol size distribution with comparably high accuracy. At present it does not 
seem possible to fully retrieve aerosols in the so-called coarse mode of aerosol size 
distributions which is largely determined by aerosols from natural sources such as mineral 
dust. However, aerosols from anthropogenic activities are mainly present in the fine mode 
fraction which is accessible to the inversion algorithms (Müller et al., 2007). 
The combination of advanced lidar products with Sun photometer data offers another 
approach, as the potential of Sun photometry to derive optical, microphysical, and radiative 
properties of aerosols is already well-documented (Eck et al., 1999). Also, depolarization 
observations can be used to improve the identification of aerosol types, such as desert dust. 
The emitted laser light is linearly polarized and the return signals are measured in two 
polarization channels which are parallel- and perpendicular-oriented to the laser 
polarization. From the linear total (aerosol + molecular) depolarization ratio of the scattering 
volume that is obtained from the ratio of the perpendicular- to the parallel-polarized signal 
component, the aerosol depolarization ratio can be calculated if the aerosol backscatter 
coefficient and the respective linear molecular depolarization ratio are known. Spherical 
aerosols as water droplets produce an aerosol depolarization ratio of almost zero in the case 
of 180° scattering. Dust aerosols cause a depolarization ratio of 25%-35%. Smoke, urban 
haze, and maritime aerosols show depolarization ratios of <10%. Ice aerosols (ice clouds) 
lead to depolarization ratios typically >40%-50% (at off-zenith laser beam angles). Present 
inversion algorithms assume spherical shape of the aerosols. Only recently efforts have been 
undertaken to introduce methods that allow for a characterization of aerosols of non-
spherical shape, such as mineral dust. However, the underlying theoretical aspects of light-
scattering by irregularly shaped aerosols still are in a rather exploratory status. Last but not 
least, profiles of microphysical aerosol properties can be derived with the available 
algorithms, however with an extreme consumption of computer and human operator time. 
Thus it is desirable to extend the available algorithms toward an efficient processing of 
profiles of optical data, which in turn delivers profiles of microphysical aerosol properties. 
Schemes with higher degree of automation are under development. 

 
4. Networks of lidar stations 
 

Following the example of AERONET, a global network of systematic column-integrated 
aerosol optical depth observations using surface-based sun-tracking photometers, different 
attempts exist to characterize the vertical distribution of aerosols on continental scales and 
further extent to global scale within the initiative of the Global Atmosphere Watch (GAW) 
aerosol programme (Bosenberg & Hoff, 2007). It is the goal of the GAW programme to 
coordinate and homogenize the different existing network in order to determine the spatio-
temporal distribution of aerosol properties related to climate forcing and air quality on 
multi-decadal time scales and on regional, hemispheric and global spatial scales. Such 
initiative is being discussed nowadays under the frame of GAW Aerosol Lidar Observation 
Network (GALION). 
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Presently, it is not feasible to implement a global aerosol lidar network by installing a 
homogeneous set of systems at a number of stations selected for optimal coverage because 
advanced lidars are still relatively complex and delicate instruments requiring substantial 
efforts for operation. Instead, it is important to make use of existing systems at established 
stations, of the experienced operators of these systems, and of existing network structures. 
Nowadays, several lidar networks perform regular measurements on continental scale to 
establish a comprehensive dataset of the aerosol vertical distribution and also assess 
volcanic, dust, fires or pollution events. Those networks include the Micro-pulse lidar 
network (MPLNet), the European Aerosol research lidar network (EARLINET), the Asian 
Dust Network (AD-Net), the Commonwealth of independent states lidar network (CIS-
LiNet), Regional East Aerosol Lidar Mesonet (REALM) and the American LIdar Network 
(ALINE). A brief description of each of them follows: 
The only tropospheric profiling network which can claim global coverage is the NASA 
MPLNET (http://mplnet.gsfc.nasa.gov/), designed for satellite validation and co-located 
with AERONET sites in order to produce quantitative aerosol and cloud products by 
synergy with sunphotometer measurements. The Micro-Pulse Lidar (MPL) was developed 
at NASA Goddard Space Flight Centre in the early 1990s and it consists of single-
wavelength (523 nm), high repetition, low power, eye safe commercially available 
backscatter lidar capable of determining the range of aerosols and clouds in unattended 
operation mode. At present, MPLs are operated at 22 sites around the world. The 
combination of MPLNET consisting of low-cost, eyesafe, automated 532-nm backscatter 
lidars with AERONET (Holben et al., 1998), NASA’s global network of more than 200 
continuously running Sun photometers, is an example for a successful application of the 
lidar-photometer technique. 
The European Aerosol Research Lidar Network, (EARLINET), (http://www.earlinet.org) is 
a voluntary association of institutions with an interest in aerosol science and a long-term 
commitment in vertical profiling of aerosol properties with advanced laser remote sensing. 
Presently EARLINET comprises 25 stations distributed over Europe. Instrumentation is 
rather inhomogeneous because most lidars existed before the network was established in 
2000, but most systems are now equipped with at least one Raman channel for independent 
determination of extinction and backscatter. The main goal is to establish a climatology for 
the aerosol vertical distribution by building a quantitative comprehensive statistical 
database of the aerosol, therefore regular operation at three times per week has highest 
priority for all stations. Special studies of, for instance, Saharan dust outbreaks across the 
Mediterranean, distribution of smoke from wildfires, volcanic eruptions, air mass 
modification across Europe, diurnal cycle, or CALIPSO validation required numerous 
additional observations which were organized as necessary through corresponding alerting 
schemes. Quality assurance for hardware and software was performed through direct 
intercomparisons, tools for routine performance checks are under test. 
The Asian Dust Network (AD-Net) (http://www-lidar.nies.go.jp/AD-Net/) is an 
international virtual community designed originally to track outbreaks of dust from China, 
Mongolia and Russia. Different instruments are involved, such as multi-wavelength Raman 
lidars in Tokyo and Gwanngju (Korea), HSRL system in Tsukuba (Japan) and automated 
two-wavelength polarization lidars in Japan (8), Korea (1), China (1), and Thailand (1), 
which are coordinated by the National Institute for environmental Studies (NIES) lidar 

 

network, most of them co-located with skyradiometer from SKYNET. Those automated 
small and compact lidars are recently being upgraded with Raman channels. 

 
 Fig. 4. Distribution of the existing networks stations on the globe. The different networks are 
indicated by the symbol and color: MPL-Net: Blue circles, EARLINET: green squares, AD-
Net: red crosses, NDACC and REALM: red triangles, CisLiNet. Brown squares and ALINE: 
orange circles. 
 
The Commonwealth of Independent States lidar network (CIS-LiNet) has been established 
by lidar teams from Belarus, Russia and Kyrgyz Republic. Its objective is carrying out lidar 
observation coordinated at the territory from Minsk to Vladivostok in cooperation with 
EARLINET and AD-Net. There is an aim to provide the lidar stations with sun radiometers, 
and include them in the global radiometric network AERONET. 
The Regional East Aerosol Lidar Mesonet (REALM), is a network of lidar research groups on 
the east coast of the United States (http://alg.umbc.edu/REALM) operative since 2002, a 
collaboration of existing lidar facilities has attempted a network operation. But to date only 
two groups and three lidars have voluntarily contributed consistent data to the network 
with two other groups contributing campaign style activities. 
Finally, the American LIdar Network (ALINE) is an informal agreement among the existing 
lidar groups in Latin America. It includes also research teams working to host lidar 
instruments in the near future. 
Another network that employ lidars, but with a different research aim, is the Network for 
the Detection of Atmospheric Composition Change (NDACC, previously NDSC), has been 
monitoring the stratosphere and upper troposphere for at least 15 years. NDACC consists of 
more than 70 high-quality, remote-sensing research sites for observing and understanding 
the physical/chemical state of the stratosphere and upper troposphere and assessing the 
impact of stratospheric changes on the underlying troposphere and on global climate. Only 
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Presently, it is not feasible to implement a global aerosol lidar network by installing a 
homogeneous set of systems at a number of stations selected for optimal coverage because 
advanced lidars are still relatively complex and delicate instruments requiring substantial 
efforts for operation. Instead, it is important to make use of existing systems at established 
stations, of the experienced operators of these systems, and of existing network structures. 
Nowadays, several lidar networks perform regular measurements on continental scale to 
establish a comprehensive dataset of the aerosol vertical distribution and also assess 
volcanic, dust, fires or pollution events. Those networks include the Micro-pulse lidar 
network (MPLNet), the European Aerosol research lidar network (EARLINET), the Asian 
Dust Network (AD-Net), the Commonwealth of independent states lidar network (CIS-
LiNet), Regional East Aerosol Lidar Mesonet (REALM) and the American LIdar Network 
(ALINE). A brief description of each of them follows: 
The only tropospheric profiling network which can claim global coverage is the NASA 
MPLNET (http://mplnet.gsfc.nasa.gov/), designed for satellite validation and co-located 
with AERONET sites in order to produce quantitative aerosol and cloud products by 
synergy with sunphotometer measurements. The Micro-Pulse Lidar (MPL) was developed 
at NASA Goddard Space Flight Centre in the early 1990s and it consists of single-
wavelength (523 nm), high repetition, low power, eye safe commercially available 
backscatter lidar capable of determining the range of aerosols and clouds in unattended 
operation mode. At present, MPLs are operated at 22 sites around the world. The 
combination of MPLNET consisting of low-cost, eyesafe, automated 532-nm backscatter 
lidars with AERONET (Holben et al., 1998), NASA’s global network of more than 200 
continuously running Sun photometers, is an example for a successful application of the 
lidar-photometer technique. 
The European Aerosol Research Lidar Network, (EARLINET), (http://www.earlinet.org) is 
a voluntary association of institutions with an interest in aerosol science and a long-term 
commitment in vertical profiling of aerosol properties with advanced laser remote sensing. 
Presently EARLINET comprises 25 stations distributed over Europe. Instrumentation is 
rather inhomogeneous because most lidars existed before the network was established in 
2000, but most systems are now equipped with at least one Raman channel for independent 
determination of extinction and backscatter. The main goal is to establish a climatology for 
the aerosol vertical distribution by building a quantitative comprehensive statistical 
database of the aerosol, therefore regular operation at three times per week has highest 
priority for all stations. Special studies of, for instance, Saharan dust outbreaks across the 
Mediterranean, distribution of smoke from wildfires, volcanic eruptions, air mass 
modification across Europe, diurnal cycle, or CALIPSO validation required numerous 
additional observations which were organized as necessary through corresponding alerting 
schemes. Quality assurance for hardware and software was performed through direct 
intercomparisons, tools for routine performance checks are under test. 
The Asian Dust Network (AD-Net) (http://www-lidar.nies.go.jp/AD-Net/) is an 
international virtual community designed originally to track outbreaks of dust from China, 
Mongolia and Russia. Different instruments are involved, such as multi-wavelength Raman 
lidars in Tokyo and Gwanngju (Korea), HSRL system in Tsukuba (Japan) and automated 
two-wavelength polarization lidars in Japan (8), Korea (1), China (1), and Thailand (1), 
which are coordinated by the National Institute for environmental Studies (NIES) lidar 

 

network, most of them co-located with skyradiometer from SKYNET. Those automated 
small and compact lidars are recently being upgraded with Raman channels. 

 
 Fig. 4. Distribution of the existing networks stations on the globe. The different networks are 
indicated by the symbol and color: MPL-Net: Blue circles, EARLINET: green squares, AD-
Net: red crosses, NDACC and REALM: red triangles, CisLiNet. Brown squares and ALINE: 
orange circles. 
 
The Commonwealth of Independent States lidar network (CIS-LiNet) has been established 
by lidar teams from Belarus, Russia and Kyrgyz Republic. Its objective is carrying out lidar 
observation coordinated at the territory from Minsk to Vladivostok in cooperation with 
EARLINET and AD-Net. There is an aim to provide the lidar stations with sun radiometers, 
and include them in the global radiometric network AERONET. 
The Regional East Aerosol Lidar Mesonet (REALM), is a network of lidar research groups on 
the east coast of the United States (http://alg.umbc.edu/REALM) operative since 2002, a 
collaboration of existing lidar facilities has attempted a network operation. But to date only 
two groups and three lidars have voluntarily contributed consistent data to the network 
with two other groups contributing campaign style activities. 
Finally, the American LIdar Network (ALINE) is an informal agreement among the existing 
lidar groups in Latin America. It includes also research teams working to host lidar 
instruments in the near future. 
Another network that employ lidars, but with a different research aim, is the Network for 
the Detection of Atmospheric Composition Change (NDACC, previously NDSC), has been 
monitoring the stratosphere and upper troposphere for at least 15 years. NDACC consists of 
more than 70 high-quality, remote-sensing research sites for observing and understanding 
the physical/chemical state of the stratosphere and upper troposphere and assessing the 
impact of stratospheric changes on the underlying troposphere and on global climate. Only 
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a subset of the stations actually contains lidars. In this subset, the lidars are designed 
primarily to profile O3 in the stratosphere and stratospheric aerosols. 
As it can be gathered, the operation of a global lidar network will initially depend 
completely on voluntary contributions from the various existing networks, most of which, 
themselves, are based on voluntary cooperation, plus contributions from individual stations. 
Therefore, the consistency of data across the network and its quality assurance might be 
compromised.  

 
5. Satellite missions with lidar instruments onboard 

 Fig. 5. The “A-train” constellation of satellites, with CALIPSO on the third place from the 
left. Sinergy with data provided by the radar onboard CloudSat, the polarization sensitive 
radiometer POLDER onboard Parasol and MODIS spectra onboard Aqua satellite will 
provide the most complete characterization of clouds and aerosols on global scale ever. 
Crédits : CNES/Ill. P. Carril 
 
Lidars have been used as ground-based systems, on airborne platforms, and also from 
space, as a different strategy for aerosol vertical distribution characterization on a global 
scale. Unlike lidars that profile the atmosphere above at a single geographic location, 
spaceborne lidars allows the study of aerosols in regions that are difficult or impossible to 

 

explore by others means. The era of spaceborne lidar started with the Lidar In-space 
Technology Experiment, or LITE, (McCormick, 1997), a backscattering lidar system that 
flown in the cargo bay of the space shuttle “Discovery” in September 1994, to evaluate 
technological requirements of a spaceborne lidar and its scientific capability. The mission 
convincingly demonstrated the value of spaceborne lidar in retrieving the vertical structure 
of aerosol and clouds on a global scale and provided the backbone for more recent satellite-
based lidars. In 2006, the French Centre National d’Etudes Spatiales and US National 
Aeronautics and Space Administration collaborate to launch the Cloud-Aerosol Lidar and 
Infrared Pathfinder Satellite Observations (CALIPSO) (Winker et al, 2007) spaceborne lidar, 
that collects profiles of the lidar attenuated backscattering coefficients of aerosols and clouds 
at 532 and 1064 nm from -2 to +40 kilometres above ground level using the CALIOP 
instrument. The CALIPSO satellite mission objective is to determine precisely the altitudes 
of clouds, aerosol layers and their overlap; identify the composition of clouds and the 
presence of "subvisible," or invisible, clouds; and estimate the abundance and sources of 
aerosols. It will provide the first global survey of cloud and aerosol profiles from space, with 
seasonal and geographical variations. CALIPSO will fly in formation with CloudSat and in 
concert with the other satellites of the "A-Train," a constellation of several Earth-observing 
satellites depicted in figure 5. The combination of data from the CloudSat radar, CALIPSO 
lidar, PARASOL radiometer and MODIS on the Aqua satellite observing the same spot on 
the ground within minutes, provides a rich source of information that can be used to assess 
the role of aerosols and clouds in climate, as well as reduce in some extent the ambiguity in 
deriving the aerosol profile from the lidar measurements (Kaufman et al. 2003). 
CALIPSO will provide the first statistics on the global vertical distribution of aerosols and 
aerosol types and "subvisible" cirrus clouds (very thin clouds invisible to the naked eye). 
The synergy of CloudSat and CALIPSO measurements will provide information on the 
vertical structure of clouds and daily coverage of global cloud characteristics. It is expected 
to provide the first indirect but validated estimate of the contribution of clouds and aerosols 
to the vertical distribution of atmospheric warming, from which the first operationally based 
estimates of direct aerosol properties and uncertainties can be made.  
Several examples of the global transport of aerosol were evident from spaceborne data. 
Aerosol from natural sources, such as Saharan dust, was measured on several orbits of LITE 
and CALIPSO. Although it has been known for quite sometime that large quantities of 
Saharan dust are transported across the Atlantic towards the Caribbean, the unique 
capabilities of spaceborne lidars proved ideal for tracking and quantifying the magnitude of 
these events, showing enormous plumes of hundreds of kilometres reaching altitudes above 
five kilometres or aerosol plumes generated by biomass burning in South America 
extending hundreds of kilometres from the source region, that make possible to assess their 
impact and quantify their contribution to long-range transport. Another example would be 
the measurement of anthropogenic aerosol leaving the Eastern United States and riding the 
“gulfstream highway” towards Europe (Hoff & Strawbridge, 1996). 
The validation of the spaceborne instrument is required to assess the quality of the 
measurements, especially for aerosol types which have poorly or unknown lidar ratios 
which must be assumed in the CALIPSO aerosol retrieval since it is an elastic-type 
instrument. Network of ground-based lidar stations can support the aerosol observations 
from space by making targeted observations on CALIPSO overpass times. The better 
sensitivity of ground-based lidar systems can be used to confirm the sensitivity limits of the 
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a subset of the stations actually contains lidars. In this subset, the lidars are designed 
primarily to profile O3 in the stratosphere and stratospheric aerosols. 
As it can be gathered, the operation of a global lidar network will initially depend 
completely on voluntary contributions from the various existing networks, most of which, 
themselves, are based on voluntary cooperation, plus contributions from individual stations. 
Therefore, the consistency of data across the network and its quality assurance might be 
compromised.  

 
5. Satellite missions with lidar instruments onboard 

 Fig. 5. The “A-train” constellation of satellites, with CALIPSO on the third place from the 
left. Sinergy with data provided by the radar onboard CloudSat, the polarization sensitive 
radiometer POLDER onboard Parasol and MODIS spectra onboard Aqua satellite will 
provide the most complete characterization of clouds and aerosols on global scale ever. 
Crédits : CNES/Ill. P. Carril 
 
Lidars have been used as ground-based systems, on airborne platforms, and also from 
space, as a different strategy for aerosol vertical distribution characterization on a global 
scale. Unlike lidars that profile the atmosphere above at a single geographic location, 
spaceborne lidars allows the study of aerosols in regions that are difficult or impossible to 

 

explore by others means. The era of spaceborne lidar started with the Lidar In-space 
Technology Experiment, or LITE, (McCormick, 1997), a backscattering lidar system that 
flown in the cargo bay of the space shuttle “Discovery” in September 1994, to evaluate 
technological requirements of a spaceborne lidar and its scientific capability. The mission 
convincingly demonstrated the value of spaceborne lidar in retrieving the vertical structure 
of aerosol and clouds on a global scale and provided the backbone for more recent satellite-
based lidars. In 2006, the French Centre National d’Etudes Spatiales and US National 
Aeronautics and Space Administration collaborate to launch the Cloud-Aerosol Lidar and 
Infrared Pathfinder Satellite Observations (CALIPSO) (Winker et al, 2007) spaceborne lidar, 
that collects profiles of the lidar attenuated backscattering coefficients of aerosols and clouds 
at 532 and 1064 nm from -2 to +40 kilometres above ground level using the CALIOP 
instrument. The CALIPSO satellite mission objective is to determine precisely the altitudes 
of clouds, aerosol layers and their overlap; identify the composition of clouds and the 
presence of "subvisible," or invisible, clouds; and estimate the abundance and sources of 
aerosols. It will provide the first global survey of cloud and aerosol profiles from space, with 
seasonal and geographical variations. CALIPSO will fly in formation with CloudSat and in 
concert with the other satellites of the "A-Train," a constellation of several Earth-observing 
satellites depicted in figure 5. The combination of data from the CloudSat radar, CALIPSO 
lidar, PARASOL radiometer and MODIS on the Aqua satellite observing the same spot on 
the ground within minutes, provides a rich source of information that can be used to assess 
the role of aerosols and clouds in climate, as well as reduce in some extent the ambiguity in 
deriving the aerosol profile from the lidar measurements (Kaufman et al. 2003). 
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aerosol types and "subvisible" cirrus clouds (very thin clouds invisible to the naked eye). 
The synergy of CloudSat and CALIPSO measurements will provide information on the 
vertical structure of clouds and daily coverage of global cloud characteristics. It is expected 
to provide the first indirect but validated estimate of the contribution of clouds and aerosols 
to the vertical distribution of atmospheric warming, from which the first operationally based 
estimates of direct aerosol properties and uncertainties can be made.  
Several examples of the global transport of aerosol were evident from spaceborne data. 
Aerosol from natural sources, such as Saharan dust, was measured on several orbits of LITE 
and CALIPSO. Although it has been known for quite sometime that large quantities of 
Saharan dust are transported across the Atlantic towards the Caribbean, the unique 
capabilities of spaceborne lidars proved ideal for tracking and quantifying the magnitude of 
these events, showing enormous plumes of hundreds of kilometres reaching altitudes above 
five kilometres or aerosol plumes generated by biomass burning in South America 
extending hundreds of kilometres from the source region, that make possible to assess their 
impact and quantify their contribution to long-range transport. Another example would be 
the measurement of anthropogenic aerosol leaving the Eastern United States and riding the 
“gulfstream highway” towards Europe (Hoff & Strawbridge, 1996). 
The validation of the spaceborne instrument is required to assess the quality of the 
measurements, especially for aerosol types which have poorly or unknown lidar ratios 
which must be assumed in the CALIPSO aerosol retrieval since it is an elastic-type 
instrument. Network of ground-based lidar stations can support the aerosol observations 
from space by making targeted observations on CALIPSO overpass times. The better 
sensitivity of ground-based lidar systems can be used to confirm the sensitivity limits of the 
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satellite instruments characterize the atmospheric features missed by the satellite 
instruments and determine additional parameters.  
In the near future, the European Space Agency will launch the Earth Explorer Atmospheric 
Dynamics Mission (ADM-Aeolus) (Reitebuch et al. 2004), that will provide global 
observations of wind profiles from space using an active Doppler Wind Lidar, and also The 
Earth Clouds Aerosols and Radiation Explorer (EarthCARE) Mission, with the ATLID 
instrument onboard, which will be used to map global distributions of aerosols. Both 
satellite platforms will be equipped with HSRLs, with very different characteristics than 
CALIPSO. That will not provide a homogeneous set of aerosol measurements. A global 
ground-based lidar network providing stable, long-term measurements will be necessary to 
provide a benchmark against which to reference multiple satellite instruments. 

 
6. Conclusion 
 

In summary, while there is considerable evidence supporting the hypothesis that human 
activity is modifying climate, further research is required to strengthen the physical 
understanding. The lack of precise knowledge about all the processes of importance to 
climatic change appears to be limiting progress in furthering our quantitative understanding 
of human impact of climate. The largest uncertainty in current model predictions is related 
with the radiative effects of aerosols. There is a need for long-term monitoring of radiative 
properties of the aerosols-clouds system with high temporal and vertical resolution, as it 
plays a crucial role in climate. Recent advances in lidar technology allow to foresee a system 
capable of monitor the aerosol-cloud interaction with high temporal and spatial resolution 
taking advance of the HSRL for daytime measurements and Raman signals to derive aerosol 
and water vapor properties. Employing this advanced technology to probe Earth's 
atmosphere is expected to reduce the uncertainties in the climate forecasts. Regarding 
networks of instruments, advanced aerosol lidar systems are still relatively complex and 
delicate instruments to operate, therefore substantial engineering effort is still required 
towards increased reliability and automated operation. As a future perspective, further 
developments in algorithms that simultaneously invert complementary data acquired with 
lidars, satellites and Sun photometers, allowing for a maximum synergy of information, will 
provide better retrievals of aerosol and cloud microphysical properties. Integration of 
innovative new satellite observations such as CALIPSO, ADM-Aeolous or EARTHCARE, 
field experiments, and laboratory studies with models will pave the way for breakthroughs 
in our understanding of how aerosols are modifying the environment. 
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1. Introduction  
 

The mission of this chapter is to address that blended remote sensing tools can work more 
effectively than one single type of remote sensing software package, even several combined 
packages. In solving real world problems, remote sensing is usually not working alone. 
Geographic information systems (GIS), global positioning systems (GPS), and remote 
sensing are implemented simultaneously. Blended remote sensing tools can make GIS, GPS, 
and remote sensing more user-friendly. College students with blended remote sensing tools 
training can implement commercial remote sensing software packages more effectively. 
Productivity of college students can be promoted in critical thinking and problem solving by 
remote sensing technology. 
National park management has to look into conservation, research, recreation, and 
environmental education simultaneously(Wu et al., 2001). One type of brand-name 
commercial software for national park management has its draw back. It was simply not 
good enough, even not user-friendly. Blended tools were then developed to solve many 
different types of problems relevant with environment and land. House management for 
land use enforcement at a watershed(Chang et al., 2001), water resource protection(Wu et 
al., 2001; Wu et al., 2002; Wu et al., 2003a), sewage management(Wu et al., 2003b), forest 
management for a county government(Wu et al., 2004), and remote sensing education at 
college(Wu et al., 2006; Wu et al., 2007) were real world problems have been solved by 
blended remote sensing tools since 2001. 
The basic idea behind blended remote sensing tools is quite simple and straight forward. 
One software package can do a nice job and several software packages with a little bit of 
computer programming will do a much better job.  Blended remote sensing tools can save 
several problems simultaneously with less budget and more efficiently. Blended tools can be 
customized to meet one particular technician’s requirement in order to solve environmental 
problems in a period of time. Blended remote sensing tools were developed to provide 
different functions in a changing world. File format is the key component that blended 
remote sensing tools can be working smoothly among several different software packages 
and platforms. File compression is also a must when remote sensing is implemented to solve 
problems associated with high resolution images. Remote sensing application is usually a 
web type of job that file size has to be monitored all the time.  
Computer programming is not a must when blended remote sensing tools were developed. 
But a little bit of computer programming would make blended remote sensing tools more 
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user-friendly. Computer programming can leave to some specialists. In college remote 
sensing education, the instructors can ask some brilliant students to do computer 
programming. For the most of students, they would only modify several lines of computer 
codes. Trying to keep computer programming as simple as possible is critical when blended 
remote sensing tools would be working as expected. Easy to use and everyone likes to use 
are two important factors that blended remote sensing tools can be useful and operational. 
Working side by side with brand-name commercial software packages is usual a must for 
blended remote sensing tools. Software packages cited in this chapter are simple that they 
are available and useful. 

 
2. How Blended Remote Sensing Tools Were Made 
 

2.1 Problems Identified and Well Defined 
Blended remote sensing tools for college education are a little bit different with those 
implemented in real world. The number of students enrolled in a remote sensing class is 
usually more than 30. Every student has one set of tools for homework assignment and 
computer jobs. Software packages providing full function that can be tried and tested for a 
period of time can only be implemented. Outside campus, budget is the major concern when 
a government agency would like to ask blended remote sensing tools be made. For research 
and teaching, software packages can be tried and tested are almost a must.  
Problems can be solved by remote sensing technology alone are usually no needs for 
blended remote sensing tools to be made. In the first place, real world problems can be 
solved with GIS, GPS, and remote sensing simultaneously will find blended remote sensing 
tools useful. Remote sensing can not solve all kinds of problems but can solve some 
identified problems. Problems should be identified and well defined such that GIS, GPS, 
and remote sensing would work properly as expected. 
Remote sensing and GIS software packages are available and powerful in the commercial 
market. GPS functions are usually provided with GIS software packages working in a 
mobile device for outdoor implementations. How many types of tools would be used is 
decided by what kind of problems to solve and how problems to be solved. Nine types of 
tools had been adopted for solving real world problems such as college remote sensing 
education (Wu et al., 2007a). Blended remote sensing tools were consisting of followings: 
Remote sensing packages: ERMapper, PG-STEAMER(Pixoneer Geomatics, 2009); GIS 
packages: ArcMap, ArcPad; 3-D interactive graphics: Alice (Carnegie Mellon University, 
2009); image enhancement: PG-STEAMER, SnagIt (Techsmith, 2009); image publishing for 
web mapping: MapViewSVG, Alice; advanced mathematics: MatLab; image file format 
editor: ECW header editor; image compression: ECW image compressor; development of 
application modules and database management: Visual Basic, Visual C++, Visual Basic.NET, 
Visual C#.NET (Wu et al., 2007a).  
MapObject made by ESRI can be added using Visual Basic or Visual C# to make it as major 
components (Wu et al., 2007c; Wu et al., 2007d). The instructor has to do most of the 
computer jobs when students knew nothing about Visual C# or Visual Basic. The students 
only modified several lines of compute codes and jobs were done accordingly.  
Teechart for Net can be implemented for statistical implementations (Steema Software, 
2009). HyperCAM (Hyperionics Technology, 2009) can be used to capture the action from 
one’s Windows screen and save it to an AVI (Audio-Video Interleaved) movie file. 

 

 
Fig. 1. Alice web site. (http://www.alice.org/) 
 

 

Fig. 2. Download Alice 2.2. 
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Fig. 3. ERDAS ER Mapper. (http://www.ermapper.com) 
 

 

Fig. 4. PG-STEAMER downloads. (http://www.pixoneer.com/) 
 
 
 
 
 
 

 

 

Fig. 5. SnagIt download.( http://www.techsmith.com/) 
 

 

Fig. 6. ECW plug-in downloads. (http://www.ermapper.com) 
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Fig. 7. Teechart downloads.  (http://www.steema.com/) 
 

 

 

Fig. 8. MapViewSVG download. (http://www.mapviewsvg.com) 

 
2.2 Working Procedure 
Remote sensing software packages such as ERMapper or PG-STEAMER can be used for 
typical remote sensing implementations (Wu et al., 2007a). Digital images were manipulated 
and enhanced by PG-STEAMER or SnagIt to improve their information contributions. The 

 

coordinate information for a given pixel is very important for digital images to overlay with 
relevant maps. The ECW header editor program was used to retain and manipulate 
coordinate information of digital images. ArcGIS and ArcPAD made by ESRI were used to 
enhance integration of remote sensing and GIS. Database management in remote sensing 
was manipulated by computer programs using Visual Basic.NET and Visual C#.NET. Alice 
was used to make 3-D interactive graphics for web page implementations. Remote sensing 
images can be published for web mapping in SVG (scalable vector graphics) file format 
using MapViewSVG. 

 
3. Functions Provided by Blended Remote Sensing Tools 
 

Functions provided by blended remote sensing tools may not be confined to every single 
tool involved. Computer programming and system integration would make blended remote 
sensing tools more powerful. Image file format conversion is one of the basic functions 
which blended remote sensing tools can provide. Image compression is essential and critical 
when high quality of images was used, especial in the case of PDA (personal digital 
assistant). An ECW file can be small as 1.6 MB instead of its counter part, TIFF, 46 MB. 
Change detections can be done in a more easy way because of image enhancement and 
manipulations provided by blended remote sensing tools. Database management can be 
done in a simple and customized version when Visual Baisc.NET or Visual C#.NET was 
used. Web publishing is usually a must that blended remote sensing tools have to support. 
Management problems encountered in a government office or in the open fields would be 
solved by several different types of application modules. Blended remote sensing tools 
would serve as the major components in these application modules. 

 
4. Application Modules for Solving Identified Management Problems 
 

An image extraction module for quick review of images, a 3-D Application module, and a 
web application module were made by some college students (Wu et al., 2007a). The 3-D 
application module developed by one senior college student can be used for extractions of 
terrain animation done by PG-STEAMER, web pages showing interactive 3-D graphics done 
by Alice, and an image extraction program for remote sensing image files with ECW file 
format. 
An image processing module developed by one college student and a statistical application 
module made by a college student using TeeChart were shown in reference (Wu et al., 
2007c). A GIS application module made by a college student showing tracking and inquiry 
capability of one’s home town indicated that blended remote sensing tools could provide 
GIS functions as well (Wu et al., 2007c). 
A database management module made by a student using Visual Basic.NET which 
provided functions for easy and quick retrieval of digital images (Wu et al., 2007d). An 
application module for extraction of tourist attraction site information was also developed in 
the same publication.  
House management in a government agency was usually working with traditional 
management information systems. Remote sensing can provide very detail information for a 
given house because of digital maps at a scale of 1:1000. One township was investigated 
house by house to tag house locations on digital orthophoto maps with its house address 
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Fig. 7. Teechart downloads.  (http://www.steema.com/) 
 

 

 

Fig. 8. MapViewSVG download. (http://www.mapviewsvg.com) 
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number. There were more than 6,500 houses and about 121,000 hectares had been 
investigated and created as house databases in 2006. The house databases were very useful 
in agricultural mapping and monitoring for a county government. Blended remote sensing 
tools were developed to make the house databases more useful in agricultural management 
(Wu et al., 2007b). Management on a house basis was easy with the help of a GPS device and 
PDA because it was not difficult to find the right path to get the right location of a given 
house. Change detection of house information in the period 2003 to 2006 could be done 
easily. This information was very important in urban planning and agricultural 
management. Field operations, agricultural mapping and monitoring, and web publishing 
were three more types of functions provided by blended remote sensing tools for a county 
government (Wu et al., 2007b). 

 
5. Conclusions 
 

Remote sensing education at college is usually done by textbooks teaching and computer job 
assignments. This chapter indicated blended remote sensing tools can be made for college 
teaching. Cases had been discussed in application modules made by college students using 
software packages in the blended remote sensing tools and computer programming with 
four types of computer languages. Digital image compression, file format conversion, image 
enhancement, database manipulation, interactive 3-D graphics, image retrieval and 
manipulations, terrain animation, GIS integration, and web publishing of remote sensing 
images were functions provided by the blended remote sensing tools. College students can 
have some experiences on system integration of these application modules to solve one 
given management problem with the help of computer programming. The blended remote 
sensing tools are good for college students to gain better computer programming and 
system integration capabilities in addition to traditional remote sensing capabilities. 
House management for a county government using blended remote sensing tools had been 
discussed to indicate how a real world problem can be solved. Blended remote sensing tools 
can be modified based on request made by any customer. Blended remote sensing tools can 
make house management in agricultural monitoring and mapping more user-friendly and 
effectively. Agricultural mapping and monitoring can provide detailed information for a 
given house such as where it was, who lives there, and what can be done. Blended remote 
sensing tools can be used to make some application modules for agricultural mapping and 
monitoring to solve problems encountered in agricultural management. Blended remote 
sensing tools can solve real world problems which were well identified and defined. 
Blended remote sensing tools were designed to solve problems that are suitable for GIS, 
GPS, and remote sensing working together. 
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1. Introduction 
 

Image satellite sensors acquire huge volumes of imagery to be processed and stored in big 
archives. An example of such an archive is the German Remote Sensing Data Center (DFD) 
at Oberpfaffenhofen, Germany, that receives about hundreds of GigaBytes of data per day 
entailing 104 GigaBytes in the repository. To provide access to this data, web applications 
have been developed, e.g. the DLR EOWEB1, to retrieve images according to meta 
information such as date, geographical location or sensor. Alexandria Digital Library2 is 
another example of accessing remote sensed imagery through its meta information 
providing a distributed searching mechanism for retrieving geospatial referenced data 
collections. It is able to search different types of databases placed at different locations. The 
software enables to implement web clients as Globetrotter3 or Gazetteer4. These systems 
based on meta information retrieval allow only constrained queries giving no information 
about the content, and consequently, no content based retrieval is offered. 
 
At the conference on database techniques for pictorial applications that took place in 1979 in 
Florence, Italy, the pursued aim was the integration of databases with image processing. 
This idea evolved, in 1990, promoting a new field, called Content Based Image Retrieval 
(CBIR). In 1998, CBIR got married with Data Mining and Knowledge Database Discovery 
(KDD) emerging, in 2000, the Image Information Mining (IIM) field. This new domain 
requires expertise in image processing, database organization, pattern recognition, content-
based retrieval and data mining: image processing indicates the understanding and 
extraction of patterns from a single image; content-based retrieval is characterized by 
retrieving images from the archive based on their semantic and visual contents; spatial data 
mining denotes the extraction of spatial relationships and patterns from remote sensed 
images not explicitly stored in an spatial database. An IIM system provides users the 
capability to deal with large collections of images by accessing into large image databases 
and also to extract and infer knowledge about patterns hidden in the images, so that the set 

                                                                 
1 http://eoweb.dlr.de:8080/servlets/template/welcome/entryPage.vm. 
2 http://www.alexandria.ucsb.edu/adl/. 
3 http://clients.alexandria.ucsb.edu/globetrotter/ 
4 http://webclient.alexandria.ucsb.edu/client/gaz/adl/index.jsp. 
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of relevant images is dynamic, subjective and unknown. It enables the communication 
between heterogeneous source of information and users with diverse interests at high 
semantic abstraction. 
 
In general, an IIM system presents two fundamental modules: a computationally expensive 
component where image processing and classification algorithms are executed, and an 
interactive part, where queries are introduced by the user and relevant images are retrieved. 
Fig. 1 represents the typical flow of a data in an IIM system: original data arrive at a feature 
extraction module, where main image characteristics are computed; then, these features are 
compressed and indexed in a database; in a second module, the archive is queried by the 
user for similar features computing similarity measurements for optimal image retrieval. 
 

 
Fig. 1. Image Information Mining system architecture. 
 
This chapter begins describing the generic concept and modules of an IIM system 
architecture, and Sec. 0 presents an overview of existing IIM systems. 

 
2. Image Information Mining System Architecture 
 

As depicted in Fig. 1, the generic concept of an IIM system requires several processing 
modules: extraction of properties from images, reduction and content indexation and 
communication between users and system. In this section, we present the state of the art of 
these modules giving an overview of existing techniques in these fields. 

 
2.1 Feature Extraction 
In general, by image we understand picture, thus relating it to the (human) visual 
perception and understanding. A picture is characterized by its primitive features such as 
colour, texture or shape at different scales. Thus, an image will be represented as a 
multidimensional feature vector acting as signature. Some classical techniques to 
characterize an image are the following: 
 

 Colour: Colour information has been an important feature in image processing and 
computer vision. There exist different colour models or colour spaces, each one 
being useful for a specific application. A digital imaging system typically 
represents colour images in red, green, blue using the RGB space. Another one 
related with the perception of the colours by human beings is the HSV (Hue, 

 

Saturation and Intensity) colour space. This one describes the property of the 
surface reflecting the light (hue), measures the colourfulness or whiteness 
(saturation) and the brightness (intensity) of colours. Often a full colour image 
providing the three colours (RGB) in each pixel is needed, being essential to 
interpolate missing colours with the information of neighbouring pixels. There are 
nonadaptive algorithms (Ray & Acharya, 2005) as nearest neighbour replication 
and bilinear interpolation, and adaptive algorithms (Ray & Acharya, 2005) based 
on pattern matching or edge sensing interpolation. On the other side, a common 
practise in image processing is the statistical analysis of colour histograms, due to 
the strong correlation between objects and colour in an image. 

 

 Texture: Texture is a very interesting feature to characterize the spatial structure of 
an image. This is an active research field where parametric and non parametric 
methods are applied. Haralick’s co-occurrence (Shanmugam et al., 1973) technique 
based on the computation of the gray-level co-occurrence matrix for several values 
of displacement, orientation and image quantization levels is an effective method 
in texture analysis. Other algorithms based on wavelet transformations as the 
computation of Gabor filter (Maillot et al., 2005) can also be applied. 

 

 Shape: Shape of objects must be invariant to translation, rotation and scale of the 
image and is characterized in two senses: boundary-based, that considers the object 
outer contour, and region-based, where the whole shape region of the object is 
analyzed. In this sense, Fourier descriptors are suitable for transforming 
boundaries into shape features, and moment invariants for the extraction of 
geometric object region. A modified Fourier descriptor that preserves the 
invariance of geometric transformations and noise is proposed in (She et al., 1998). 
A common practise before applying shape techniques is to segment the image in 
small regions. Comaniciu (Comaniciu & Meer, 2002) presents this approach based 
on the mean shift method for density gradients estimation. 

 

 Topology: topological properties of an image such as number of connected or 
disconnected components, do not change when an image is rotated, scaled, 
translated, stretched or deformed. One example of characterizing an image through 
its topological properties is the computation of the Euler number (Ray & Acharya, 
2005). It is defined as the difference between number of connected components and 
number of holes in a binary image. An extension of the Euler number defined for 
binary images is the Euler vector (Ray & Acharya, 2005) that can be applied to 
gray-level images. Segmentation techniques may also help in the extraction of 
topological features. 

 
2.2 Multidimensional Indexing 
In the CBIR and IIM domain, the concept of multidimensional indexing differs from the one 
in a traditional database management system. In here, an index consists of the structure that 
provides access to the database in terms of record organization. In IIM, once an N-
dimensional feature vector is obtained, images are assigned to a suitable content based 
description extracted from these features. These content descriptors are then organized into 
a data structure for retrieval.  
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translated, stretched or deformed. One example of characterizing an image through 
its topological properties is the computation of the Euler number (Ray & Acharya, 
2005). It is defined as the difference between number of connected components and 
number of holes in a binary image. An extension of the Euler number defined for 
binary images is the Euler vector (Ray & Acharya, 2005) that can be applied to 
gray-level images. Segmentation techniques may also help in the extraction of 
topological features. 

 
2.2 Multidimensional Indexing 
In the CBIR and IIM domain, the concept of multidimensional indexing differs from the one 
in a traditional database management system. In here, an index consists of the structure that 
provides access to the database in terms of record organization. In IIM, once an N-
dimensional feature vector is obtained, images are assigned to a suitable content based 
description extracted from these features. These content descriptors are then organized into 
a data structure for retrieval.  
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In multidimensional indexing, the following items must be considered: 
 

 Reduction of dimensionality: Due to the huge amount of images and extracted 
features, normally the dimensionality of the information at the indexing step is 
very high. This complicates the management of the feature vector rendering its 
computation very expensive. For this reason, mechanisms for reducing the 
dimension of the feature space must be considered. Among these methods, 
Karhunen-Loève transform (Ray & Acharya, 2005) and the Discrete Cosine 
Transform (DCT) (Khayam, 2003); (Watson, 1994) are often considered. 

 

 Clustering: Extracted features with similar content must be grouped together 
through a classification algorithm. In this case, pixels containing similar features 
belong to the same class. Existing clustering techniques can be classified into two 
main groups: distance-based and model-based (Zhong & Ghosh, 2003) approaches. 
In the first group, we mention methods based on Euclidean and Mahalanobis 
distances, and to the second group belongs algorithms based on an a priori 
specified model, such as Gaussian mixture models or Markov chains.  

 

 Data structure for content based retrieval: Once a clustering algorithm is 
performed, a data structure for indexing descriptors to semantic content must be 
selected. The common used methods are tree-based indexing techniques, as 
multidimensional binary search trees or R-trees, and hashing-based ones. 

 
2.3 Content-Based Image Retrieval 
Usually CBIR is limited by the semantic gap existing between signal classes and semantic 
labels. Li et al. (Li & Bretschneider, 2006) propose a context sensitive Bayesian network to 
infer the semantic concept of regions or classes. Semantic score functions based on region 
features (spectral and texture) are computed to link semantic concepts to regions. Tusk et al. 
(Tusk et al., 2002) suggest a Bayesian framework to cope with the semantic gap problem. 
They introduce a visual grammar that builds a hierarchical semantic model from pixel level 
to region and scene levels. Pixel-level characteristic provides classification by automatic 
fusion of primitive features; then, at region-level through a segmentation algorithm land 
cover labels are defined; and scene-level represents the spatial relationship among regions. 
Thus, the visual grammar consists of two learning steps, where naive Bayesian classifiers are 
applied: a probabilistic link between features and semantic labels, and a fuzzy modelling to 
link regions and scenes. Once the visual grammar is built, the image classification process 
aims at finding representative region groups that describe the scene. The procedure consists 
of modelling the labelled regions by a Dirichlet distribution based on the number of training 
examples containing a certain region group, and then, assigning the best matching class to 
image by using the maximum a-posteriori rule. 
 
In order to provide the system the ability to search at query-time for images with similar 
features, a similarity metric for the comparison of objects or image properties must be 
defined. If we want a realistic measure, computer and human judgments of similarity 
should be generally correlated. If this condition is not met, images returned by the system 
will not be those desired by the user. These techniques are often based on distances or on a 
specific domain as histogram intersection, neural networks, shape measures or graph 

 

matching. Queries like ”retrieve images containing an specific content” or ”retrieve images 
that do not contain a particular object” can be asked to a CBIR system. 

 
2.4 Semantic Learning for Content-based Image Retrieval 
The main problem of using feature vectors for querying images with similar content is that 
often, the appearance of an image does not correspond to its semantic meaning, making the 
returned images only partially responds to the users query. Therefore, at object or region 
level, the highest level of abstraction, an image is represented by its objects, and a semantic 
label is assigned to each of them. 
 
A common used technique to provide regions with semantic meaning is the manual 
annotation that, combined with a powerful segmentation method, can result in a good 
meaningful classification. Comaniciu (Comaniciu & Meer, 2002) proposes a colour image 
segmentation algorithm based on the mean shift that estimates density gradients, using a 
simple nonparametric procedure. Then, the users interactively identify the segmented 
regions by labelling the features. Because of hand-annotating images is tedious and human 
expensive, methods for learning image representations directly from data are investigated. 
 
Fei-Fei and Perona (Fei-Fei & Perona) propose a Bayesian hierarchical model to learn and 
recognize natural scene categories through intermediate “themes”. In there, the most 
complete scene category dataset found in the literature is used. An image is modelled as a 
collection of local patches (regions). Each patch is represented by a codeword from a large 
vocabulary of them obtained from all categories training examples. For each codewords in 
each category, a Bayesian hierarchical model is learnt, building a collection of Bayesian 
models. Then, to provide semantic meaning to an unknown image, first the image 
codewords are extracted, and then, they are compared with the predefined models, 
assigning the one which fits best. The main problem of the proposed algorithm is that, 
although it can learn intermediate themes of scenes with neither supervision nor human 
intervention, the categories are fixed, being not able to assign semantic meaning to other 
ones. 
 
Another method that uses predefined lexicon of semantic concepts as trained data is the 
semantic pathfinder for multimedia indexing (Seinstra et al., 2006). In here, given a pattern 
x, part of a camera shot, the aim is to detect a semantic concept ω from shot i using 
probability p(ω|xi). Each step in the semantic pathfinder analysis extracts xi from data, and 
learns p(ω|xi) for all ω in the semantic lexicon. 
 
Maillot et al. (Maillot et al., 2005) propose a learning approach based on two steps: a feature 
selection step that chooses the most characterizing features for better visual concept 
detection, and a training phase using a Support Vector Machine (SVM), where positive and 
negative samples are required. Trying to solve the weaknesses of the learning approach like 
the lack of learning the spatial structure of semantic concepts, a further step is given, storing 
the visual knowledge that is the link between semantic concepts and sensor data in a 
symbol. This link is modelled as a fuzzy linguistic variable that enables the representation of 
imprecision, thus the image features are fuzzified a priori by a human expert, providing 
spatial relation representations and spatial reasoning. 
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In multidimensional indexing, the following items must be considered: 
 

 Reduction of dimensionality: Due to the huge amount of images and extracted 
features, normally the dimensionality of the information at the indexing step is 
very high. This complicates the management of the feature vector rendering its 
computation very expensive. For this reason, mechanisms for reducing the 
dimension of the feature space must be considered. Among these methods, 
Karhunen-Loève transform (Ray & Acharya, 2005) and the Discrete Cosine 
Transform (DCT) (Khayam, 2003); (Watson, 1994) are often considered. 

 

 Clustering: Extracted features with similar content must be grouped together 
through a classification algorithm. In this case, pixels containing similar features 
belong to the same class. Existing clustering techniques can be classified into two 
main groups: distance-based and model-based (Zhong & Ghosh, 2003) approaches. 
In the first group, we mention methods based on Euclidean and Mahalanobis 
distances, and to the second group belongs algorithms based on an a priori 
specified model, such as Gaussian mixture models or Markov chains.  

 

 Data structure for content based retrieval: Once a clustering algorithm is 
performed, a data structure for indexing descriptors to semantic content must be 
selected. The common used methods are tree-based indexing techniques, as 
multidimensional binary search trees or R-trees, and hashing-based ones. 

 
2.3 Content-Based Image Retrieval 
Usually CBIR is limited by the semantic gap existing between signal classes and semantic 
labels. Li et al. (Li & Bretschneider, 2006) propose a context sensitive Bayesian network to 
infer the semantic concept of regions or classes. Semantic score functions based on region 
features (spectral and texture) are computed to link semantic concepts to regions. Tusk et al. 
(Tusk et al., 2002) suggest a Bayesian framework to cope with the semantic gap problem. 
They introduce a visual grammar that builds a hierarchical semantic model from pixel level 
to region and scene levels. Pixel-level characteristic provides classification by automatic 
fusion of primitive features; then, at region-level through a segmentation algorithm land 
cover labels are defined; and scene-level represents the spatial relationship among regions. 
Thus, the visual grammar consists of two learning steps, where naive Bayesian classifiers are 
applied: a probabilistic link between features and semantic labels, and a fuzzy modelling to 
link regions and scenes. Once the visual grammar is built, the image classification process 
aims at finding representative region groups that describe the scene. The procedure consists 
of modelling the labelled regions by a Dirichlet distribution based on the number of training 
examples containing a certain region group, and then, assigning the best matching class to 
image by using the maximum a-posteriori rule. 
 
In order to provide the system the ability to search at query-time for images with similar 
features, a similarity metric for the comparison of objects or image properties must be 
defined. If we want a realistic measure, computer and human judgments of similarity 
should be generally correlated. If this condition is not met, images returned by the system 
will not be those desired by the user. These techniques are often based on distances or on a 
specific domain as histogram intersection, neural networks, shape measures or graph 

 

matching. Queries like ”retrieve images containing an specific content” or ”retrieve images 
that do not contain a particular object” can be asked to a CBIR system. 

 
2.4 Semantic Learning for Content-based Image Retrieval 
The main problem of using feature vectors for querying images with similar content is that 
often, the appearance of an image does not correspond to its semantic meaning, making the 
returned images only partially responds to the users query. Therefore, at object or region 
level, the highest level of abstraction, an image is represented by its objects, and a semantic 
label is assigned to each of them. 
 
A common used technique to provide regions with semantic meaning is the manual 
annotation that, combined with a powerful segmentation method, can result in a good 
meaningful classification. Comaniciu (Comaniciu & Meer, 2002) proposes a colour image 
segmentation algorithm based on the mean shift that estimates density gradients, using a 
simple nonparametric procedure. Then, the users interactively identify the segmented 
regions by labelling the features. Because of hand-annotating images is tedious and human 
expensive, methods for learning image representations directly from data are investigated. 
 
Fei-Fei and Perona (Fei-Fei & Perona) propose a Bayesian hierarchical model to learn and 
recognize natural scene categories through intermediate “themes”. In there, the most 
complete scene category dataset found in the literature is used. An image is modelled as a 
collection of local patches (regions). Each patch is represented by a codeword from a large 
vocabulary of them obtained from all categories training examples. For each codewords in 
each category, a Bayesian hierarchical model is learnt, building a collection of Bayesian 
models. Then, to provide semantic meaning to an unknown image, first the image 
codewords are extracted, and then, they are compared with the predefined models, 
assigning the one which fits best. The main problem of the proposed algorithm is that, 
although it can learn intermediate themes of scenes with neither supervision nor human 
intervention, the categories are fixed, being not able to assign semantic meaning to other 
ones. 
 
Another method that uses predefined lexicon of semantic concepts as trained data is the 
semantic pathfinder for multimedia indexing (Seinstra et al., 2006). In here, given a pattern 
x, part of a camera shot, the aim is to detect a semantic concept ω from shot i using 
probability p(ω|xi). Each step in the semantic pathfinder analysis extracts xi from data, and 
learns p(ω|xi) for all ω in the semantic lexicon. 
 
Maillot et al. (Maillot et al., 2005) propose a learning approach based on two steps: a feature 
selection step that chooses the most characterizing features for better visual concept 
detection, and a training phase using a Support Vector Machine (SVM), where positive and 
negative samples are required. Trying to solve the weaknesses of the learning approach like 
the lack of learning the spatial structure of semantic concepts, a further step is given, storing 
the visual knowledge that is the link between semantic concepts and sensor data in a 
symbol. This link is modelled as a fuzzy linguistic variable that enables the representation of 
imprecision, thus the image features are fuzzified a priori by a human expert, providing 
spatial relation representations and spatial reasoning. 
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In these articles, we find two facts that we try to avoid: On one hand, the lack of 
generalization by using a predefined lexicon when trying to link data with semantic classes. 
The use of a semantic lexicon is useful when we arrange an a priori and limited knowledge, 
and, on the other hand, the need of experts in the application domain to manually label the 
regions of interest. 
 
An important issue to arrange while assigning semantic meaning to a combination of classes 
is the data fusion. Li and Bretschneider (Li & Bretschneider, 2006) propose a method where 
combination of feature vectors for the interactive learning phase is carried out. They propose 
an intermediate step between region pairs (clusters from k-means algorithm) and semantic 
concepts, called code pairs. To classify the low-level feature vectors into a set of codes that 
form a codebook, the Generalised Lloyd Algorithm is used. Each image is encoded by an 
individual subset of these codes, based on the low-level features of its regions.  
 
Signal classes are objective and depend on feature data and not on semantics. Chang et al. 
(Chang et al., 2002) propose a semantic clustering. This is a parallel solution considering 
semantics in the clustering phase. In the article, a first level of semantics dividing an image 
in semantic high category clusters, as for instance, grass, water and agriculture is provided. 
Then, each cluster is divided in feature subclusters as texture, colour or shape. Finally, for 
each subcluster, a semantic meaning is assigned.  
 
In terms of classification of multiple features in an interactive way, there exist few methods 
in the literature. Chang et al. (Chang et al., 2002) describe the design of a multilayer neural 
network model to merge the results of basic queries on individual features. The input to the 
neural network is the set of similarity measurements for different feature classes and the 
output is the overall similarity of the image. To train the neural network and find the 
weights, a set of similar images for the positive examples and a set of non similar ones for 
the negative examples must be provided. Once the network is trained, it can be used to 
merge heterogeneous features. 
 
To finish this review in semantic learning, we have to mention the kind of semantic 
knowledge we can extract from EO data. The semantic knowledge depends on image scale, 
and the scale capacity to observe is limited by sensor resolution. It is important to 
understand the difference between scale and resolution. The term of sensor resolution is a 
property of the sensor, while the scale is a property of an object in the image. Fig. 2 depicts 
the correspondence between knowledge that can be extracted for a specific image scale, 
corresponding small objects with a scale of 10 meters and big ones with a scale of thousands 
of meters. The hierarchical representation of extracted knowledge enables answering 
questions like which sensor is more accurate to a particular domain or which are the 
features that better explain the data. 
 

 

 
Fig. 2. Knowledge level in the hierarchy to be extracted depending on the image scale. 

 
2.5 Relevance Feedback 
Often an IIM system requires a communication between human and machine while 
performing interactive learning for CBIR. In the interaction loop, the user provides training 
examples showing his interest, and the system answers by highlighting some regions on 
retrieved data, with a collection of images that fits the query or with statistical similarity 
measures. These responses are labelled as relevance feedback, whose aim is to adapt the 
search to the user interest and to optimize the search criterion for a faster retrieval. 
 
Li and Bretschneider (Li & Bretschneider, 2006) propose a composite relevance feedback 
approach which is computationally optimized. At a first step, a pseudo query image is 
formed combining all regions of the initial query with the positive examples provided by 
the user. In order to reduce the number of regions without loosing precision, a semantic 
score function is computed. On the other hand, to measure image-to-image similarities, they 
perform an integrated region matching. 
 
In order to reduce the response time while searching in large image collections, Cox et al. 
(Cox et al., 2000) developed a system, called PicHunter, based on a Bayesian relevance 
feedback algorithm. This method models the user reaction to a certain target image and 
infers the probability of the target image on the basis of the history of performed actions. 
Thus, the average number of man-machine interactions to locate the target image is reduced, 
speeding up the search. 

 
3. Existing Image Information Mining Systems 

As IIM field is nowadays in its infancy, there are only a few systems that provide CBIR 
being under evaluation and further development. Aksoy (Aksoy, 2001) provides a survey of 
CBIR systems prior to 2001, and a more recent review is provided by Daschiel (Daschiel, 
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In these articles, we find two facts that we try to avoid: On one hand, the lack of 
generalization by using a predefined lexicon when trying to link data with semantic classes. 
The use of a semantic lexicon is useful when we arrange an a priori and limited knowledge, 
and, on the other hand, the need of experts in the application domain to manually label the 
regions of interest. 
 
An important issue to arrange while assigning semantic meaning to a combination of classes 
is the data fusion. Li and Bretschneider (Li & Bretschneider, 2006) propose a method where 
combination of feature vectors for the interactive learning phase is carried out. They propose 
an intermediate step between region pairs (clusters from k-means algorithm) and semantic 
concepts, called code pairs. To classify the low-level feature vectors into a set of codes that 
form a codebook, the Generalised Lloyd Algorithm is used. Each image is encoded by an 
individual subset of these codes, based on the low-level features of its regions.  
 
Signal classes are objective and depend on feature data and not on semantics. Chang et al. 
(Chang et al., 2002) propose a semantic clustering. This is a parallel solution considering 
semantics in the clustering phase. In the article, a first level of semantics dividing an image 
in semantic high category clusters, as for instance, grass, water and agriculture is provided. 
Then, each cluster is divided in feature subclusters as texture, colour or shape. Finally, for 
each subcluster, a semantic meaning is assigned.  
 
In terms of classification of multiple features in an interactive way, there exist few methods 
in the literature. Chang et al. (Chang et al., 2002) describe the design of a multilayer neural 
network model to merge the results of basic queries on individual features. The input to the 
neural network is the set of similarity measurements for different feature classes and the 
output is the overall similarity of the image. To train the neural network and find the 
weights, a set of similar images for the positive examples and a set of non similar ones for 
the negative examples must be provided. Once the network is trained, it can be used to 
merge heterogeneous features. 
 
To finish this review in semantic learning, we have to mention the kind of semantic 
knowledge we can extract from EO data. The semantic knowledge depends on image scale, 
and the scale capacity to observe is limited by sensor resolution. It is important to 
understand the difference between scale and resolution. The term of sensor resolution is a 
property of the sensor, while the scale is a property of an object in the image. Fig. 2 depicts 
the correspondence between knowledge that can be extracted for a specific image scale, 
corresponding small objects with a scale of 10 meters and big ones with a scale of thousands 
of meters. The hierarchical representation of extracted knowledge enables answering 
questions like which sensor is more accurate to a particular domain or which are the 
features that better explain the data. 
 

 

 
Fig. 2. Knowledge level in the hierarchy to be extracted depending on the image scale. 
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Often an IIM system requires a communication between human and machine while 
performing interactive learning for CBIR. In the interaction loop, the user provides training 
examples showing his interest, and the system answers by highlighting some regions on 
retrieved data, with a collection of images that fits the query or with statistical similarity 
measures. These responses are labelled as relevance feedback, whose aim is to adapt the 
search to the user interest and to optimize the search criterion for a faster retrieval. 
 
Li and Bretschneider (Li & Bretschneider, 2006) propose a composite relevance feedback 
approach which is computationally optimized. At a first step, a pseudo query image is 
formed combining all regions of the initial query with the positive examples provided by 
the user. In order to reduce the number of regions without loosing precision, a semantic 
score function is computed. On the other hand, to measure image-to-image similarities, they 
perform an integrated region matching. 
 
In order to reduce the response time while searching in large image collections, Cox et al. 
(Cox et al., 2000) developed a system, called PicHunter, based on a Bayesian relevance 
feedback algorithm. This method models the user reaction to a certain target image and 
infers the probability of the target image on the basis of the history of performed actions. 
Thus, the average number of man-machine interactions to locate the target image is reduced, 
speeding up the search. 

 
3. Existing Image Information Mining Systems 

As IIM field is nowadays in its infancy, there are only a few systems that provide CBIR 
being under evaluation and further development. Aksoy (Aksoy, 2001) provides a survey of 
CBIR systems prior to 2001, and a more recent review is provided by Daschiel (Daschiel, 
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2004). In this section, we present several IIM systems for retrieval of remote sensed images, 
most of them being experimental ones. 
 
Li (Li & Narayanan, 2004) proposes a system, able to retrieve integrated spectral and spatial 
information from remote sensing imagery. Spatial features are obtained by extracting 
textural characteristics using Gabor wavelet coefficients, and spectral information by 
Support Vector Machines (SVM) classification. Then, the feature space is clustered through 
an optimized version of k-means approach. The resulting classification is maintained in a 
two schemes database: an image database where images are stored and an Object-Oriented 
Database (OODB) where feature vectors and the pointers to the corresponding images are 
stored. The main advantage of an OODB is the mapping facility between an object oriented 
programming language as Java or C++, and the OODB structures through supported 
Application Programming Interfaces (API). The system has the ability of processing a new 
image in online mode, in such a way that an image which is not still in the archive is 
processed and clustered in an interactive form. 
 
Feature extraction is an important part of IIM systems, however, it is computationally 
expensive, and usually generates a high volume of data. A possible solution would be to 
compute only those relevant features for describing a particular concept, but how to 
discriminate between relevant and irrelevant features? The Rapid Image Information 
Mining (RIIM) prototype (Shah et al., 2007) is a Java based framework that provides an 
interface for exploration of remotely sensed imagery based on its content. Particularly, it 
puts a focus on the management of coastal disaster. Its ingestion chain begins with the 
generation of tiles and an unsupervised segmentation algorithm. Once tiles are segmented, a 
feature extraction composed of two parts is performed: a first module consists of a genetic 
algorithm for the selection of a particular set of features that better identifies a specific 
semantic class. A second module generates feature models through genetic algorithms. 
Thus, if the user provides a query with a semantic class of interest, feature extraction will be 
only performed over the optimal features for the prediction, speeding up the ingestion of 
new images. The last step consists of applying a SVM approach for classification. While 
executing a semantic query, the system computes automatically the confidence value of a 
selected region and facilitates the retrieval of regions whose confidence is above a particular 
threshold. 
 
The IKONA system5 is a CBIR system based on client-server architecture. The system 
provides the ability of retrieving images by visual similarity in response to a query that 
satisfies the interest of the user. The system offers the possibility to perform region based 
queries in such a way that the search engine will look for images containing similar parts to 
the provided one. A main characteristic of the prototype is the hybrid text-image retrieval 
mode. Images can be manually annotated with indexed keywords, and while retrieving 
similar content images, the engine searches by keyword providing a faster computation.  
IKONA can be applied not only for EO applications, but also for face detection or signature 
recognition. The server-side architecture is implemented in C++ and the client software in 

                                                                 
5 http://www-rocq.inria.fr/cgibin/imedia/cbir-gen.cgi 

 

Java, making it independent from the platform where it runs. The only prerequisite on the 
client is to have installed a Java Virtual Machine. 
 
The Query by Image Content (QBIC)6 system is a commercial tool developed by IBM that 
explores content-based retrieval methods allowing queries on large image and video 
databases. These queries can be based on selected colour and texture patterns, on example 
images or on user-made drawings. QBIC is composed of two main components: database 
population and database query. The former deals with processes related to image 
processing and image-video database creation. The latter is responsible for offering an 
interface to compose a graphical query and for matching input query to database. Before 
storing images in the archive, they are tiled and annotated with text information. The 
manual identification of objects inside images can become a very tedious task, and trying to 
automatize this function, a full automatic unsupervised segmentation technique based on 
foreground/background models is introduced. Another method to automatically identify 
objects, also included in this system, is the flood-fill approach. This algorithm starts from a 
single pixel and continues adding neighbour pixels, whose values are under a certain 
threshold. This threshold is calculated automatically and updated dynamically by 
distinguishing between background an object. 
 
Photobook (Picard et al., 1994) developed by MIT, is another content-based image and 
image sequences retrieval, whose principle is to compress images for a quick query-time 
performance, reserving essential image similarities. Reaching this aim, the interactive search 
will be efficient. Thus, for characterization of object classes preserving its geometrical 
properties, an approach derived from the Karhunen-Loève transform is applied. However, 
for texture features a method based on the Wold decomposition that separates structured 
and random texture components is used. In order to link data to classes, a method based on 
colour difference provides an efficient way to discriminate between foreground objects and 
image background. After that, shape, appearance, motion and texture of theses foreground 
objects can be analyzed and ingested in the database together with a description. To assign a 
semantic label or multiple ones to regions, several human-machine interactions are 
performed, and through a relevance feedback, the system learns the relations between 
image regions and semantic content. 
 
VisiMine system (Aksoy et al., 2002); (Tusk et al., 2002) is an interactive mining system for 
analysis of remotely sensed data. VisiMine is able to distinguish between pixel, region and 
tile levels of features, providing several feature extraction algorithms for each level. Pixel 
level features describe spectral and textural information; regions are characterized by their 
boundary, shape and size; tile or scene level features describe the spectrum and textural 
information of the whole image scene. The applied techniques for extracting texture features 
are Gabor wavelets and Haralick’s co-ocurrence, image moments are computed for 
geometrical properties extraction, and k-medoid and k-means methods are considered for 
clustering features. Both methods perform a partition of the set of objects into clusters, but 
with k-means, further detailed in chapter 6, each object belongs to the cluster with nearest 
mean, being the centroid of the cluster the mean of the objects belonging to it. However, 

                                                                 
6 http://wwwqbic.almaden.ibm.com/ 
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2004). In this section, we present several IIM systems for retrieval of remote sensed images, 
most of them being experimental ones. 
 
Li (Li & Narayanan, 2004) proposes a system, able to retrieve integrated spectral and spatial 
information from remote sensing imagery. Spatial features are obtained by extracting 
textural characteristics using Gabor wavelet coefficients, and spectral information by 
Support Vector Machines (SVM) classification. Then, the feature space is clustered through 
an optimized version of k-means approach. The resulting classification is maintained in a 
two schemes database: an image database where images are stored and an Object-Oriented 
Database (OODB) where feature vectors and the pointers to the corresponding images are 
stored. The main advantage of an OODB is the mapping facility between an object oriented 
programming language as Java or C++, and the OODB structures through supported 
Application Programming Interfaces (API). The system has the ability of processing a new 
image in online mode, in such a way that an image which is not still in the archive is 
processed and clustered in an interactive form. 
 
Feature extraction is an important part of IIM systems, however, it is computationally 
expensive, and usually generates a high volume of data. A possible solution would be to 
compute only those relevant features for describing a particular concept, but how to 
discriminate between relevant and irrelevant features? The Rapid Image Information 
Mining (RIIM) prototype (Shah et al., 2007) is a Java based framework that provides an 
interface for exploration of remotely sensed imagery based on its content. Particularly, it 
puts a focus on the management of coastal disaster. Its ingestion chain begins with the 
generation of tiles and an unsupervised segmentation algorithm. Once tiles are segmented, a 
feature extraction composed of two parts is performed: a first module consists of a genetic 
algorithm for the selection of a particular set of features that better identifies a specific 
semantic class. A second module generates feature models through genetic algorithms. 
Thus, if the user provides a query with a semantic class of interest, feature extraction will be 
only performed over the optimal features for the prediction, speeding up the ingestion of 
new images. The last step consists of applying a SVM approach for classification. While 
executing a semantic query, the system computes automatically the confidence value of a 
selected region and facilitates the retrieval of regions whose confidence is above a particular 
threshold. 
 
The IKONA system5 is a CBIR system based on client-server architecture. The system 
provides the ability of retrieving images by visual similarity in response to a query that 
satisfies the interest of the user. The system offers the possibility to perform region based 
queries in such a way that the search engine will look for images containing similar parts to 
the provided one. A main characteristic of the prototype is the hybrid text-image retrieval 
mode. Images can be manually annotated with indexed keywords, and while retrieving 
similar content images, the engine searches by keyword providing a faster computation.  
IKONA can be applied not only for EO applications, but also for face detection or signature 
recognition. The server-side architecture is implemented in C++ and the client software in 
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Java, making it independent from the platform where it runs. The only prerequisite on the 
client is to have installed a Java Virtual Machine. 
 
The Query by Image Content (QBIC)6 system is a commercial tool developed by IBM that 
explores content-based retrieval methods allowing queries on large image and video 
databases. These queries can be based on selected colour and texture patterns, on example 
images or on user-made drawings. QBIC is composed of two main components: database 
population and database query. The former deals with processes related to image 
processing and image-video database creation. The latter is responsible for offering an 
interface to compose a graphical query and for matching input query to database. Before 
storing images in the archive, they are tiled and annotated with text information. The 
manual identification of objects inside images can become a very tedious task, and trying to 
automatize this function, a full automatic unsupervised segmentation technique based on 
foreground/background models is introduced. Another method to automatically identify 
objects, also included in this system, is the flood-fill approach. This algorithm starts from a 
single pixel and continues adding neighbour pixels, whose values are under a certain 
threshold. This threshold is calculated automatically and updated dynamically by 
distinguishing between background an object. 
 
Photobook (Picard et al., 1994) developed by MIT, is another content-based image and 
image sequences retrieval, whose principle is to compress images for a quick query-time 
performance, reserving essential image similarities. Reaching this aim, the interactive search 
will be efficient. Thus, for characterization of object classes preserving its geometrical 
properties, an approach derived from the Karhunen-Loève transform is applied. However, 
for texture features a method based on the Wold decomposition that separates structured 
and random texture components is used. In order to link data to classes, a method based on 
colour difference provides an efficient way to discriminate between foreground objects and 
image background. After that, shape, appearance, motion and texture of theses foreground 
objects can be analyzed and ingested in the database together with a description. To assign a 
semantic label or multiple ones to regions, several human-machine interactions are 
performed, and through a relevance feedback, the system learns the relations between 
image regions and semantic content. 
 
VisiMine system (Aksoy et al., 2002); (Tusk et al., 2002) is an interactive mining system for 
analysis of remotely sensed data. VisiMine is able to distinguish between pixel, region and 
tile levels of features, providing several feature extraction algorithms for each level. Pixel 
level features describe spectral and textural information; regions are characterized by their 
boundary, shape and size; tile or scene level features describe the spectrum and textural 
information of the whole image scene. The applied techniques for extracting texture features 
are Gabor wavelets and Haralick’s co-ocurrence, image moments are computed for 
geometrical properties extraction, and k-medoid and k-means methods are considered for 
clustering features. Both methods perform a partition of the set of objects into clusters, but 
with k-means, further detailed in chapter 6, each object belongs to the cluster with nearest 
mean, being the centroid of the cluster the mean of the objects belonging to it. However, 
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with k-medoid the center of the cluster, called medoid, is the object, whose average distance 
to all the objects in the cluster is minimal. Thus, the center of each cluster in k-medoid 
method is a member of the data set, whereas the centroid of each cluster in k-means method 
could not belong to the set. Besides the clustering algorithms, general statistics measures as 
histograms, maximum, minimum, mean and standard deviation of pixel characteristics for 
regions and tiles are computed. In the training phase, naive Bayesian classifiers and decision 
trees are used. An important factor of VisiMine system is its connectivity to SPLUS, an 
interactive environment for graphics, data analysis, statistics and mathematical computing 
that contains over 3000 statistical functions for scientific data analysis. The functionality of 
VisiMine includes also generic image processing tools, such as histogram equalization, 
spectral balancing, false colours, masking or multiband spectral mixing, and data mining 
tools, such as data clustering, classification models or prediction of land cover types. 
 
GeoIRIS (Scott et al., 2007) is another IIM system that includes automatic feature extraction 
at tile level, such as spectral, textural and shape characteristics, and object level as high 
dimensional database indexing and visual content mining. It offers the possibility to query 
the archive by image example, object, relationship between objects and semantics. The key 
point of the system is the ability to merge information from heterogeneous sources creating 
maps and imagery dynamically. 
 
Finally, Knowledge-driven Information Mining (KIM) (Datcu & Seidel, 1999); (Pelizzari et 
al., 2003) and later versions of Knowledge Enabled Services (KES) and Knowledge–centred 
Earth Observation (KEO)7 are perhaps the most enhanced systems in terms of technology, 
modularity and scalability. They are based on IIM concepts where several primitive and 
non-primitive feature extraction methods are implemented. In the last version, of KIM, 
called KEO, new feature extraction algorithms can easily plugged in, being incorporated to 
the data ingestion chain. In the clustering phase, a variant of k-means technique is executed 
generating a vocabulary of indexed classes. To solve the semantic gap problem, KIM 
computes a stochastic link through Bayesian networks, learning the posterior probabilities 
among classes and user defined semantic labels. Finally, thematic maps are automatically 
generated according with predefined cover types. Currently, a first version of KEO is 
available being under further development.  
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1. Introduction     
 

Machine learning has recently found many applications in the geosciences and remote sensing. 
These applications range from bias correction to retrieval algorithms, from code acceleration to 
detection of disease in crops. As a broad subfield of artificial intelligence, machine learning is 
concerned with algorithms and techniques that allow computers to “learn”. The major focus of 
machine learning is to extract information from data automatically by computational and 
statistical methods.  
Over the last decade there has been considerable progress in developing a machine learning 
methodology for a variety of Earth Science applications involving trace gases, retrievals, 
aerosol products, land surface products, vegetation indices, and most recently, ocean products 
(Yi and Prybutok, 1996, Atkinson and Tatnall, 1997, Carpenter et al., 1997, Comrie, 1997, Chevallier et 
al., 1998, Hyyppa et al., 1998, Gardner and Dorling, 1999, Lary et al., 2004, Lary et al., 2007, Brown et 
al., 2008, Lary and Aulov, 2008, Caselli et al., 2009, Lary et al., 2009). Some of this work has even 
received special recognition as a NASA Aura Science highlight (Lary et al., 2007) and 
commendation from the NASA MODIS instrument team (Lary et al., 2009). The two types of 
machine learning algorithms typically used are neural networks and support vector machines. 
In this chapter, we will review some examples of how machine learning is useful for 
Geoscience and remote sensing, these examples come from the author’s own research. 

 
2. Typical Applications 
 

One of the features that make machine-learning algorithms so useful is that they are “universal 
approximators”. They can learn the behaviour of a system if they are given a comprehensive 
set of examples in a training dataset. These examples should span as much of the parameter 
space as possible. Effective learning of the system’s behaviour can be achieved even if it is 
multivariate and non-linear. An additional useful feature is that we do not need to know a 
priori the functional form of the system as required by traditional least-squares fitting, in other 
words they are non-parametric, non-linear and multivariate learning algorithms. 
The uses of machine learning to date have fallen into three basic categories which are widely 
applicable across all of the Geosciences and remote sensing, the first two categories use 
machine learning for its regression capabilities, the third category uses machine learning for its 

7
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classification capabilities. We can characterize the three application themes are as follows: 
First, where we have a theoretical description of the system in the form of a deterministic 
model, but the model is computationally expensive. In this situation, a machine-learning 
“wrapper” can be applied to the deterministic model providing us with a “code accelerator”. 
A good example of this is in the case of atmospheric photochemistry where we need to solve a 
large coupled system of ordinary differential equations (ODEs) at a large grid of locations. It 
was found that applying a neural network wrapper to the system was able to provide a speed 
up of between a factor of 2 and 200 depending on the conditions. Second, when we do not 
have a deterministic model but we have data available enabling us to empirically learn the 
behaviour of the system. Examples of this would include: Learning inter-instrument bias 
between sensors with a temporal overlap, and inferring physical parameters from remotely 
sensed proxies. Third, machine learning can be used for classification, for example, in 
providing land surface type classifications. Support Vector Machines perform particularly well 
for classification problems. 
Now that we have an overview of the typical applications, the sections that follow will 
introduce two of the most powerful machine learning approaches, neural networks and 
support vector machines and then present a variety of examples. 

 
3. Machine Learning 
 

3.1 Neural Networks  
Neural networks are multivariate, non-parametric, ‘learning’ algorithms (Haykin, 1994, Bishop, 
1995, 1998, Haykin, 2001a, Haykin, 2001b, 2007) inspired by biological neural networks. 
Computational neural networks (NN) consist of an interconnected group of artificial neurons 
that processes information in parallel using a connectionist approach to computation. A NN is 
a non-linear statistical data-modelling tool that can be used to model complex relationships 
between inputs and outputs or to find patterns in data. The basic computational element of a 
NN is a model neuron or node. A node receives input from other nodes, or an external source 
(e.g. the input variables). A schematic of an example NN is shown in Figure 1. Each input has 
an associated weight, w, that can be modified to mimic synaptic learning. The unit computes 
some function, f, of the weighted sum of its inputs:  
 

yi  f wij yj
j






  
 

Its output, in turn, can serve as input to other units. wij refers to the weight from unit j to unit i. 
The function f is the node’s activation or transfer function. The transfer function of a node 
defines the output of that node given an input or set of inputs. In the simplest case, f is the 
identity function, and the unit’s output is yi, this is called a linear node. However, non-linear 
sigmoid functions are often used, such as the hyperbolic tangent sigmoid transfer function and 
the log-sigmoid transfer function. Figure 1 shows an example feed-forward perceptron NN 
with five inputs, a single output, and twelve nodes in a hidden layer. A perceptron is a 
computer model devised to represent or simulate the ability of the brain to recognize and 
discriminate. In most cases, a NN is an adaptive system that changes its structure based on 
external or internal information that flows through the network during the learning phase. 

 

 
Fig. 1. Example neural network architecture showing a network with five inputs, one 
output, and twelve hidden nodes. 
 
When we perform neural network training, we want to ensure we can independently assess 
the quality of the machine learning ‘fit’. To insure this objective assessment we usually 
randomly split our training dataset into three portions, typically of 80%, 10% and 10%. The 
largest portion containing 80% of the dataset is used for training the neural network weights. 
This training is iterative, and on each training iteration we evaluate the current root mean 
square (RMS) error of the neural network output. The RMS error is calculated by using the 
second 10% portion of the data that was not used in the training. We use the RMS error and 
the way the RMS error changes with training iteration (epoch) to determine the convergence of 
our training. When the training is complete, we then use the final 10% portion of data as a 
totally independent validation dataset. This final 10% portion of the data is randomly chosen 
from the training dataset and is not used in either the training or RMS evaluation. We only use 
the neural network if the validation scatter diagram, which plots the actual data from 
validation portion against the neural network estimate, yields a straight-line graph with a 
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classification capabilities. We can characterize the three application themes are as follows: 
First, where we have a theoretical description of the system in the form of a deterministic 
model, but the model is computationally expensive. In this situation, a machine-learning 
“wrapper” can be applied to the deterministic model providing us with a “code accelerator”. 
A good example of this is in the case of atmospheric photochemistry where we need to solve a 
large coupled system of ordinary differential equations (ODEs) at a large grid of locations. It 
was found that applying a neural network wrapper to the system was able to provide a speed 
up of between a factor of 2 and 200 depending on the conditions. Second, when we do not 
have a deterministic model but we have data available enabling us to empirically learn the 
behaviour of the system. Examples of this would include: Learning inter-instrument bias 
between sensors with a temporal overlap, and inferring physical parameters from remotely 
sensed proxies. Third, machine learning can be used for classification, for example, in 
providing land surface type classifications. Support Vector Machines perform particularly well 
for classification problems. 
Now that we have an overview of the typical applications, the sections that follow will 
introduce two of the most powerful machine learning approaches, neural networks and 
support vector machines and then present a variety of examples. 

 
3. Machine Learning 
 

3.1 Neural Networks  
Neural networks are multivariate, non-parametric, ‘learning’ algorithms (Haykin, 1994, Bishop, 
1995, 1998, Haykin, 2001a, Haykin, 2001b, 2007) inspired by biological neural networks. 
Computational neural networks (NN) consist of an interconnected group of artificial neurons 
that processes information in parallel using a connectionist approach to computation. A NN is 
a non-linear statistical data-modelling tool that can be used to model complex relationships 
between inputs and outputs or to find patterns in data. The basic computational element of a 
NN is a model neuron or node. A node receives input from other nodes, or an external source 
(e.g. the input variables). A schematic of an example NN is shown in Figure 1. Each input has 
an associated weight, w, that can be modified to mimic synaptic learning. The unit computes 
some function, f, of the weighted sum of its inputs:  
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Its output, in turn, can serve as input to other units. wij refers to the weight from unit j to unit i. 
The function f is the node’s activation or transfer function. The transfer function of a node 
defines the output of that node given an input or set of inputs. In the simplest case, f is the 
identity function, and the unit’s output is yi, this is called a linear node. However, non-linear 
sigmoid functions are often used, such as the hyperbolic tangent sigmoid transfer function and 
the log-sigmoid transfer function. Figure 1 shows an example feed-forward perceptron NN 
with five inputs, a single output, and twelve nodes in a hidden layer. A perceptron is a 
computer model devised to represent or simulate the ability of the brain to recognize and 
discriminate. In most cases, a NN is an adaptive system that changes its structure based on 
external or internal information that flows through the network during the learning phase. 

 

 
Fig. 1. Example neural network architecture showing a network with five inputs, one 
output, and twelve hidden nodes. 
 
When we perform neural network training, we want to ensure we can independently assess 
the quality of the machine learning ‘fit’. To insure this objective assessment we usually 
randomly split our training dataset into three portions, typically of 80%, 10% and 10%. The 
largest portion containing 80% of the dataset is used for training the neural network weights. 
This training is iterative, and on each training iteration we evaluate the current root mean 
square (RMS) error of the neural network output. The RMS error is calculated by using the 
second 10% portion of the data that was not used in the training. We use the RMS error and 
the way the RMS error changes with training iteration (epoch) to determine the convergence of 
our training. When the training is complete, we then use the final 10% portion of data as a 
totally independent validation dataset. This final 10% portion of the data is randomly chosen 
from the training dataset and is not used in either the training or RMS evaluation. We only use 
the neural network if the validation scatter diagram, which plots the actual data from 
validation portion against the neural network estimate, yields a straight-line graph with a 
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slope very close to one and an intercept very close to zero. This is a stringent, independent and 
objective validation metric. The validation is global as the data is randomly selected over all 
data points available. For our studies, we typically used feed-forward back-propagation neural 
networks with a Levenberg-Marquardt back-propagation training algorithm (Levenberg, 1944, 
Marquardt, 1963, Moré, 1977, Marquardt, 1979). 

 
3.2 Support Vector Machines 
Support Vector Machines (SVM) are based on the concept of decision planes that define 
decision boundaries and were first introduced by Vapnik (Vapnik, 1995, 1998, 2000) and has 
subsequently been extended by others (Scholkopf et al., 2000, Smola and Scholkopf, 2004). A 
decision plane is one that separates between a set of objects having different class 
memberships. The simplest example is a linear classifier, i.e. a classifier that separates a set of 
objects into their respective groups with a line. However, most classification tasks are not that 
simple, and often more complex structures are needed in order to make an optimal separation, 
i.e., correctly classify new objects (test cases) on the basis of the examples that are available 
(training cases). Classification tasks based on drawing separating lines to distinguish between 
objects of different class memberships are known as hyperplane classifiers.  
SVMs are a set of related supervised learning methods used for classification and regression. 
Viewing input data as two sets of vectors in an n-dimensional space, an SVM will construct a 
separating hyperplane in that space, one that maximizes the margin between the two data sets. 
To calculate the margin, two parallel hyperplanes are constructed, one on each side of the 
separating hyperplane, which are “pushed up against” the two data sets. Intuitively, a good 
separation is achieved by the hyperplane that has the largest distance to the neighboring data 
points of both classes, since in general the larger the margin the better the generalization error 
of the classifier. We typically used the SVMs provided by LIBSVM (Fan et al., 2005, Chen et al., 
2006).  

 
4. Applications 
 

Let us now consider some applications. 
 
4.1 Bias Correction: Atmospheric Chlorine Loading for Ozone Hole Research 
Critical in determining the speed at which the stratospheric ozone hole recovers is the total 
amount of atmospheric chlorine. Attributing changes in stratospheric ozone to changes in 
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al., 2006). In the upper stratosphere, the situation is a little easier as Cly can be inferred from 
HCl alone (e.g., (Anderson et al., 2000, Froidevaux et al., 2006b, Santee et al., 2008)). Our new 
estimates of stratospheric chlorine using machine learning (Lary et al., 2007) work throughout 
the stratosphere and provide a much-needed critical test for current global models. This critical 
evaluation is necessary as there are significant differences in both the stratospheric chlorine 
and the timing of ozone recovery in the available model predictions.  
Hydrochloric acid is the major reactive chlorine gas throughout much of the atmosphere, and 
throughout much of the year. However, the observations of HCl that we do have (from UARS 
HALOE, ATMOS, SCISAT-1 ACE and Aura MLS) have significant biases relative to each 
other. We found that machine learning can also address the inter-instrument bias (Lary et al., 
2007, Lary and Aulov, 2008). We compared measurements of HCl from the different 
instruments listed in Table 1. The Halogen Occultation Experiment (HALOE) provides the 
longest record of space based HCl observations. Figure 2 compares HALOE HCl with HCl 
observations from (a) the Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS), (b) 
the Atmospheric Chemistry Experiment (ACE) and (c) the Microwave Limb Sounder (MLS).  
 

 
Fig. 2. Panels (a) to (d) show scatter plots of all contemporaneous observations of HCl made 
by HALOE, ATMOS, ACE and MLS Aura. In panels (a) to (c) HALOE is shown on the x-
axis. Panel (e) correspond to panel (c) except that it uses the neural network ‘adjusted’ 
HALOE HCl values. Panel (f) shows  the validation scatter diagram of the neural network 
estimate of Cly ≈ HCl + ClONO2 + ClO +HOCl versus the actual Cly for a totally 
independent data sample not used in training the neural network. 
 
A consistent picture is seen in these plots: HALOE HCl measurements are lower than those 
from the other instruments. The slopes of the linear fits (relative scaling) are 1.05 for the 
HALOE-ATMOS comparison, 1.09 for the HALOE-MLS, and 1.18 for the HALOE-ACE. The 
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slope very close to one and an intercept very close to zero. This is a stringent, independent and 
objective validation metric. The validation is global as the data is randomly selected over all 
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offsets are apparent at the 525 K isentropic surface and above. Previous comparisons among 
HCl datasets reveal a similar bias for HALOE (Russell et al., 1996, Mchugh et al., 2005, Froidevaux 
et al., 2006a, Froidevaux et al., 2008). ACE and MLS HCl measurements are in much better 
agreement (Figure 2d). Note, the measurements agree within the stated observational 
uncertainties summarized in Table 1.  
 

 
Table 1. The instruments and constituents used in constructing the Cly record from 1991-
2006. The uncertainties given are the median values calculated for each level 2 measurement 
profile and its uncertainty (both in mixing ratio) for all the observations made. The 
uncertainties are larger than usually quoted for MLS ClO because they reflect the single profile 
precision, which is improved by temporal and/or spatial averaging. The HALOE uncertainties 
are only estimates of random error and do not include any indications of overall accuracy. 
 
To combine the above HCl measurements to form a continuous time series of HCl (and then 
Cly) from 1991 to 2006 it is necessary to account for the biases between data sets. A neural 
network is used to learn the mapping from one set of measurements onto another as a function 
of equivalent latitude and potential temperature. We consider two cases.  In one case ACE HCl 
is taken as the reference and the HALOE and Aura HCl observations are adjusted to agree 
with ACE HCl. In the other case HALOE HCl is taken as the reference and the Aura and ACE 
HCl observations are adjusted to agree with HALOE HCl. In both cases we use equivalent 
latitude and potential temperature to produce average profiles. The purpose of the NN mapping 
is simply to learn the bias as a function of location, not to imply which instrument is correct. 
The precision of the correction using the neural network mapping is of the order of ±0.3 ppbv, 
as seen in Figure 2 (e) that shows the results when HALOE HCl measurements have been 
mapped into ACE measurements. The mapping has removed the bias between the 
measurements and has straightened out the ‘wiggles’ in 2 (c), i.e., the neural network has 
learned the equivalent PV latitude and potential temperature dependence of the bias between 
HALOE and MLS. The inter-instrument offsets are not constant in space or time, and are not a 
simple function of Cly. 
So employing neural networks allows us to: Form a seamless record of HCl using observations 
from several space-borne instruments using neural networks. Provide an estimated of the 
associated inter-instrument bias. Infer Cly from HCl, and thereby provide a seamless record of 
Cly, the parameter needed for examining the ozone hole recovery. A similar use of machine 
learning has been made for Aerosol Optical Depths, the subject of the next sub-section.  

 
 
 

 

 
Fig. 3. Cly average profiles between 30° and 60°N for October 2005, estimated by neural 
network calibrated to HALOE HCl (blue curve), estimated by neural network calibrated to 
ACE HCl (green), or from ACE observations of HCl, ClONO2, ClO, and HOCl (red crosses). 
In each case, the shaded range represents the total uncertainty; it includes the observational 
uncertainty, the representativeness uncertainty (the variability over the analysis grid cell), 
the neural network uncertainty. The vertical extent of this plot was limited to below 1000 K 
(≈35 km), as there is no ACE v2.2 ClO data for the upper altitudes. In addition, above ≈750 K 
(≈25 km), ClO constitutes a larger fraction of Cly (up to about 10%) and so the large 
uncertainties in ClO have greater effect. 
 

 
Fig. 4. Panels (a) to (c) show October Cly time-series for the 525 K isentropic surface (≈20 km) 
and the 800 K isentropic surface (≈30 km). In each case the dark shaded range represents the 
total uncertainty in our estimate of Cly. This total uncertainty includes the observational 
uncertainty, the representativeness uncertainty (the variability over the analysis grid cell), the 
inter-instrument bias in HCl, the uncertainty associated with the neural network inter-
instrument correction, and the uncertainty associated with the neural network inference of Cly 
from HCl and CH4. The inner light shading depicts the uncertainty on Cly due to the inter-
instrument bias in HCl alone. The upper limit of the light shaded range corresponds to the 
estimate of Cly based on all the HCl observations calibrated by a neural network to agree with 
ACE v2.2 HCl. The lower limit of the light shaded range corresponds to the estimate of Cly 
based on all the HCl observations calibrated to agree with HALOE v19 HCl. Overlaid are lines 
showing the Cly based on age of air calculations (Newman et al., 2006). To minimize variations 
due to differing data coverage months with less than 100 observations of HCl in the equivalent 
latitude bin were left out of the time-series. 
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Fig. 5. Scatter diagram comparisons of Aerosol Optical Depth (AOD) from AERONET (x-
axis) and MODIS (y-axis) as green circles overlaid with the ideal case of perfect agreement 
(blue line). The measurements shown in the comparison were made within half an hour of 
each other, with a great circle separation of less than 0.25° and with a solar zenith angle 
difference of less than 0.1°. The left hand column of plots is for MODIS Aqua and the right 
hand column of plots is for MODIS Terra. The first row shows the comparisons between 
AERONET and MODIS for the entire period of overlap between the MODIS and AERONET 
instruments from the launch of the MODIS instrument to the present. The second row 
shows the same comparison overlaid with the neural network correction as red circles. We 
note that the neural network bias correction makes a substantial improvement in the 
correlation coefficient with AERONET. An improvement from 0.86 to 0.96 for MODIS Aqua 
and an improvement from 0.84 to 0.92 for MODIS Terra. The third row shows the 
comparison overlaid with the support vector regression correction as red circles. We note 
that the support vector regression bias correction makes an even greater improvement in the 
correlation coefficient than the neural network correction. An improvement from 0.86 to 0.99 
for MODIS Aqua and an improvement from 0.84 to 0.99 for MODIS Terra.  

 

4.2 Bias Correction: Aerosol Optical Depth 
As highlighted in the 2007 IPCC report on Climate Change, aerosol and cloud radiative 
effects remain the largest uncertainties in our understanding of climate change (Solomon et 
al., 2007). Over the past decade observations and retrievals of aerosol characteristics have 
been conducted from space-based sensors, from airborne instruments and from ground-
based samplers and radiometers.  Much effort has been directed at these data sets to 
collocate observations and retrievals, and to compare results.  Ideally, when two 
instruments measure the same aerosol characteristic at the same time, the results should 
agree within well-understood measurement uncertainties.  When inter-instrument biases 
exist, we would like to explain them theoretically from first principles. One example of this 
is the comparison between the aerosol optical depth (AOD) retrieved by the Moderate 
Resolution Imaging Spectroradiometer (MODIS) and the AOD measured by the Aerosol 
Robotics Network (AERONET). While progress has been made in understanding the biases 
between these two data sets, we still have an imperfect understanding of the root causes. 
(Lary et al., 2009) examined the efficacy of empirical machine learning algorithms for aerosol 
bias correction.  
Machine learning approaches (Neural Networks and Support Vector Machines) were used 
by (Lary et al., 2009) to explore the reasons for a persistent bias between aerosol optical depth 
(AOD) retrieved from the MODerate resolution Imaging Spectroradiometer (MODIS) and 
the accurate ground-based Aerosol Robotics Network (AERONET). While this bias falls 
within the expected uncertainty of the MODIS algorithms, there is still room for algorithm 
improvement.  The results of the machine learning approaches suggest a link between the 
MODIS AOD biases and surface type. From figure 5 we can see that machine learning 
algorithms were able to effectively adjust the AOD bias seen between the MODIS 
instruments and AERONET. Support vector machines performed the best improving the 
correlation coefficient between the AERONET AOD and the MODIS AOD from 0.86 to 0.99 
for MODIS Aqua, and from 0.84 to 0.99 for MODIS Terra.  
Key in allowing the machine learning algorithms to ‘correct’ the MODIS bias was provision 
of the surface type and other ancillary variables that explain the variance between MODIS 
and AERONET AOD. The provision of the ancillary variables that can explain the variance 
in the dataset is the key ingredient for the effective use of machine learning for bias 
correction. A similar use of machine learning has been made for vegetation indices, the 
subject of the next sub-section. 

 
4.3 Bias Correction: Vegetation Indices 
Consistent, long term vegetation data records are critical for analysis of the impact of global 
change on terrestrial ecosystems.  Continuous observations of terrestrial ecosystems through 
time are necessary to document changes in magnitude or variability in an ecosystem (Tucker et 
al., 2001, Eklundh and Olsson, 2003, Slayback et al., 2003).  Satellite remote sensing has been the 
primary way that scientists have measured global trends in vegetation, as the measurements 
are both global and temporally frequent.  In order to extend measurements through time, 
multiple sensors with different design and resolution must be used together in the same time 
series.  This presents significant problems as sensor band placement, spectral response, 
processing, and atmospheric correction of the observations can vary significantly and impact 
the comparability of the measurements (Brown et al., 2006). Even without differences in 
atmospheric correction, vegetation index values for the same target recorded under identical 
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conditions will not be directly comparable because input reflectance values differ from sensor 
to sensor due to differences in sensor design (Teillet et al., 1997, Miura et al., 2006). 
 
Several approaches have previously been taken to integrate data from multiple sensors.  
(Steven et al., 2003), for example, simulated the spectral response from multiple instruments 
and with simple linear equations created conversion coefficients to transform NDVI data from 
one sensor to another.  Their analysis is based on the observation that the vegetation index is 
critically dependent on the spectral response functions of the instrument used to calculate it.   
The conversion formulas the paper presents cannot be applied to maximum value NDVI 
datasets because the weighting coefficients are land cover and dataset dependent, reducing 
their efficacy in mixed pixel situations (Steven et al., 2003).   (Trishchenko et al., 2002) created a 
series of quadratic functions to correct for differences in the reflectance and NDVI to NOAA-9 
AVHRR-equivalents (Trishchenko et al., 2002). Both the (Steven et al., 2003) and the (Trishchenko 
et al., 2002) approaches are land cover and dataset dependent and thus cannot be used on 
global datasets where multiple land covers are represented by one pixel.  (Miura et al., 2006) 
used hyper-spectral data to investigate the effect of different spectral response characteristics 
between MODIS and AVHRR instruments on both the reflectance and NDVI data, showing 
that the precise characteristics of the spectral response had a large effect on the resulting 
vegetation index. The complex patterns and dependencies on spectral band functions were 
both land cover dependent and strongly non-linear, thus we see that an exploration of a non-
linear approach may be fruitful. 
(Brown et al., 2008) experimented with powerful, non-linear neural networks to identify and 
remove differences in sensor design and variable atmospheric contamination from the 
AVHRR NDVI record in order to match the range and variance of MODIS NDVI without 
removing the desired signal representing the underlying vegetation dynamics. Neural 
networks are ‘data transformers’ (Atkinson and Tatnall, 1997), where the objective is to associate 
the elements of one set of data to the elements in another.  Relationships between the two 
datasets can be complex and the two datasets may have different statistical distributions.  In 
addition, neural networks incorporate a priori knowledge and realistic physical constraints 
into the analysis, enabling a transformation from one dataset into another through a set of 
weighting functions (Atkinson and Tatnall, 1997). This transformation incorporates additional 
input data that may account for differences between the two datasets.  
The objective of (Brown et al., 2008) was to demonstrate the viability of neural networks as a 
tool to produce a long term dataset based on AVHRR NDVI that has the data range and 
statistical distribution of MODIS NDVI. Previous work has shown that the relationship 
between AVHRR and MODIS NDVI is complex and nonlinear (Gallo et al., 2003, Brown et al., 
2006, Miura et al., 2006), thus this problem is well suited to neural networks if appropriate 
inputs can be found.  The influence of the variation of atmospheric contamination of the 
AVHRR data through time was explored by using observed atmospheric water vapor from the 
Total Ozone Mapping Spectrometer (TOMS) instrument during the overlap period 2000-2004 
and back to 1985.  Examination of the resulting MODIS fitted AVHRR dataset both during the 
overlap period and in the historical dataset will enable an evaluation of the efficacy of the 
neural net approach compared to other approaches to merge multiple-sensor NDVI datasets.  
 
 
 

 

 
Fig. 6. A comparison of the NDVI from AVHR (panel a), MODIS (panel p), and then a 
reconstruction of MODIS using AVHRR and machine learning (panel c). We note that the 
machine learning can successfully account for the large differences that are found between 
AVHRR and MODIS. 
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conditions will not be directly comparable because input reflectance values differ from sensor 
to sensor due to differences in sensor design (Teillet et al., 1997, Miura et al., 2006). 
 
Several approaches have previously been taken to integrate data from multiple sensors.  
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Remote sensing datasets are the result of a complex interaction between the design of a sensor, 
the spectral response function, stability in orbit, the processing of the raw data, compositing 
schemes, and post-processing corrections for various atmospheric effects including clouds and 
aerosols.  The interaction between these various elements is often non-linear and non-additive, 
where some elements increase the vegetation signal to noise ratio (compositing, for example) and 
others reduce it (clouds and volcanic aerosols) (Los, 1998).  Thus, although other authors have 
used simulated data to explore the relationship between AVHRR and MODIS (Trishchenko et al., 
2002, Van Leeuwen et al., 2006), these techniques are not directly useful in producing a sensor-
independent vegetation dataset that can be used by data users in the near term.   
 

 
Fig. 7. Panel (a) shows a time-series from 2000 to 2003 of the zonal mean (averaged per latitude) 
difference between the AVHRR and MODIS NDVIs, this highlights that significant differences 
exist between the two data products. Panel (b) shows a time series over the same period after the 
machine learning has been used to “cross-calibrate” AVHRR as MODIS, showing that the 
machine learning has effectively learnt how to cross-calibrate the instruments. 
 
There are substantial differences between the processed vegetation data from AVHRR and 
MODIS. (Brown et al., 2008) showed that neural networks are an effective way to have a long 
data record that utilizes all available data back to 1981 by providing a practical way of 
incorporating the AVHRR data into a continuum of observations that include both MODIS 
and VIIRS.  The results (Brown et al., 2008) showed that the TOMS data record on clouds, ozone 
and aerosols can be used to identify and remove sensor-specific atmospheric contaminants 
that differentially affect the AVHRR over MODIS.  Other sensor-related effects, particularly 
those of changing BRDF, viewing angle, illumination, and other effects that are not accounted 
for here, remain important sources of additional variability.  Although this analysis has not 
produced a dataset with identical properties to MODIS, it has demonstrated that a neural net 
approach can remove most of the atmospheric-related aspects of the differences between the 
sensors, and match the mean, standard deviation and range of the two sensors.  A similar 
technique can be used for the VIIRS sensor once the data is released.  
Figure 6 shows a comparison of the NDVI from AVHR (panel a), MODIS (panel p), and then a 
reconstruction of MODIS using AVHRR and machine learning (panel c). Figure 7 (a) shows a 
time-series from 2000 to 2003 of the zonal mean difference between the AVHRR and MODIS 

 

NDVIs, this highlights that significant differences exist between the two data products. Panel 
(b) shows a time series over the same period after the machine learning has been used to 
“cross-calibrate” AVHRR as MODIS, illustrating that the machine learning has effectively 
learnt how to cross-calibrate the instruments. 
So far, we have seen three examples of using machine learning for bias correction (constituent 
biases, aerosol optical depth biases and vegetation index biases), and one example of using 
machine learning to infer a useful proxy from remotely sensed data (Cly from HCl). Let us look 
at one more example of inferring proxies from existing remotely sensed data before moving 
onto consider using machine learning for code acceleration. 

 
4.4 Inferring Proxies: Tracer Correlations 
The spatial distributions of atmospheric trace constituents are in general dependent on both 
chemistry and transport. Compact correlations between long-lived species are well-observed 
features in the middle atmosphere. The correlations exist for all long-lived tracers - not just 
those that are chemically related - due to their transport by the general circulation of the 
atmosphere. The tight relationships between different constituents have led to many analyses 
using measurements of one tracer to infer the abundance of another tracer. Using these 
correlations is also as a diagnostic of mixing and can distinguish between air-parcels of 
different origins.  Of special interest are the so-called ‘long-lived’ tracers: constituents such as 
nitrous oxide (N2O), methane (CH4), and the chlorofluorocarbons (CFCs) that have long 
lifetimes (many years) in the troposphere and lower stratosphere, but are destroyed rapidly in 
the middle and upper stratosphere.   
The correlations are spatially and temporally dependent. For example, there is a ‘compact-
relation’ regime in the lower part of the stratosphere and an ‘altitude-dependent' regime above 
this. In the compact-relation region, the abundance of one tracer is uniquely determined by the 
value of the other tracer, without regard to other variables such as latitude or altitude. In the 
altitude-dependent regime, the correlation generally shows significant variation with altitude.  
A family of correlations usually achieves the description of such spatially and temporally 
dependent correlations. However, a single neural network is a natural and effective 
alternative. The motivation for this case study was preparation for a long-term chemical 
assimilation of Upper Atmosphere Research Satellite (UARS) data starting in 1991 and coming 
up to the present. For this period, we have continuous version 19 data from the Halogen 
Occultation Experiment (HALOE) but not observations of N2O as both ISAMS and CLAES 
failed. In addition, we would like to constrain the total amount of reactive nitrogen, chlorine, 
and bromine in a self-consistent way (i.e. the correlations between the long-lived tracers is 
preserved). Tracer correlations provide a means to do this by using HALOE CH4 observations. 
Machine learning is ideally suited to describe the spatial and temporal dependence of tracer-
tracer correlations. The neural network performs well even in regions where the correlations 
are less compact and normally a family of correlation curves would be required. For 
example, the methane CH4-N2O correlation can be well described using a neural network 
(Lary et al., 2004) trained with the latitude, pressure, time of year, and CH4 volume mixing 
ratio (v.m.r.). Lary et al. (2004) used a neural network to reproduce the CH4-N2O correlation 
with a correlation coefficient between simulated and training values of 0.9995. Such an 
accurate representation of tracer-tracer correlations allows more use to be made of long-term 
datasets to constrain chemical models. For example, the Halogen Occultation Experiment 
(HALOE) that continuously observed CH4 (but not N2O) from 1991 until 2005. 
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datasets to constrain chemical models. For example, the Halogen Occultation Experiment 
(HALOE) that continuously observed CH4 (but not N2O) from 1991 until 2005. 



Geoscience	and	Remote	Sensing,	New	Achievements118

 

 
Fig. 8. Panel (a) shows the global N2O-CH4 correlation for an entire year, after evaluating the 
efficacy of 3,000 different functional forms for parametric fits, we overlaid the best, an order 
20 Chebyshev Polynomial. However, this still does not account for the multi-variate nature 
of the problem exhibited by the ‘cloud’ of points rather than a compact ‘curve’ or ‘line’. 
However, in panel (b) we can see that a neural network is able to account for the non-linear 
and multi-variate aspects, the training dataset exhibited a ‘cloud’ of points, the neural 
network fit reproduces a ‘cloud’ of points. The most important factor in producing a 
‘spread’ in the correlations is the strong altitude dependence of the N2O-CH4 correlation. 
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4.5 Code Acceleration: Example from Ordinary Differential Equation Solvers 
There are many applications in the Geosciences and remote sensing which are 
computationally expensive. Machine learning can be very effective in accelerating components 
of these calculations. We can readily create training datasets for these applications using the 
very models we would like to accelerate. 
The first example for which we found this effective was solving ordinary differential 
equations. An adequate photochemical mechanism to describe the evolution of ozone in the 
upper troposphere and lower stratosphere (UT/LS) in a computational model involves a 
comprehensive treatment of reactive nitrogen, hydrogen, halogens, hydrocarbons, and 
interactions with aerosols. Describing this complex interaction is computationally expensive, 
and applications are limited by the computational burden. Simulations are often made 
tractable by using a coarser horizontal resolution than would be desired or by reducing the 
interactions accounted for in the photochemical mechanism. These compromises also limit the 
scientific applications. Machine learning algorithms offer a means to obtain a fast and accurate 

 

solution to the stiff ordinary differential equations that comprise the photochemical 
calculations, thus making high-resolution simulations including the complete photochemical 
mechanism much more tractable. 
For the sake of an example, a 3D model of atmospheric chemistry and transport, the GMI-
COMBO model, can use 55 vertical levels and a 4° latitude x 5° longitude grid and 125 species. 
With 15-minute time steps the chemical ODE solver is called 119,750,400 times in simulating 
just one week. If the simulation is for a year then the ODE solver needs to be called 
6,227,020,800 (or 6x109) times. If the spatial and temporal resolution is doubled then the 
chemical ODE solver needs to be called a staggering 2.5x1010 times to simulate a year. This 
represents a major computational cost in simulating a constituent’s spatial and temporal 
evolution. The ODEs solved at adjacent grid cells and time steps are very similar. Therefore, if 
the simulations from one grid cell and time step could be used to speed up the simulation for 
adjacent grid cells and subsequent time steps, we would have a strategy to dramatically 
decrease the computational cost of our simulations.  
 

 
Fig. 9. Strategy for applying a neural wrapper to accelerate the ODE solver. 
 
Figure 9 shows the strategy that we used for applying a neural wrapper to accelerate the ODE 
solver. Figure 10 shows some example results for ozone after using a neural wrapper around 
an atmospheric chemistry ODE solver. The x-axis shows the actual ozone abundance as a 
volume mixing ratio (vmr) using the regular ODE solver without neural networks. The y-axis 
shows the ozone vmr inferred using the neural network solution. It can be seen that we have 
excellent agreement between the two solutions with a correlation coefficient of 1. The neural 
network has learned the behaviour of the ozone ODE very well. Without the adaptive error 
control the acceleration could be up to 200 times, with the full adaptive error control the 
acceleration was less, but usually at least a factor of two. Similarly, in Figure 11 the two panels 
below show the results for formaldehyde (HCHO) in the GMI model. The left panel shows the 
solution with SMVGear for level 1 at 01:00 UT and the right panel shows the corresponding 
solution using the neural network. As one would hope, the two results are almost 
indistinguishable.  
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Fig. 10. Example results for using a neural wrapper around an atmospheric chemistry ODE 
solver. The x-axis shows the actual ozone v.m.r. using the regular ODE solver without 
neural networks. The y-axis shows the ozone v.m.r. inferred using the neural network 
solution. It can be seen that we have excellent agreement between the two solutions with a 
correlation coefficient of 1. The neural network has learned the behaviour of the ozone ODE 
very well.  
 

 
Fig. 11. The two panels below show the results for formaldehyde (HCHO) in the GMI 
model. The left panel shows the solution with SMVGear for level 1 at 01:00 UT and the right 
panel shows the corresponding solution using the neural network. As one would hope, the 
two results are almost indistinguishable.  

 

4.6 Classification: Example from Detecting Drought Stress and Infection in Cacao 
The source of chocolate, theobroma cacao (cacao), is an understory tropical tree (Wood, 2001). 
Cacao is intolerant to drought (Belsky and Siebert, 2003), and yields and production patterns are 
severely affected by periodic droughts and seasonal rainfall patterns.  (Bae et al., 2008) studied 
the molecular response of cacao to drought and have identified several genes responsive to 
drought stress (Bailey et al., 2006).  They have also been studying the response of cacao to 
colonization by an endophytic isolates of Trichoderma including Trichoderma hamatum, DIS 
219b (Bailey et al., 2006).  One of the benefits to colonization Trichoderma hamatum isolate DIS 
219b is tolerance to drought as mediated through plant growth promotion, specifically 
enhanced root growth (Bae et al., 2008). 
 In characterizing the drought response of cacao considerable variation was observed in the 
response of individual seedlings depending upon the degree of drought stress applied (Bae et 
al., 2008).  In addition, although colonization by DIS 219b delayed the drought response, direct 
effects of DIS 219b on cacao gene expression in the absence of drought were difficult to identify 
(Bae et al., 2008).  The complexity of the DIS 219b/cacao plant microbe interaction overlaid on 
cacao’s response to drought makes the system of looking at individual genes as a marker for 
either drought or endophyte inefficient.   
There would be considerable utility in reliably predicting drought and endophyte stress from 
complex gene expression patterns, particularly as the endophyte lives within the plant without 
causing apparent phenotypic changes in the plant. Machine‐learning models offer the 
possibility of highly accurate, automated predictions of plant stress from a variety of causes 
that may otherwise go undetected or be obscured by the complexity of plant responses to 
multiple environmental factors, to be considered status quo for plants in nature. We examined 
the ability of five different machine‐learning approaches to predict drought stress and 
endophyte colonization in cacao: a naive Bayes classifier, decision trees (DTs), neural networks 
(NN), neuro-fuzzy inference (NFI), and support vector machine (SVM) classification. The results 
provided some support for the accuracy of machine-learning models in discerning endophyte 
colonization and drought stress.  The best performance was by the neuro-fuzzy inference system 
and the support vector classifier that correctly identified 100% of the drought and endophyte 
stress samples. Of the two, the approaches the support vector classifier is likely to have the best 
generalization (wider applicability to data not previously seen in the training process). 
Why did the SVM model outperform the four other machine learning approaches? We noted 
earlier that SVMs construct separating hyperplanes that maximize the margins between the 
different clusters in the training data set (the vectors that constrain the width of the margin are 
the support vectors). A good separation is achieved by those hyperplanes providing the largest 
distance between neighbouring classes, and in general, the larger the margin the better the 
generalization of the classifier.  
When the points in neighbouring classes are separated by a nonlinear dividing line, rather 
than fitting nonlinear curves to the data, SVMs use a kernel function to map the data into a 
different space where a hyperplane can once more be used to do the separation. The kernel 
function may transform the data into a higher dimensional space to make it possible to 
perform the separation. The concept of a kernel mapping function is very powerful. It allows 
SVM models to perform separations even with very complex boundaries. Hence, we infer that, 
in the present application, the SVM model algorithmic process utilizes higher dimensional 
space to achieve superior predictive power.   
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Fig. 10. Example results for using a neural wrapper around an atmospheric chemistry ODE 
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enhanced root growth (Bae et al., 2008). 
 In characterizing the drought response of cacao considerable variation was observed in the 
response of individual seedlings depending upon the degree of drought stress applied (Bae et 
al., 2008).  In addition, although colonization by DIS 219b delayed the drought response, direct 
effects of DIS 219b on cacao gene expression in the absence of drought were difficult to identify 
(Bae et al., 2008).  The complexity of the DIS 219b/cacao plant microbe interaction overlaid on 
cacao’s response to drought makes the system of looking at individual genes as a marker for 
either drought or endophyte inefficient.   
There would be considerable utility in reliably predicting drought and endophyte stress from 
complex gene expression patterns, particularly as the endophyte lives within the plant without 
causing apparent phenotypic changes in the plant. Machine‐learning models offer the 
possibility of highly accurate, automated predictions of plant stress from a variety of causes 
that may otherwise go undetected or be obscured by the complexity of plant responses to 
multiple environmental factors, to be considered status quo for plants in nature. We examined 
the ability of five different machine‐learning approaches to predict drought stress and 
endophyte colonization in cacao: a naive Bayes classifier, decision trees (DTs), neural networks 
(NN), neuro-fuzzy inference (NFI), and support vector machine (SVM) classification. The results 
provided some support for the accuracy of machine-learning models in discerning endophyte 
colonization and drought stress.  The best performance was by the neuro-fuzzy inference system 
and the support vector classifier that correctly identified 100% of the drought and endophyte 
stress samples. Of the two, the approaches the support vector classifier is likely to have the best 
generalization (wider applicability to data not previously seen in the training process). 
Why did the SVM model outperform the four other machine learning approaches? We noted 
earlier that SVMs construct separating hyperplanes that maximize the margins between the 
different clusters in the training data set (the vectors that constrain the width of the margin are 
the support vectors). A good separation is achieved by those hyperplanes providing the largest 
distance between neighbouring classes, and in general, the larger the margin the better the 
generalization of the classifier.  
When the points in neighbouring classes are separated by a nonlinear dividing line, rather 
than fitting nonlinear curves to the data, SVMs use a kernel function to map the data into a 
different space where a hyperplane can once more be used to do the separation. The kernel 
function may transform the data into a higher dimensional space to make it possible to 
perform the separation. The concept of a kernel mapping function is very powerful. It allows 
SVM models to perform separations even with very complex boundaries. Hence, we infer that, 
in the present application, the SVM model algorithmic process utilizes higher dimensional 
space to achieve superior predictive power.   



Geoscience	and	Remote	Sensing,	New	Achievements122

 

For classification, the SVM algorithmic process offers an important advantage compared with 
neural network approaches. Specifically, neural networks can suffer from multiple local 
minima; in contrast, the solution to a support vector machine is global and unique. This 
characteristic may be partially attributed to the development process of these algorithms; 
SVMs were developed in the reverse order to the development of neural networks. SVMs 
evolved from the theory to implementation and experiments; neural networks followed a 
more heuristic path, from applications and extensive experimentation to theory. 
In handling this data using traditional methods where individual gene responses are 
characterized as treatment effects, it was especially difficult to sort out direct effects of 
endophyte on gene expression over time or at specific time points.  The differences between 
the responses of non-stressed plants with or without the endophyte were small and, after the 
zero time point, were highly variable.  The general conclusion from this study was that 
colonization of cacao seedlings by the endophyte enhanced root growth resulting in increased 
drought tolerance but the direct effects of endophyte on cacao gene expression at the time 
points studied were minimal.  Yet the neuro-fuzzy inference and support vector classification 
methods of analysis were able identify samples receiving these treatments correctly.   
In this system, each gene in the plants genome is a potential sensor for the applied stress or 
treatment.  It is not necessary that the genes response be significant in itself in determining the 
outcome of the plants response or that it be consistent in time or level of response.  Since 
multiple genes are used in characterizing the response it is always the relative response in 
terms of the many other changes that are occurring at the same time as influenced by 
uncontrolled changes in the system that is important.  With this study the treatments were 
controlled but variation in the genetic make up of each seedling (they were from segregating 
open pollinated seed) and minute differences in air currents within the chamber, soil 
composition, colonization levels, microbial populations within each pot and seedling, and 
even exact watering levels at each time point, all likely contributed to creating uncontrolled 
variation in the plants response to what is already a complex reaction to multiple factors 
(drought and endophyte).  This type of variation makes accessing treatment responses using 
single gene approaches difficult and the prediction of cause due to effect in open systems 
almost impossible in complex systems.   

 
5. Future Directions 
 

We have seen the utility of machine learning for a suite of very diverse applications. These 
applications often help us make better use of existing data in a variety of ways. In parallel to 
the success of machine learning we also have the rapid development of publically available 
web services. So it is timely to combine both approached by providing online services that 
use machine learning for intelligent data fusion as part of a workflow that allows us to 
cross-calibrate multiple datasets. This obviously requires care to ensure the appropriate of 
datasets. However, if done carefully, this could greatly facilitate the production of seamless 
multi-year global records for a host of Earth science applications.  
When it comes to dealing with inter-instrument biases in a consistent manner there is 
currently a gap in many space agencies’ Earth science information systems. This could be 
addressed by providing an extensible and reusable open source infrastructure that gap that 
could be reused for multiple projects. A clear need for such an infrastructure would be for 
NASA’s future Decadal Survey missions. 

 

6. Summary 
 

Machine learning has recently found many applications in the geosciences and remote 
sensing. These applications range from bias correction to retrieval algorithms, from code 
acceleration to detection of disease in crops. Machine-learning algorithms can act as 
“universal approximators”, they can learn the behaviour of a system if they are given a 
comprehensive set of examples in a training dataset. Effective learning of the system’s 
behaviour can be achieved even if it is multivariate and non-linear. An additional useful feature 
is that we do not need to know a priori the functional form of the system as required by 
traditional least-squares fitting, in other words they are non-parametric, non-linear and 
multivariate learning algorithms.  
The uses of machine learning to date have fallen into three basic categories which are widely 
applicable across all of the Geosciences and remote sensing, the first two categories use 
machine learning for its regression capabilities, the third category uses machine learning for 
its classification capabilities. We can characterize the three application themes are as follows: 
First, where we have a theoretical description of the system in the form of a deterministic 
model, but the model is computationally expensive. In this situation, a machine-learning 
“wrapper” can be applied to the deterministic model providing us with a “code 
accelerator”. Second, when we do not have a deterministic model but we have data 
available enabling us to empirically learn the behaviour of the system. Third, machine 
learning can be used for classification. 
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1. Introduction

Sea ice is a very important issue in winter navigation in the Arctic waters and also in the Baltic
Sea. The winter traffic in ice is assisted by ice breakers in ice covered areas with heavy ship
traffic. In other ice covered areas, however, the vessels must have the capability to navigate in
sea ice without aid, meaning that they have to be designed especially for ice conditions. Earlier
e.g. the Finnish ice breakers used helicopters to find the best routes in sea ice. However,
today the expensive helicopter use has been replaced by utilization of remote sensing data.
And for the ships navigating in ice on their own, it is even more important to have valid
and useful information of the current sea ice around the ship to find its route through ice.
Especially Synthetic Aperture Radar (SAR) data are useful during the dark and often cloudy
northern winters. Because C-band SAR, like Radarsat (1 and 2) and Envisat ASAR, is an
active instrument it also works during the dark periods and has a suitable EM wavelength
to propagate through the cloud cover. Our aim is to produce automatically generated sea ice
products from SAR data, such that they are informative and easy to interpret. Sea ice types in
SAR images are best described by the edges present in the images. The type and amount of
edges give us information on the ice types in addition to commonly used areal backscattering
values and statistics. Here we present some novel features for sea ice SAR data classification,
mainly derived from detected edges.
The preprocessing of the SAR data is also an important step. First the data is rectified to a map
projection, Pearson (1990). We use the Mercator projection, also used in nautical charts, in the
Baltic Sea and the Polar Stereographic projection for the Arctic. Also an incidence angle grid
over the SAR area in appropriate projection is generated from the data included in the SAR
data. After applying a land masking and incidence angle correction, Karvonen et al. (2002),
using the generated incidence angle grid, we perform an edge-preserving speckle filtering.
Then we apply an intensity-based segmentation, and produce a multi-resolution presenta-
tion in three resolutions by combining adjacent segments with different criteria for different
resolutions. We also detect the edges and corners from the full-resolution SAR data.
After the segmentation, the detected edges can be divided into two groups: segment edges
(segment boundaries) and edges within segments. The segment edge features describe the
contrast and shape of the segment, and the within-segment edge features give additional geo-
physically relevant information on the ice properties within the segment.
The segment shape gives information on the segment, e.g. ice floes typically can have polygo-
nal or round shape, and ice ridges and cracks or leads typically are narrow but long segments,
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often they are not straight lines, however. The segment shape can be described by shape fea-
tures based on the segment edges. The segment shape features in our approach are computed
from the ordered edge points sampled along the edge. Then the object shape can roughly
be characterized by the polygon defined by the sampled set of the edge points, and multiple
useful features based on this presentation can be computed for the ice type classification.
We have collected C-band SAR data, both Radarsat and Envisat ASAR data over the Baltic Sea
and also over the Arctic Sea areas for our studies. The data are Radarsat ScanSAR wide mode
data and Envisat ASAR wide swath mode data. These data have a resolution of about 100m
and cover an area of 400-500 km wide, and thus are suitable for operational sea ice monitoring.

2. Preprocessing

The preprocessing chain consists of the georectification to Mercator (Baltic Sea) or Polar Stere-
ographic projection (Arctic), incidence angle correction, Karvonen et al. (2002), land masking,
speckle filtering, and multi-resolution segmentation.

2.1 Speckle Filtering
We have studied two iterative algorithms performing an edge-preserving filtering. One is
based on an anisotropic mean and the other on anisotropic median computation. Both the
algorithms have given very good results according to our visual judgment. The algorithms
are shortly described in the following two subsections. In our experiments we have used 40
iterations for both the algorithms. We have not studied the defining of a sufficient number of
iterations, and 40 iterations probably is a too high number and we could use less iterations
to achieve the same performance in shorter time. One way to define the number of iterations
automatically would be to have a threshold for the total change between iterations, and stop
after the change has reduced to a smaller value than the given threshold.

2.2 Anisotropic Mean Filtering
The anisotropic mean algorithm iteratively computes weighted means within a small window
S around each pixel. We have used a 3x3 window. The weights depend on the absolute
difference between the pixel value It(i, j), (i, j) ∈ S and the mid-pixel value It(r0, c0). The
number of iterations (time) is denoted by the subindex t.

It(r0.c0) =
1

∑
i=−1

1

∑
j=−1

It−1(r0 + i, c0 + j)/∆i,j, (1)

∆i,j = |It−1(r0, c0)− It−1(r0 + i, c0 + j)|, (2)

i f ∆i,j = 0, then∆i,j = 1, (3)

i f ∆i,j > T, then ∆i,j = ∞. (4)

This is iterated from the time T = 1 until the desired amount of iterations, in our case 40, has
been reached. At t = 0, then input is the original SAR image.

2.3 Anisotropic Median Filtering
The anisotropic median is also computed iteratively either using only non-edge points or edge
points depending on whether the mid-point is non-edge or edge, respectively. This is also
computed iteratively in a 3x3 window, S. So it is computed as

It = Median(It−1(i, j)), (i, j) ∈ S\E (5)

for the non-edge mid-points and

It = Median(It−1(i, j)), (i, j) ∈ S ∩ E (6)

for the edge points. E is the set of the edge points. This algorithm naturally requires an edge
detection to be performed before running it. This is also iterated from the time T = 1 until the
desired amount of iterations (40) has been reached. At t = 0, then input is again the original
SAR image.

Fig. 1. An example of speckle filtering, the original Radarsat-1 image (≈ 75x75 km, upper left),
iterative 3x3 median (40 iterations, upper right), anisotropic mean (T = 15, 40 iterations, lower
left), and anisotropic 3x3 median (40 iterations, lower right). The (isotropic) iterative median
clearly blurs edges.
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often they are not straight lines, however. The segment shape can be described by shape fea-
tures based on the segment edges. The segment shape features in our approach are computed
from the ordered edge points sampled along the edge. Then the object shape can roughly
be characterized by the polygon defined by the sampled set of the edge points, and multiple
useful features based on this presentation can be computed for the ice type classification.
We have collected C-band SAR data, both Radarsat and Envisat ASAR data over the Baltic Sea
and also over the Arctic Sea areas for our studies. The data are Radarsat ScanSAR wide mode
data and Envisat ASAR wide swath mode data. These data have a resolution of about 100m
and cover an area of 400-500 km wide, and thus are suitable for operational sea ice monitoring.

2. Preprocessing

The preprocessing chain consists of the georectification to Mercator (Baltic Sea) or Polar Stere-
ographic projection (Arctic), incidence angle correction, Karvonen et al. (2002), land masking,
speckle filtering, and multi-resolution segmentation.

2.1 Speckle Filtering
We have studied two iterative algorithms performing an edge-preserving filtering. One is
based on an anisotropic mean and the other on anisotropic median computation. Both the
algorithms have given very good results according to our visual judgment. The algorithms
are shortly described in the following two subsections. In our experiments we have used 40
iterations for both the algorithms. We have not studied the defining of a sufficient number of
iterations, and 40 iterations probably is a too high number and we could use less iterations
to achieve the same performance in shorter time. One way to define the number of iterations
automatically would be to have a threshold for the total change between iterations, and stop
after the change has reduced to a smaller value than the given threshold.

2.2 Anisotropic Mean Filtering
The anisotropic mean algorithm iteratively computes weighted means within a small window
S around each pixel. We have used a 3x3 window. The weights depend on the absolute
difference between the pixel value It(i, j), (i, j) ∈ S and the mid-pixel value It(r0, c0). The
number of iterations (time) is denoted by the subindex t.

It(r0.c0) =
1

∑
i=−1

1

∑
j=−1

It−1(r0 + i, c0 + j)/∆i,j, (1)

∆i,j = |It−1(r0, c0)− It−1(r0 + i, c0 + j)|, (2)

i f ∆i,j = 0, then∆i,j = 1, (3)

i f ∆i,j > T, then ∆i,j = ∞. (4)

This is iterated from the time T = 1 until the desired amount of iterations, in our case 40, has
been reached. At t = 0, then input is the original SAR image.

2.3 Anisotropic Median Filtering
The anisotropic median is also computed iteratively either using only non-edge points or edge
points depending on whether the mid-point is non-edge or edge, respectively. This is also
computed iteratively in a 3x3 window, S. So it is computed as

It = Median(It−1(i, j)), (i, j) ∈ S\E (5)

for the non-edge mid-points and

It = Median(It−1(i, j)), (i, j) ∈ S ∩ E (6)

for the edge points. E is the set of the edge points. This algorithm naturally requires an edge
detection to be performed before running it. This is also iterated from the time T = 1 until the
desired amount of iterations (40) has been reached. At t = 0, then input is again the original
SAR image.

Fig. 1. An example of speckle filtering, the original Radarsat-1 image (≈ 75x75 km, upper left),
iterative 3x3 median (40 iterations, upper right), anisotropic mean (T = 15, 40 iterations, lower
left), and anisotropic 3x3 median (40 iterations, lower right). The (isotropic) iterative median
clearly blurs edges.
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2.4 Segmentation
The segmentation algorithm we use is a K-means algorithm, Linde et al. (1980), applied to
the pixel intensity values of the speckle-filtered SAR images. The values of K are typically in
the range 4–8 for our SAR data. In the beginning the class means are initialized based on a
cumulative data histogram computed from the image. Then the upper limits for K clusters
are computed to produce K bins of equal amounts of samples and the initial class means are
set to be in the middle of two adjacent limits, i.e. mk = 0.5(Lk−1 + Lk), where Li’s are the
limits between two adjacent data bins. After this initialization step, the K-means algorithm
is iterated using only the image pixel values at the cluster (or segment) edges, in the sense
of 8-neighborhood, from the previous iteration in the iterative computation. The iteration is
repeated until no changes occur or a maximum number of iterations has been reached (to
guarantee stopping).
A more sophisticated segmentation result could be achieved by adding more (texture) fea-
tures. We are studying the inclusion of autocorrelation to the segmentation, but then we also
need to exclude the values at the segment boundaries, because large changes at the segment
edges cause high autocorrelation. Instead we should first perform an intensity-based segmen-
tation and only after that divide the segments, if necessary, based on the texture feature.

2.5 Multi-resolution Approach
Because we here are using small scale-segments in the SAR images as features, it is necessary
to have a multi-resolution presentation of the data. Then we can compute statistics of smaller-
scale features over the larger scale segments, such that the results are statistically relevant.
The traditional multi-resolution approaches typically use some low pass filtering and builds
a multi-resolution pyramid of the data. This naturally also reduces the accuracy of segment
boundaries at the low resolutions. On the other hand, processing at the low resolutions is
faster and less memory is required. However, we have here adopted a multi-resolution ap-
proach based on segmentation, segment sizes and contrasts between segments. We use three
resolution layers generated by an algorithm which starts from the K-means segmentation re-
sults and then combines the adjacent segments up to a given size limit Ts (in pixels) to their
neighbor segments which are larger than Ts (if they exist) if the edge contrast between the
segments at the edge boundary is less than a contrast threshold Tc. The contrast threshold
depends linearly on the segment area and varies between given values for the minimum and
maximum segment sizes. At each iteration the smaller segments are joined to the segments
larger than Ts, and after each iteration the values Ts and Tc are increased (Ts) and decreased
(Tc) linearly starting from given parameter start values and ending up to given parameter end
values. Finally we perform a joining of the small segments to larger segments such that all
the segments smaller than a given threshold Ttot are joined to their neighbors. A sophisticated
way of doing this is again to use an iterative method such that first the smaller segments are
joined and finally the larger segments. The thresholds depend on the desired resolution level
and on the image resolution. Higher size thresholds are used for the lower resolutions. A
suitable value for the contrast start threshold is around 30–50 for our data, and the end value
in the range 0–10.
The pseudocode of the joining algorithm looks this:

# Initialization of the thresholds, Tsz is segment size threshold
# and its initial value Tsz(0) is a smaller value than the final value Tsz(1).
# Tc is a inter-segment contrast threshold.
# Its initial value Tc(0) is a larger value than its final value Tc(1).
Tsz = Tsz(0); Tc=Tc(0);

Sstep=(Tsz(1)-Tsz(0))/(Niterations);
Cstep=(Tc(0)-Tc(1))/(Niterations);

# This iteration joins the segments starting from the smaller segments
for (Niterations) do

for (each segment)
if ((segment_size < Tsz) AND (segment_contrast < Tc) AND

(some_neighbor_segment_size >= Tsz)) then
Join the segment to the closest larger segment (minimum edge contrast)
Tsz = Tsz + Sstep; Tc = Tc - Cstep;

endif
end

end

# This iteration is just to guarantee that all the segments are joined
# It typically only has a very small affect (if it has).
while (no changes occur OR maximum count reached) do

for (each segment)
if ((segment_size < Tsz) AND (segment_contrast < Tc) AND

(some_neighbor_segment_size >= Tsz)) then
Join the segment to the closest larger segment (minimum edge contrast)

endif
end

end

One way to reduce resolution would also be to reduce the number of clusters (K) in the K-
means clustering, i.e. to use less clusters for lower resolutions. We have made some studies
of this approach also, but the work for finding optimal parametrization and integrating this
with the current algorithm is still under construction.

Fig. 2. The multi-resolution concept.

3. Edge Features

We have used the canny edge detection, Canny (1986), to detect edges in the SAR images. The
Canny edge detector however only takes into account the local neighborhood in the threshold-
ing. To get the connected edges better included we perform the Canny edge detection twice
for one image, with two sets of thresholds, the high and low thresholds. If an edge resulting
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is iterated using only the image pixel values at the cluster (or segment) edges, in the sense
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repeated until no changes occur or a maximum number of iterations has been reached (to
guarantee stopping).
A more sophisticated segmentation result could be achieved by adding more (texture) fea-
tures. We are studying the inclusion of autocorrelation to the segmentation, but then we also
need to exclude the values at the segment boundaries, because large changes at the segment
edges cause high autocorrelation. Instead we should first perform an intensity-based segmen-
tation and only after that divide the segments, if necessary, based on the texture feature.

2.5 Multi-resolution Approach
Because we here are using small scale-segments in the SAR images as features, it is necessary
to have a multi-resolution presentation of the data. Then we can compute statistics of smaller-
scale features over the larger scale segments, such that the results are statistically relevant.
The traditional multi-resolution approaches typically use some low pass filtering and builds
a multi-resolution pyramid of the data. This naturally also reduces the accuracy of segment
boundaries at the low resolutions. On the other hand, processing at the low resolutions is
faster and less memory is required. However, we have here adopted a multi-resolution ap-
proach based on segmentation, segment sizes and contrasts between segments. We use three
resolution layers generated by an algorithm which starts from the K-means segmentation re-
sults and then combines the adjacent segments up to a given size limit Ts (in pixels) to their
neighbor segments which are larger than Ts (if they exist) if the edge contrast between the
segments at the edge boundary is less than a contrast threshold Tc. The contrast threshold
depends linearly on the segment area and varies between given values for the minimum and
maximum segment sizes. At each iteration the smaller segments are joined to the segments
larger than Ts, and after each iteration the values Ts and Tc are increased (Ts) and decreased
(Tc) linearly starting from given parameter start values and ending up to given parameter end
values. Finally we perform a joining of the small segments to larger segments such that all
the segments smaller than a given threshold Ttot are joined to their neighbors. A sophisticated
way of doing this is again to use an iterative method such that first the smaller segments are
joined and finally the larger segments. The thresholds depend on the desired resolution level
and on the image resolution. Higher size thresholds are used for the lower resolutions. A
suitable value for the contrast start threshold is around 30–50 for our data, and the end value
in the range 0–10.
The pseudocode of the joining algorithm looks this:

# Initialization of the thresholds, Tsz is segment size threshold
# and its initial value Tsz(0) is a smaller value than the final value Tsz(1).
# Tc is a inter-segment contrast threshold.
# Its initial value Tc(0) is a larger value than its final value Tc(1).
Tsz = Tsz(0); Tc=Tc(0);

Sstep=(Tsz(1)-Tsz(0))/(Niterations);
Cstep=(Tc(0)-Tc(1))/(Niterations);

# This iteration joins the segments starting from the smaller segments
for (Niterations) do

for (each segment)
if ((segment_size < Tsz) AND (segment_contrast < Tc) AND

(some_neighbor_segment_size >= Tsz)) then
Join the segment to the closest larger segment (minimum edge contrast)
Tsz = Tsz + Sstep; Tc = Tc - Cstep;

endif
end

end

# This iteration is just to guarantee that all the segments are joined
# It typically only has a very small affect (if it has).
while (no changes occur OR maximum count reached) do

for (each segment)
if ((segment_size < Tsz) AND (segment_contrast < Tc) AND

(some_neighbor_segment_size >= Tsz)) then
Join the segment to the closest larger segment (minimum edge contrast)

endif
end

end

One way to reduce resolution would also be to reduce the number of clusters (K) in the K-
means clustering, i.e. to use less clusters for lower resolutions. We have made some studies
of this approach also, but the work for finding optimal parametrization and integrating this
with the current algorithm is still under construction.

Fig. 2. The multi-resolution concept.

3. Edge Features

We have used the canny edge detection, Canny (1986), to detect edges in the SAR images. The
Canny edge detector however only takes into account the local neighborhood in the threshold-
ing. To get the connected edges better included we perform the Canny edge detection twice
for one image, with two sets of thresholds, the high and low thresholds. If an edge resulting
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Fig. 3. A part of a Radarsat-1 SAR image (Baltic Sea, ≈ 75x75 km, upper left) and its segmen-
tation in the three resolutions: low resolution (upper right), medium resolution (lower left)
and high resolution (lower right).

from the Canny edge detection with the high parameter values is connected to an edge de-
tected with the low parameters, then the edge from the detection with low parameter values
is also included as an edge. We use the Canny algorithm with 5x5 pixel Gaussian smoothing
and parameters Tlo = 100 and Thi = 120 as the high Canny parameter values and Tlo = 60
and Thi = 100 as the low Canny parameter values. The selection of these values is naturally
dependent on the data scaling. These presented values seem to be a suitable selection for our
SAR data. The edge detection is always computed for the SAR data before speckle filtering.
We divide the located edges into two categories, depending whether they are on a segment
boundary area or inside the segment. The edge boundary area is defined as a the area of pixels
which have other segments’ pixels within its 8-neighborhood.

3.1 Segment Boundary Strength
The segment boundary strength can be defined in multiple ways. We can study the local gra-
dients between the segments at the boundaries, or just simply check the amount of detected
edge pixels at the segment boundary. The segment boundary strength can also give informa-
tion on the segment. We utilize the segment edge contrast between adjacent segments in our

Fig. 4. A part of a SAR image (≈ 25x25 km, left), detected edges (middle) and the correspond-
ing structured edges (right), i.e. edges which are parts of larger edge segments than a given
threshold, here 10.

segment joining algorithm. The segment boundary strength can also be used as a feature in
segment classification, but here we mainly concentrate on the within-segment features.

3.2 Structure within Segments
The structure within segments is defined by the amount of different edge types within the
segment. The edge is here said to be structured if the size of a uniform edge segment (i.e. con-
nected edge pixels in the sense of 8-neighborhood) is larger than a given threshold Te (Te > 1),
and unstructured (random edge) if the size is less or equal than Te. If the segment size without
segment boundaries is A, then we can compute three features related to the structuredness of
the segment. The first is the degree of the segment random roughness or deformation

DR = NR/A, (7)

the second is the degree of the segment structured randomness or deformation

DS = NS/A, (8)

and the third is the relative randomness

DRS = NR/NS. (9)

NR and NS are the numbers of structured and random edges within the segment. The total
relative number of segment edge pixels, which we here also call the segment deformation, is

D = (NR + NS)/A = N/A. (10)

N is the total number of edge points in a segment.

3.3 Corners
We have also studied the occurrence of corner points at the segment boundaries and inside
segments. To detect corners we have used a variant of the Harris (aka Harris-Stephens) edge
detector, Harris & Stephens (1988). Instead of computing the Harris corner response function
Mc, we have used the eigenvalues (λ1 > λ2) of the Harris matrix and thresholds Thi and Tlo
for the eigenvalues. If λ1 > Thi at some image location (r,c), then (r,c) can be considered as an
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Fig. 3. A part of a Radarsat-1 SAR image (Baltic Sea, ≈ 75x75 km, upper left) and its segmen-
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and parameters Tlo = 100 and Thi = 120 as the high Canny parameter values and Tlo = 60
and Thi = 100 as the low Canny parameter values. The selection of these values is naturally
dependent on the data scaling. These presented values seem to be a suitable selection for our
SAR data. The edge detection is always computed for the SAR data before speckle filtering.
We divide the located edges into two categories, depending whether they are on a segment
boundary area or inside the segment. The edge boundary area is defined as a the area of pixels
which have other segments’ pixels within its 8-neighborhood.

3.1 Segment Boundary Strength
The segment boundary strength can be defined in multiple ways. We can study the local gra-
dients between the segments at the boundaries, or just simply check the amount of detected
edge pixels at the segment boundary. The segment boundary strength can also give informa-
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ing structured edges (right), i.e. edges which are parts of larger edge segments than a given
threshold, here 10.

segment joining algorithm. The segment boundary strength can also be used as a feature in
segment classification, but here we mainly concentrate on the within-segment features.

3.2 Structure within Segments
The structure within segments is defined by the amount of different edge types within the
segment. The edge is here said to be structured if the size of a uniform edge segment (i.e. con-
nected edge pixels in the sense of 8-neighborhood) is larger than a given threshold Te (Te > 1),
and unstructured (random edge) if the size is less or equal than Te. If the segment size without
segment boundaries is A, then we can compute three features related to the structuredness of
the segment. The first is the degree of the segment random roughness or deformation

DR = NR/A, (7)

the second is the degree of the segment structured randomness or deformation

DS = NS/A, (8)

and the third is the relative randomness

DRS = NR/NS. (9)

NR and NS are the numbers of structured and random edges within the segment. The total
relative number of segment edge pixels, which we here also call the segment deformation, is

D = (NR + NS)/A = N/A. (10)

N is the total number of edge points in a segment.

3.3 Corners
We have also studied the occurrence of corner points at the segment boundaries and inside
segments. To detect corners we have used a variant of the Harris (aka Harris-Stephens) edge
detector, Harris & Stephens (1988). Instead of computing the Harris corner response function
Mc, we have used the eigenvalues (λ1 > λ2) of the Harris matrix and thresholds Thi and Tlo
for the eigenvalues. If λ1 > Thi at some image location (r,c), then (r,c) can be considered as an
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edge point, and if additionally λ2 > Tlo, then it is a corner point. The feature we use is the
relative amount of corners Dc computed as:

Dc =
Nc

NS + NR
= Nc/N. (11)

The Harris algorithm could also be used for detecting edges instead of the Canny algorithm.

3.4 Segment Shape Features Based on Segment Edges
We have also studied some shape features of the segments. The segment shape is naturally
described by the segment boundary. The segment edges or boundaries are estimated as poly-
gons. For each segment we have used a constant (20 points) with equivalent distance between
the points along the segment boundary to define the polygon. This approach is basically sim-
ilar to the MPEG-7 shape descriptors, Bober (2001), but our features are different and better
suitable for the random shapes of ice segment features. One simple feature is the segment
length, l, which in our approach is estimated as the maximum length between two edge poly-
gon corner points along the polygon edge. The shorter distance of the two alternatives of
clockwise and counter-clockwise directions is the distance between a single pair of polygon
corner points. The (average) segment width, w, can then be computed as

w = A/l, (12)

where A is the segment area. The segment shape ratio Rs can then be computed as

Rs = l/w. (13)

This feature is a scale-independent segment shape descriptor and is high for long and narrow
segments and smaller for compact segments.
We also compute the segment edge contrast, Ce, i.e. the mean difference between the inside-
segment edge points and outside-segment edge points

Ce = ∑
k∈in

Ik/Nin − ∑
k∈out

Ik/Nout. (14)

The sums are computed along the segment edge, Nin and Nout are the numbers of the edge
pixels inside and outside of the segment along the segment boundary, respectively. One more
feature describing the curvature of a segment is computed as a count of those pairs of two
adjacent polygon line segments for which the angle between the line segments exceeds a given
angle α. If the coordinates of the three polygon corners defining the two adjacent polygon
edge segments are (rk−1, ck−1), (rk, ck) and (rk+1, ck+1), the vectors to be compared are p1 =
(∆r1,∆c1) and p2 = (∆r2,∆c2). The index k is computed in modulo Np (circular) arithmetic
such that no over or underflow occur. Np is the number of polygon corners. The vector
components are

∆r1 = rk − rk−1 (15)

∆c1 = ck − ck−1 (16)

∆r2 = rk+1 − rk (17)

∆c2 = ck+1 − ck, (18)

and the corresponding vector lengths l1 and l2

l1 =
√

∆r1
2 + ∆c1

2 (19)

l2 =
√

∆r2
2 + ∆c2

2. (20)

The cosine of the angle between the polygon edge segments p1 and p2 is

cos(α) =
< p1, p2 >

l1l2
. (21)

We have set a threshold angle, Tα, for curvature i.e. the polygon is curved at the location
(rk, ck) if α > Tα, and the total curvature Rc for a edge polygon is defined as the relation of the
number of the curved polygon corner point locations Nc to the total number of the polygon
corner points Np:

Rc = Nc/Np. (22)

We have used the value Tα = π/3 in our studies.
In figure 5 we show two artificial segments and their 20-point boundary polygons, and in
table 1 the features based on the boundary polygons of these two segments are computed.

Fig. 5. An example of two artificial segments and their 20-point bounding polygons.

# r0 c0 Iin Iout Ce A L W Rs Rc

1 88 168 153 0 153 11783 229.27 51.39 4.46 2/20 = 0.1
2 251 104 153 0 153 7174 455.48 15.75 28.92 8/20 = 0.4

Table 1. Computed features for the artificial segments of Fig. 5.

3.5 Shape Features for the Small Segments
These features are not related to the edges, because the polygon estimation of the edge for
small segments is not a very useful approach. We have used two measures of compactness
instead. The first measure (CS1) compares the overlapping of the actual segment and a sphere
of the same size as the segment, with its center at the center of mass of the segment. The other
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relative amount of corners Dc computed as:

Dc =
Nc

NS + NR
= Nc/N. (11)
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described by the segment boundary. The segment edges or boundaries are estimated as poly-
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the points along the segment boundary to define the polygon. This approach is basically sim-
ilar to the MPEG-7 shape descriptors, Bober (2001), but our features are different and better
suitable for the random shapes of ice segment features. One simple feature is the segment
length, l, which in our approach is estimated as the maximum length between two edge poly-
gon corner points along the polygon edge. The shorter distance of the two alternatives of
clockwise and counter-clockwise directions is the distance between a single pair of polygon
corner points. The (average) segment width, w, can then be computed as

w = A/l, (12)

where A is the segment area. The segment shape ratio Rs can then be computed as

Rs = l/w. (13)

This feature is a scale-independent segment shape descriptor and is high for long and narrow
segments and smaller for compact segments.
We also compute the segment edge contrast, Ce, i.e. the mean difference between the inside-
segment edge points and outside-segment edge points

Ce = ∑
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k∈out

Ik/Nout. (14)

The sums are computed along the segment edge, Nin and Nout are the numbers of the edge
pixels inside and outside of the segment along the segment boundary, respectively. One more
feature describing the curvature of a segment is computed as a count of those pairs of two
adjacent polygon line segments for which the angle between the line segments exceeds a given
angle α. If the coordinates of the three polygon corners defining the two adjacent polygon
edge segments are (rk−1, ck−1), (rk, ck) and (rk+1, ck+1), the vectors to be compared are p1 =
(∆r1,∆c1) and p2 = (∆r2,∆c2). The index k is computed in modulo Np (circular) arithmetic
such that no over or underflow occur. Np is the number of polygon corners. The vector
components are

∆r1 = rk − rk−1 (15)

∆c1 = ck − ck−1 (16)

∆r2 = rk+1 − rk (17)

∆c2 = ck+1 − ck, (18)

and the corresponding vector lengths l1 and l2

l1 =
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2 + ∆c1

2 (19)

l2 =
√

∆r2
2 + ∆c2

2. (20)

The cosine of the angle between the polygon edge segments p1 and p2 is

cos(α) =
< p1, p2 >

l1l2
. (21)

We have set a threshold angle, Tα, for curvature i.e. the polygon is curved at the location
(rk, ck) if α > Tα, and the total curvature Rc for a edge polygon is defined as the relation of the
number of the curved polygon corner point locations Nc to the total number of the polygon
corner points Np:

Rc = Nc/Np. (22)

We have used the value Tα = π/3 in our studies.
In figure 5 we show two artificial segments and their 20-point boundary polygons, and in
table 1 the features based on the boundary polygons of these two segments are computed.

Fig. 5. An example of two artificial segments and their 20-point bounding polygons.

# r0 c0 Iin Iout Ce A L W Rs Rc

1 88 168 153 0 153 11783 229.27 51.39 4.46 2/20 = 0.1
2 251 104 153 0 153 7174 455.48 15.75 28.92 8/20 = 0.4

Table 1. Computed features for the artificial segments of Fig. 5.

3.5 Shape Features for the Small Segments
These features are not related to the edges, because the polygon estimation of the edge for
small segments is not a very useful approach. We have used two measures of compactness
instead. The first measure (CS1) compares the overlapping of the actual segment and a sphere
of the same size as the segment, with its center at the center of mass of the segment. The other
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measure (CS2) finds the bounding sphere of the segment and the feature is the segment area
divided by the bounding sphere area, Aout.

CS1 = Ain/A. (23)

CS2 = A/Aout. (24)

Both the features actually give similar information and we have used only the feature CS1 in
our classification experiments. The interpretation is straightforward: If the feature values are
close to one, the segment is compact and if they are close to zero, the segments shape is not
compact. Thus we have used two thresholds, Tc1 < Tc2. If CS1 < Tc1, the segment is classified
to a long segment and if CS1 > Tc2 it is classified to a compact segment.

3.6 Other studied Edge Features
We also studied the directional edge strengths using the MPEG-7 edge filters, Manjunath et al.
(2001), and the local direction distributions of the edges. The orientation of the SAR edges can
not be used in the same way as for typical textures, i.e. by dividing the edges to vertically
oriented, horizontally oriented and so on, because the SAR orientation depends on the imag-
ing geometry and on the location, and similar ice fields can have edge direction distributions
which are rotated with respect to each other. Because of this, we can not use an edge direction
histogram as a SAR feature. But we can for example utilize a feature describing how oriented
the edges in a SAR image are locally, i.e. whether there exist a locally dominant direction
within a image window of a fixed size. Unfortunately they did not show very good classifi-
cation performance for our SAR data. Only some features, like straight ship tracks or straight
ice edges could be distinguished and these could also be located by other means, e.g. locating
the structured edges and edge contrasts.
We have also computed edge segment size distributions withing segments and at the seg-
ment boundaries, but we have not studied their properties carefully yet. The division into
structured and random edges, i.e. a two-valued distribution, is our current approach.

Fig. 6. A ramp edge and a sharp edge, the edge normal is horizontal in the image and the pixel
value is in the vertical direction. For a sharp edge the intensity difference for both distances
is about equal, and for an ideal ramp edge the intensity difference increases linearly as the
distance increases.

We have also studied the division of segment and within-segment edges into sharp edges and
ramp edges (smooth edges). The edge is considered as a sharp edge if at the edge D1 ≈ D2,

D1 = I1 − I−1, D2 = I2 − I−2, i.e. the pixel values in the speckle filtered image at two distances,
l1 < l2, along the edge normal on opposite sides of the edge are almost equal, and as a ramp
edge if aD1 < D2, a > 1.0 is a given factor, see Fig. 6. The distribution of edge type to these
two categories was also studied within the segments. The relation of the amounts of these two
edge types can also be used to classify the segments, but the geophysical interpretation is still
missing. At least it can be used to distinguish between smooth ice segments (like open water
and fast ice) and deformed ice segments, as many other edge features, but its ability to provide
complementary information is still vague. Intuitively it could be useful in distinguishing e.g.
areas with (widely spaced) clear ridges from areas of rubble fields.

4. Some Classification Results

4.1 Open Water Detection
We have earlier used the segment-wise autocorrelation as an open water detector, see Karvo-
nen et al. (2005). Our recent studies have shown that also edge information can be utilized in
open water detection.
The relative amount of edges within segment D can be used to locate most of the open water
area, but even better indicator for open water is the relative amount of structured edges DS.
In some cases open water can be mixed with level ice or fast ice areas. The classification can
be further improved in some cases by using the relative amount of corners Dc as an additional
feature. In general we can say that segment-wise DS is a good open water detector, such that
open water has very low values of DS. Performed tests show that it works well for both the
Baltic sea ice and for the Arctic Sea ice. We have two examples of this shown in Figs. 7 and
8. The ASAR mosaic of Fig. 8 has been composed by overlaying all the available ASAR data
over the Kara sea area starting from November 2008. Multiple daily images were typically
acquired, and this mosaic image describes the ice situation on January 23rd 2009.

4.2 Ice Classification Based on the Inside-Segment Edges
We have made studies with several different sets of edge features. The ratio of the total num-
ber of edges within segment and the segment area (D) represents the degree of deformation
of the segment. However, this only feature can not always e.g. very well distinguish between
open water and deformed ice areas. But including the relative amount of structured edges
(DS) and the relative number corners (DC), the ice types can be rather well distinguished, see
Fig. 9. This figure is a three channel image of the three features suitably scaled for visual in-
spection. In this figure over the the Gulf of Bothnia, Baltic Sea, the open water areas appear as
brown areas and fast ice areas have more red color, indicating that these areas have relatively
more corner points than the open water areas. The other ice areas mostly have different tones
of green, the more deformed areas being brighter. This example shows the potential of using
these three features together for sea ice SAR classification.

4.3 Ice Classification Based on the Segment Shape Features
More information from the data can be extracted by the segment shape classification. Here we
only show one example of segment shape classification for one SAR window. The segments
smaller than a given size threshold (TA = 3000) have been located and classified to compact
segments and non-compact (“long”) segments and indicated with different colors in Fig. 10.
The relative amounts, with respect to the segment area, of different types of these smaller seg-
ments withing medium-scale or large-scale segments (or areas) can then be computed, and
we can then get information on the relative amount of cracks, ridges and other ice structures
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measure (CS2) finds the bounding sphere of the segment and the feature is the segment area
divided by the bounding sphere area, Aout.

CS1 = Ain/A. (23)

CS2 = A/Aout. (24)
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our classification experiments. The interpretation is straightforward: If the feature values are
close to one, the segment is compact and if they are close to zero, the segments shape is not
compact. Thus we have used two thresholds, Tc1 < Tc2. If CS1 < Tc1, the segment is classified
to a long segment and if CS1 > Tc2 it is classified to a compact segment.

3.6 Other studied Edge Features
We also studied the directional edge strengths using the MPEG-7 edge filters, Manjunath et al.
(2001), and the local direction distributions of the edges. The orientation of the SAR edges can
not be used in the same way as for typical textures, i.e. by dividing the edges to vertically
oriented, horizontally oriented and so on, because the SAR orientation depends on the imag-
ing geometry and on the location, and similar ice fields can have edge direction distributions
which are rotated with respect to each other. Because of this, we can not use an edge direction
histogram as a SAR feature. But we can for example utilize a feature describing how oriented
the edges in a SAR image are locally, i.e. whether there exist a locally dominant direction
within a image window of a fixed size. Unfortunately they did not show very good classifi-
cation performance for our SAR data. Only some features, like straight ship tracks or straight
ice edges could be distinguished and these could also be located by other means, e.g. locating
the structured edges and edge contrasts.
We have also computed edge segment size distributions withing segments and at the seg-
ment boundaries, but we have not studied their properties carefully yet. The division into
structured and random edges, i.e. a two-valued distribution, is our current approach.

Fig. 6. A ramp edge and a sharp edge, the edge normal is horizontal in the image and the pixel
value is in the vertical direction. For a sharp edge the intensity difference for both distances
is about equal, and for an ideal ramp edge the intensity difference increases linearly as the
distance increases.

We have also studied the division of segment and within-segment edges into sharp edges and
ramp edges (smooth edges). The edge is considered as a sharp edge if at the edge D1 ≈ D2,

D1 = I1 − I−1, D2 = I2 − I−2, i.e. the pixel values in the speckle filtered image at two distances,
l1 < l2, along the edge normal on opposite sides of the edge are almost equal, and as a ramp
edge if aD1 < D2, a > 1.0 is a given factor, see Fig. 6. The distribution of edge type to these
two categories was also studied within the segments. The relation of the amounts of these two
edge types can also be used to classify the segments, but the geophysical interpretation is still
missing. At least it can be used to distinguish between smooth ice segments (like open water
and fast ice) and deformed ice segments, as many other edge features, but its ability to provide
complementary information is still vague. Intuitively it could be useful in distinguishing e.g.
areas with (widely spaced) clear ridges from areas of rubble fields.

4. Some Classification Results

4.1 Open Water Detection
We have earlier used the segment-wise autocorrelation as an open water detector, see Karvo-
nen et al. (2005). Our recent studies have shown that also edge information can be utilized in
open water detection.
The relative amount of edges within segment D can be used to locate most of the open water
area, but even better indicator for open water is the relative amount of structured edges DS.
In some cases open water can be mixed with level ice or fast ice areas. The classification can
be further improved in some cases by using the relative amount of corners Dc as an additional
feature. In general we can say that segment-wise DS is a good open water detector, such that
open water has very low values of DS. Performed tests show that it works well for both the
Baltic sea ice and for the Arctic Sea ice. We have two examples of this shown in Figs. 7 and
8. The ASAR mosaic of Fig. 8 has been composed by overlaying all the available ASAR data
over the Kara sea area starting from November 2008. Multiple daily images were typically
acquired, and this mosaic image describes the ice situation on January 23rd 2009.

4.2 Ice Classification Based on the Inside-Segment Edges
We have made studies with several different sets of edge features. The ratio of the total num-
ber of edges within segment and the segment area (D) represents the degree of deformation
of the segment. However, this only feature can not always e.g. very well distinguish between
open water and deformed ice areas. But including the relative amount of structured edges
(DS) and the relative number corners (DC), the ice types can be rather well distinguished, see
Fig. 9. This figure is a three channel image of the three features suitably scaled for visual in-
spection. In this figure over the the Gulf of Bothnia, Baltic Sea, the open water areas appear as
brown areas and fast ice areas have more red color, indicating that these areas have relatively
more corner points than the open water areas. The other ice areas mostly have different tones
of green, the more deformed areas being brighter. This example shows the potential of using
these three features together for sea ice SAR classification.

4.3 Ice Classification Based on the Segment Shape Features
More information from the data can be extracted by the segment shape classification. Here we
only show one example of segment shape classification for one SAR window. The segments
smaller than a given size threshold (TA = 3000) have been located and classified to compact
segments and non-compact (“long”) segments and indicated with different colors in Fig. 10.
The relative amounts, with respect to the segment area, of different types of these smaller seg-
ments withing medium-scale or large-scale segments (or areas) can then be computed, and
we can then get information on the relative amount of cracks, ridges and other ice structures
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Fig. 7. A Radarsat-1 window over the ice edge, open water area is on the left side of the image
(upper left), its D (upper right) and DS images (lower middle). The open water areas appear
as dark areas, especially in the DS image, and the brash ice area at the ice edge appears bright
in both edge images, indicating that it has relative much edge points.

(smooth or rough/ridged compact segments) within the larger areas. We have used an exper-
imental set of parameters for the different segment classes as follows: for compact segments
Rs < 7 and Rc < 0.3, for “long” segments Rs > 11 and Rc < 0.4. The edge contrast threshold
applied was 5 for the dark segments and 15 for the bright segments, i.e. the contrast must
exceed these values to be classified. These parameters are also experimental, and studying of
ways to find better parameters is under construction.
Some examples of this classification are also given in Figs. 11 and 12. They show the relative
amount of different features with different gray tones, the brighter values indicating higher
occurrence of the specific feature type.
The relation of amount the edge types (sharp and ramp edges) can also be used as a feature,
it is high in the areas of prominent features, e.g. ice floes, ridges with large enough spacing
(depending on the SAR resolution) or cracks. This ratio can be used as an additional feature
for refining the segment-wise classification. Here we show one example of this feature in Fig.
13 for the ASAR mosaic shown in Fig. 8

Fig. 8. A SAR image mosaic over the Kara Sea (Jan 23rd 2009, upper image) and the values of
DS over the area (lower), The areas of open water, mainly on the left side of the image have
very low value of DS.
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Fig. 9. A Baltic Sea Radarsat-2 image (left) and a 3-feature classification result (RGB three
channel presentation) in medium resolution (right), the used features are the relative number
of corners (red), relative amount of edges (green), and relative amount of structured edges
(blue), the total area covered by the SAR image is about 500x300 km.

Fig. 10. A part of a Radarsat-1 SAR image (Baltic Sea, left), and the the classified features (for
segments smaller than a threshold, i.e A < TA, TA = 3000 pixels in this example, right). The
red segments have the edge contrast C > Tctr2 and the blue segments C < Tctr1, the segments
drawn with lighter red and blue are classified based on the small segment algorithm. The total
area covered by the image is about 75x75 km.

Fig. 11. Envisat ASAR image and detected class-wise features and their relative amounts in
different image areas. In the first column from top towards bottom: the original SAR data,
speckle-filtered (anisotropic median) data, segmentation. In the second column, the detected
features from top towards bottom: dark long features, bright long features, dark compact fea-
tures and bright compact features. In the third column the segment-wise (large-scale) amounts
of different features corresponding to the second row features.
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Fig. 9. A Baltic Sea Radarsat-2 image (left) and a 3-feature classification result (RGB three
channel presentation) in medium resolution (right), the used features are the relative number
of corners (red), relative amount of edges (green), and relative amount of structured edges
(blue), the total area covered by the SAR image is about 500x300 km.

Fig. 10. A part of a Radarsat-1 SAR image (Baltic Sea, left), and the the classified features (for
segments smaller than a threshold, i.e A < TA, TA = 3000 pixels in this example, right). The
red segments have the edge contrast C > Tctr2 and the blue segments C < Tctr1, the segments
drawn with lighter red and blue are classified based on the small segment algorithm. The total
area covered by the image is about 75x75 km.

Fig. 11. Envisat ASAR image and detected class-wise features and their relative amounts in
different image areas. In the first column from top towards bottom: the original SAR data,
speckle-filtered (anisotropic median) data, segmentation. In the second column, the detected
features from top towards bottom: dark long features, bright long features, dark compact fea-
tures and bright compact features. In the third column the segment-wise (large-scale) amounts
of different features corresponding to the second row features.
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Fig. 12. Segment-wise (large scale) relative amounts of different feature types for the Radarsat-
2 image (see Fig. 9): dark compact segments (upper left), bright narrow segments (upper
right), dark narrow segments (lower left), bright compact segments (lower right).

Fig. 13. The segment-wise ratio of structured to random edges for the ASAR mosaic of Fig. 8.
The ice areas with many cracks, ice floes or other clearly distinguishing features have higher
values. hight values and the other deformed fields, like rubble fields, have lower values. In the
open water covered areas (on the left side of the image) the values can have large variations
because there are only few edges in these areas, and a small change in the amount of edges of
either type can cause large changes in the ratio.

5. Conclusion and Future Work

We have developed a whole sea ice SAR image processing and interpretation chain and
demonstrated its usability. The basic idea is that most of the SAR information, in addition
to the backscattering lies in the SAR edges. We have also found out that suitable combina-
tions of our edge features can be used for sea ice SAR classification and they give us useful
complementary information of the sea ice structure. We believe that we have not yet discov-
ered the full potential of all the edge-related features and here only present some suitable
features for SAR classification.
The speckle filtering using either anisotropic mean or median works well and the execution
times are reasonable for operational SAR processing. We have not studied the optimal number
of iterations, and probably still use too many iterations.
The multi-resolution approach also seems to work well, and gives reasonable segmentations
and ice areas compared to visual interpretations. The selection of parameters naturally affects
the results of the lower resolution images produced by the segment joining algorithm. The
best results are achieved by using many iterations i.e. by increasing the joined segment size
slowly, but this also increases the execution times.
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values. hight values and the other deformed fields, like rubble fields, have lower values. In the
open water covered areas (on the left side of the image) the values can have large variations
because there are only few edges in these areas, and a small change in the amount of edges of
either type can cause large changes in the ratio.

5. Conclusion and Future Work

We have developed a whole sea ice SAR image processing and interpretation chain and
demonstrated its usability. The basic idea is that most of the SAR information, in addition
to the backscattering lies in the SAR edges. We have also found out that suitable combina-
tions of our edge features can be used for sea ice SAR classification and they give us useful
complementary information of the sea ice structure. We believe that we have not yet discov-
ered the full potential of all the edge-related features and here only present some suitable
features for SAR classification.
The speckle filtering using either anisotropic mean or median works well and the execution
times are reasonable for operational SAR processing. We have not studied the optimal number
of iterations, and probably still use too many iterations.
The multi-resolution approach also seems to work well, and gives reasonable segmentations
and ice areas compared to visual interpretations. The selection of parameters naturally affects
the results of the lower resolution images produced by the segment joining algorithm. The
best results are achieved by using many iterations i.e. by increasing the joined segment size
slowly, but this also increases the execution times.
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The classification results have been promising. Many sea ice classes can be distinguished with
very simple edge features, like the combination of amount of edges, and the relative amount of
structured edges and the relative amount of corners. The methods can distinguish open water
areas very well, and also different ice types and the areas with certain types of ice features
(e.g. cracks or ridges) can be located. Not all the features are found, but when using large
enough areas, the relative amounts of different features can be estimated.
The parametrization of the studied algorithms has been experimental and we must concen-
trate on better optimization of the parametrization. We are going to study an automated
parameter extraction for given training data sets to reduce the work of experimental parame-
ter definition. But even our experimental parameters have shown promising results and edge
features are a very promising addition to SAR classification algorithms. These features will
probably also be very useful for classification of other kinds of SAR data sets over land areas.
We have studied these features only with a few images from three instruments Radarsat-1,
Radarsat-2 and Envisat ASAR. In the next phase we are going to make tests for larger data
sets, for example for a whole winter season in both Baltic Sea and Kara Sea, and also for other
SAR instruments with different operating parameters (e.g. X- and L-band SAR).
The classification results have been evaluated against visual interpretation. Sea ice measure-
ments are very difficult and expensive to carry out. Because the ice is typically moving, except
in fast ice zones, multiple measurements should be made simultaneously (or temporally as
close as possible) with the satellite passing time. Even making a few measurements is difficult
and expensive, because typically a ship capable of operating in sea ice is required to get in
the target area. And the ice properties can differ much in a relatively small area, less than a
SAR pixel size. However, visual interpretation of the ice typing from SAR data by our sea ice
experts has been very good compared to our occasional field campaign measurements and
feedback from the Finnish ice breakers using this information, and we can consider it as good
reference data.
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1. Introduction 

Floods are common natural disasters throughout the world. Each year they cause 
considerable damage to people’s lives and properties. In the spring of 1973, the lower Saint 
John River in the Fredericton area (New Brunswick, Canada) experienced its worst ever 

Fig. 1. The impact of flooding in Fredericton, New Brunswick in Spring, 2008 

9
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recorded flooding, resulting in economic losses of CAD 31,9 million, and the loss of one life 
(CIWD, 1974). At the peak of the flood, private houses and public churches were flooded, 
and roads and bridges were damaged. 

 

 
Fig. 2. Flooding of St. John River in 2008 
 
Since 1973 other floods have caused another three lives lost and more than CAD 68.9 million 
in damage.  
 

 
Fig. 3. One house taken by the flood in 2008 
 
In May 2008, heavy rains combined with melted snow have overwhelmed the St. John River, 
which is 673 kilometres long, and brought water levels to a height that many regions have not 
seen in more than three decades. Homes have floated off their foundation and travelled 
downstream, while 600 families and individuals have been evacuated (see Figures 1, 2 and 3). 
The determination of the financial cost of damages caused by this flooding is still not finalized. 

 

Flood forecasting has been proven to reduce the property damage and the loss of lives 
(Sanders et al., 2005). The recent advances in forecasting for flood warning (Moore et al., 
2005) have shown that is possible to integrate rainfall modeling and forecasting with flood 
forecasting and warning. The research paper on World Wide Web based hydrological model 
for flood prediction using GIS (Al-Sabhan et al., 2003) gives an excellent overview of current 
research advances and a new on-line available prototype that combined hydrological 
modeling with Internet technology. 
 
However, in this research we didn’t try to customize any of the existing flood forecasting 
models described in the literature as it is proven to be very difficult and very specific to the 
different modeling tools that are used (Al-Sabhan et al., 2003). Instead, we implemented the 
automatization of specific existing processes, workflows and modeling tools for flood 
forecasting and monitoring in the New Brunswick Department of Environment.  
 
The Saint John River Forecast System operated by the Department of Environment 
Hydrology Centre is monitoring and predicting flood events along the Saint John River. The 
Hydrology Centre team uses hydrologic modeling software to predict water levels for the 
next 24 and 48 hours along the lower Saint John River Valley by incorporating climate data, 
weather forecast data, snow data and flow data.  
 
However, the predicted water levels provided by this system cannot satisfy the 
requirements of the decision support system for flood events. The system neither directly 
displays the areas affected by flooding, nor shows the difference between two flood events. 
Based on the water levels, it is hard for users to directly determine which houses, roads, and 
structures will be affected by the predicted flooding. To deal with this problem, it is 
necessary to visualize the output from hydrological modeling in a Geographic Information 
System (GIS). GISs have powerful tools that allow the predicted flood elevations to be 
displayed as a map showing the extent of the inundation. After the interfaces for the 
visualization of the impact of flood events are designed, a computerized system is 
developed that predicts the extent of floods and dynamically displays near-real-time flood 
information for decision makers and the general public. 
 
To improve flood prediction for Saint John River, we developed a Web GIS based decision 
support system for flood prediction and monitoring. In this paper, we present the methods 
for data integration, floodplain delineation, and online map interfaces. This paper is 
organized as follows: in Section 2, we briefly describe the Saint John River floodplain and in 
Section 3, we present hydrological modelling for flood forecasting. In section 4, we present 
the conceptual model of the flood prediction and monitoring system and in section 5, we 
explain the integration of hydrological modelling and GIS. Subsection 5.1 presents a Web-
based interface for dynamic flood prediction monitoring and mapping that can dynamically 
display observed and predicted flood extents for decision makers and the general public. In 
section 6, we present our conclusions, and in section 7 our acknowledgments. 

 
2. Saint John River Floodplain 

The Saint John River lies in a broad arc across South-Eastern Quebec, northern Maine and 
western New Brunswick. Its Canadian portion extends from a point on the international 
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for data integration, floodplain delineation, and online map interfaces. This paper is 
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2. Saint John River Floodplain 

The Saint John River lies in a broad arc across South-Eastern Quebec, northern Maine and 
western New Brunswick. Its Canadian portion extends from a point on the international 
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boundary with the State of Maine in United States to the Bay of Fundy. It drains a total 
watershed area of 54.600 km2. The river is about 700 km long, and the total fall from its 
headwaters to the city of Saint John is about 482 m. The slope of the river gradually 
decreases from about 1,5 metres per kilometre in the headwaters to 0,4 metres per kilometre 
in the reach above Fredericton (see Figure 4). 
 
The study area of this research is the floodplain area along a 90 km long section of the river 
from Fredericton to Oak Point and the French, Grand, Indian and Maquapit lakes. Flooding 
has been a significant problem for this area for a long time. From the largest and best 
documented flood occurred between April and May 1973, the greatest flood damage areas 
are located within the proposed study area and include:  

a) Fredericton south of the former CNR Bridge,  
b) Nashwaaksis Subdivision,  
c) East Bank downstream of the Princess Margaret Bridge, and  
d) the Lincoln area (ENB-MAL, 1979). 

 

 
Fig. 4. Overview of Saint John River watershed 
 
3. Hydrological Modelling for Flood Forecasting 

Flood forecasting on the Saint John River is performed by the Hydrology Centre of the New 
Brunswick Department of Environment in co-operation from interprovincial and 
international agencies. Both hydrologic and hydraulic models are utilized in order to 
forecast water levels in the lower Saint John River. The basic component of the system is the 
U.S. Army Corps of Engineers’ Streamflow Synthesis and Reservoir Regulation (SSARR) 
model. The Simulated Open Channel Hydraulics (SOCH) model of the Tennessee Valley 
Authority and the Dynamic Wave Operational (DWOPER) model (Fread, 1992; Fread, 1993; 
Fread and Lewis, 1998) of the National Weather Service are also used. 

 

 
Fig. 5. The map of existing water gauges in New Brunswick 
 

 
Fig. 6. The operational model of flood forecasting in New Brunswick River Watch 
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The Hydrology Centre monitors the water levels, stream flows and climate with partner 
agencies, and coordinates a co-operative snow survey with reports for the entire Saint John 
River Basin. There are networks of 25 stream-flow gauges, 16 water level gauges, and 43 
climate stations throughout the Saint John River Basin (see Figure 5). The data are 
transmitted to the Hydrology Centre through a variety of telecommunication systems and 
protocols (see Figure 6). The data are processed and analyzed before being accepted as input 
data to the models.  
 
Comparisons of predicted and actual water level observations over the last 10 years have 
shown that these forecasted river water levels have a 95% confidence level of 0,2 m. Thus, 
the hydrological modelling has very good flood prediction capabilities (Fread, 1993). 
However, the water levels predicted by the hydrological model cannot satisfy the 
requirements of the decision support system for flood events. Indeed, it is hard for users to 
directly determine which houses, roads, and structures will be affected by the predicted 
flooding, because the model neither directly displays the areas affected by flooding, nor 
shows the difference between two flood events. In order to overcome this problem, it is 
necessary to interface the hydrological modelling software with a Geographic Information 
System (GIS).  
 
In the past decades, engineers have developed many methods for delineating floodplain 
boundaries. Most of these methods are manual, tedious, and labour-intensive. With the 
advent of robust computer tools (GIS) and high accuracy Digital Terrain Model (DTM), 
automated floodplain delineation is achievable. Recently, several management systems for 
floodplain delineation have been developed and applied in the flood risk areas. These 
include floodplain delineation using watershed Modeling System (WMS) (EMRL, 1998), 
Arc/Info MIKE11_GIS (DHI, 2004), and HEC-GeoRAS (Ackerman, 2005). In this project, we 
used all of the above systems with CARIS software in order to implement floodplain 
delineation. CARIS (Computer Aided Resource Information System) develops and supports 
rigorous, technologically advanced geomatics software for managing spatial and non-spatial 
data. CARIS software supports Triangulated Irregular Networks and offers advanced 
algorithms for Digital Terrain models, such as interpolating elevations for given coordinates. 
In the next sections, we will show how the integration of CARIS with hydrological 
modelling software allows us to generate floodplain maps.  

 
4. Flood Prediction And Monitoring System 

In order to improve the current flood prediction system for the Saint John River, a new 
research has been initiated. Several provincial organisations in New Brunswick (Emergency 
Measures Organisation, NB Department of Environment, River-Watch and the University of 
New Brunswick) have been actively involved in this new research project titled “Decision 
Support for Flood Event Prediction and Monitoring (FEPM)”.  
The main objective of this research project is to build up a decision support system to 
improve the prevention, mitigation, response, and recovery from flood events.  
 
The New Brunswick Department of Environment Hydrology Center monitors a wide range 
of information on factors affecting flooding such as snow conditions, temperatures, 

 

precipitation patterns, water levels and stream flow conditions by using a wide variety of 
telecommunication systems ranging from satellites to the telephone.  
 
The New Brunswick Department of Environment Hydrology Center team uses hydrologic 
modelling software (DWOPER1) to predict water levels for the next 48 hours along the 
lower Saint John River Valley by processing climate data, weather forecast data, snow data, 
and flow data from approximately 60 water level gauges in New Brunswick. 
The design of the system allows near real-time imagery of actual flood conditions to be 
overlaid on the base mapping and existing imagery, as well as overlays indicating 100-year 
flood extents. Map layers of transportation networks, hydrographic features, property 
boundaries, municipal infrastructure (e.g. power lines, natural gas lines) and contour lines 
can also be visualized. 
 

 
Fig. 7. Conceptual model of flood prediction and monitoring system  

 
The final software products are integrated together within CARIS software as shown 
conceptually on Figure 7. Several provincial and research organisations in New Brunswick 
(University of New Brunswick, Emergency Measures Organization, NB Department of 
Environment, etc.) have been actively involved in the project. In this project, CARIS GIS 
software was used to implement floodplain delineation and online mapping.  

 
5. Integration of Hydrological Modeling And GIS 

The implementation that integrates hydrological modeling, Digital Terrain Modelling, and a 
GIS algorithm for floodplain delineation will be presented in the following section.  
 
Floodplain delineation requires a high precision ground surface DTM. Analysis of available 
datasets shows that there are range and accuracy limitations among these datasets. It is 
therefore necessary to test and integrate these datasets in order to obtain a high accuracy 
Digital Elevation Model data. For this research, the accuracy of provincial elevation data 

                                                                 
1  DWOPER is a one-dimensional routing model developed by the Hydraulic Research 
Laboratory of the United States National Weather Service (Fread, 1992). 
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and the city of Fredericton data were analyzed. High accuracy control points can be used to 
evaluate the accuracy of DTM data. This procedure is implemented by using CARIS GIS 
tools. Firstly, we generated a TIN model from elevation data (see Figure 8). Then using the 
CARIS GIS comparative surface analysis tool, the differences between the elevations of the 
control points and the interpolated elevation of the corresponding points were calculated. 
Finally, the statistical accuracy was computed using the methodology developed during 
previous floods in New Brunswick (CIWD, 1974) and (ENB-MAL, 1979).  
 

 
Fig. 8. DTM of the lower Saint John watershed 
 

 
Fig. 9. The workflow of the calculation of predicted floodplain 

 

To support near real-time flood modelling, we developed the procedures for transmitting real 
time water level data from the New Brunswick Department of Environment – River Watch to 
the end users (see Figure 13). The water level data from the output of flood modelling by the 
Hydrology Centre in the Department of Environment are transmitted via FTP. The timestamp 
of new data is checked every 30 minutes for upload in the database. Then, the water level data 
are transferred to the FEPM Web Page for generating and displaying gauge bar graphs. 
 
At the same time, the water level data are accessed by the software module for flood plain 
computations (Mioc et al., 2008). With the advent of robust GIS tools and high accuracy 
Digital Terrain Model (DTM), automated floodplain delineation is achievable (Noman et al., 
2003). As shown on Figure 9, the most significant inputs for automated floodplain 
delineation2 are the DTM (see Figure 8) and the water levels on the sections shown on 
Figure 10. The process considers the DTM and water levels at different locations to 
determine the direction and extent of flow over a floodplain for a given hydrologic event. 
 

 
Fig. 10. Modeling water level surface using cross sections 
 
The floodplain depth dataset is the primary output of this process. It indicates the high water 
mark and the depth of water inside the floodplain polygon, and is generated by computing the 
height difference between the water surface TIN with the ground surface DTM data. Based on 
the obtained flood depth data, the floodplain extent and depth maps can be generated. The 
intermediate parts of the process involve geo-referencing the water levels, extending the water 
levels to the probable floodplain area, and creating a TIN of the water surface. CARIS GIS 
allows users to create an irregular TIN or regular grid DTM, to calculate the accurately 
differences between two TINs or regular grid DTMs, to interpolate contours using a DTM, and 
                                                                 
2 Automated floodplain delineation is an excellent tool for producing floodplain extent 
maps (Noman et al., 2001; Noman et al., 2003). 
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to display the DTM using the CARIS 3D Viewer program. These software functionalities were 
used for the development of the algorithm for floodplain delineation. 
 

 
Fig. 11. Detailed zoom of the DTM and the floodplain of the area with the cross sections 
around Fredericton 
 

 
Fig. 12. Floodplain delineation process – computation of water surface TIN (the thick edges 
are constrained Delaunay edges corresponding to cross sections while the thin edges are 
Delaunay edges that do not correspond to cross sections) 

 

CARIS software provides an effective spatial analysis tool that calculates floodplain 
delineation and facilitates the mapping of flood events. As an example of floodplain 
delineation, Figure 11 shows the cross-sections used for the flooding event that took place in 
the Spring of 1973. Figure 12 shows the constrained Delaunay triangulation (see (Okabe et 
al., 2000) for an introduction to constrained Delaunay triangulations) used to compute the 
water surface. The flood plain is computed by interpolating linearly elevations and flood 
depths in the triangles. The cross sections are guaranteed to be present as edges of the 
triangulation, because they are the constrained edges. The cross sections are spaced in order 
to better evaluate the influence of confluents and effluents and their spacing decreases with 
the curvature of the river. 

 
5.1 Development of a Web-based interface for dynamic flood prediction monitoring 
and mapping 
CARIS Spatial Fusion was used to develop software for integration of satellite imagery and 
dynamic flood maps. Web map Interfaces that dynamically display maps of current and 
predicted flood events were developed and implemented.  
 

 
Fig. 13. Flood data processing diagram 
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Fig. 14. New Brunswick River Watch Web site for flood warning in lower St. John River 
watershed 
 
The architecture of the flood data processing is shown on Figure 13. The Web GIS software 
that we developed, allows for a spatial query based on 6-digit postal code (see Figure 14), so 
the users will be able to easily locate their area of interest. The web site allows one to 
display historical flood maps for twenty and hundred years average as well as for the 
catastrophic flood of 1973 (see Figure 15). 
 

 

 
Fig. 15. Existing historical flood maps 
 

The Web-GIS interface is also designed to calculate the flood polygon of current and 
predicted flood plains and display them as prediction maps (next 24 hours and 48 hours - 
see Figure 16). Each layer of the web map is separate, allowing the overlay and visualization 
of transportation networks, hydrographical features, property boundaries, municipal 
infrastructure and contour lines.  
 

 
Fig. 16. Predicted flood maps 
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Fig. 17. Visualization of the flood in 1973 – Fredericton area 
 

 
Fig. 18. Visualization of the flood in 1973 – rural area 

 

 

To better understand the spread and the impact of floods, the three-dimensional 
visualization of the flood of the Spring of 1973 was implemented (see Figures 17 and 18) 
using IVS3D3 software. 
It allows users to visualize the major flood event that happened in the Spring of 1973 via 
“fly-through” animation. In this application the advanced software (from Interactive 
Visualization Systems) for dynamic visualization is used to interactively show the areas 
affected by the record high flooding in 1973.  
The basic map layers are integrated with orthophotos and flood areas to create this realistic 
visualisation tool using IVS3D. 
 
6. Conclusions 

The Decision Support System for Flood Event Prediction and Monitoring implemented with 
web-mapping interfaces facilitates monitoring and prediction of flood events. It provides a 
basis for early warning and mapping of flood disasters. The general public can access the 
web site and browse the information in their area of interest. They can also visualize the 
impact of the flood events on the area where they live. 
This research paper presents the integration of the DWOPER hydraulic model with the 
CARIS GIS system to dynamically compute and display near-real-time flood warning in the 
lower Saint John River valley. The main phases of development and implementation of a 
web-based GIS software for flood monitoring and prediction are presented as well.  
With satellite imagery and a digital elevation model of the flood plain area, we can access a 
web-based prediction that models current flood events, and that can show how the water 
progresses based on the output from hydrological modelling for the next 24 and 48 hours 
along the lower Saint John River Valley.  
This research provides the foundation for a revised decision support system that can result 
in improvements in the prevention, mitigation, response, and recovery from flood events 
along the lower Saint John River. 
Further research is needed to improve the accuracy of digital terrain models by using 
LiDAR data, which will in turn improve the accuracy of hydrological modelling. 
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1. Introduction  

Routine soil surveys determine many soil properties but soil drainage and soil moisture 
indicators (soil permeability, hydrologic soil group, etc.) are often the most relevant for 
agro-environmental purposes. They influence in-field crop yield and affect several 
environmental processes, i.e., soil erosion, nutrient and pesticide transport by runoff water 
and leaching, nitrification, and greenhouse gas production. Up-to-date information is 
needed to guide watershed and site-specific crop management but conventional soil survey 
procedures are time-consuming and expensive. New technologies, such as remote and 
proximal sensing, feature in many key soil science applications and are particularly effective 
for mapping soil drainage (Niang et al., 2007 and 2006; Bell et al., 1994 and 1992; Lee et al., 
1988; Levine et al., 1994; Cialella et al., 1997; Campling et al., 2002; Liu et al., 2008). Since soil 
drainage is often related to other properties, such as soil water content and texture 
(Kravchenko et al., 2002), it can be mapped using both optical and radar remote sensing. 
When cloud-free optical imagery is not available, radar imaging is the best option. For most 
soil conditions, soil surface moisture and vegetative growth and development are 
considered to be indicators of soil drainage. However, these factors also affect radar 
backscatter. Knowledge of soil and crop types is needed to understand the relationship 
between radar backscatter and soil drainage (Smith et al., 2006). Soil drainage is a dynamic 
process that can by defined only by integrating several factors: water-holding capacity, 
hydraulic conductivity, and seasonal variation in water-table depth (Jennifer et al., 2001). 
Thus, radar remote sensing data must be acquired under appropriate environmental 
conditions to effectively determine soil drainage classes. Most studies on agricultural 
applications of radar remote sensing involve single frequency and single polarization data. 
Unless such data are combined in multi-temporal series, they are limited to a few values 
(McNairn and Brisco, 2004). Only a few studies suggest that multi-polarization radar could 
provide valuable and timely information by delineating homogenous soil zones (McNairn 
and Brisco, 2004; van der Sanden, 2004). One recent study showed that soil drainage could 
be mapped on an in-field scale by using high-resolution optical and C-band SAR data from 
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CV-580 (Liu et al., 2008). However, the relationship between polarimetric parameters and 
soil drainage indicators was not investigated. 
This chapter evaluates the feasibility of using multi-polarization and polarimetric C-band 
SAR data from CV-580 to determine soil drainage classes. First, a Wishart supervised 
classification was applied to determine land use. Multi-polarized channels (HH, VH, VV, 
RR, RL LL, ψ45°, and ψ135°) were synthesized and backscattering coefficients were derived 
for the reference soil profile pits acquired from the soil survey. These data were analysed for 
designated land use and drainage classes. Polarimetric parameters from the Cloude and 
Pottier (1997) decomposition were also analysed. Linear discriminant analysis was applied 
on each land use using soil drainage classes from soil survey. The feasibility of using this 
approach with RADARSAT-2 data to map soil drainage is discussed.  

 
2. Materials and methods 

The study area was located at the Bras d’Henri watershed (167 km2) near Quebec City 
(Figure 1). During the summers of 2004 and 2005, intensive soil surveys were conducted 
over the entire watershed at two prospecting scales (1:20,000 and 1:40,000). A total of 1612 
soil profiles were collected for updating and upgrading the soil map and a recommended 
sampling method based on random transects (Nolin et al., 1994) was adopted. Five out of 
seven soil drainage classes, ranging from well-drained to very-poorly drained, were 
identified in the watershed according to the soil surveyor’s expert knowledge. These data 
were used as a validation dataset. Polarimetric C-band SAR data from CV-580 were 
acquired in November 2005 over the study area. An area of 101 km2, with 1045 soil profiles, 
was covered (Table 1). The SAR data were radiometrically calibrated by the Canadian 
Center of Remote Sensing (Murnaghan, 2005). Radiometric accuracy was less than 1dB for 
the four polarizations. Slant range resolution was 4 × 4 m (azimuth × range) for the SIR-C 
product and incidence angles were large (33° to 67°).  
 
The polarizations (HH, HV, VV, RR, LL, ψ45°, and ψ135°) were synthesized from the SAR 
data using Polarimetric WorkStation software (Touzi and Charbonneau, 2004). These 
polarizations were used as ancillary data for soil drainage classification. The assumption 
was that, under given soil moisture conditions, variation in the radar backscatter would 
indicate soil drainage states. This relationship between polarizations and soil moisture has 
been documented (Baronti et al., 1995). Linear cross-polarizations (HH, VV, and HV) refer to 
the power from the transmitted linear wave (H or V) recorded by the sensor and repolarized 
into the orthogonal polarizations (V or H). With fully polarimetric data, nonlinear 
polarizations, such as circular and elliptical polarizations, can be synthesized. 
 
For the left-handed circular waves (L), the electric field vector rotates counter-clockwise; for 
the right-handed circular waves (R), the vector rotates clockwise. The responses of circular 
co-polarizations (RR and LL) are associated with the volume or multiple scattering and the 
handedness of received wave, while the cross-polarization (RL) is associated with smooth 
surfaces (McNairn et al., 2002). Elliptical polarizations can also be derived from polarimetric 
data by defining the orientation (ψ) and ellipticity () angles. The two polarizations (ψ45° 
and ψ135°) used in this study correspond at =0° and ψ=45°, and =0° and ψ135°, 
respectively, and were positively correlated to soil moisture (McNairn et al., 2002). 

 

Another unique feature provided by the fully polarimetric data is the possibility of 
separating different scattering distributions by sub-matrices associated with the specific 
scattering properties of point, or distributed scatters and their ensembles. Several 
polarimetric target decomposition theorems have been proposed, including: coherent 
(Krogager, 1992; Cameron and Leung, 1990), non-coherent (Huynen, 1965; Holm and 
Barnes, 1988), model-based decomposition (Freeman and Durden, 1998), eigenvector-based 
decomposition (van Zyl, 1989; Cloude, 1992), and others as critically associated in the 
literature (Cloude, 1992; Cloude and Pottier, 1996 and 1997).  
 
The H/A/α (entropy H, anisotropy A, and mean alpha angle α) decomposition theorem 
proposed by Cloude and Pottier (1997) was used in this study to determine soil drainage 
classes. This decomposition is based on eigenvalues extracted from the coherency matrix. 
The average target scattering matrix estimated with these parameters allows the surface 
roughness to be separated from the soil dielectric constant (Hajnesk et al., 2001), which 
depends linearly on soil moisture.  
 
For an accurate extraction of the radar backscatter, a 5 × 5 Lee filter window (Lee, 1986) was 
applied to reduce the speckle noise. The Wishart supervised classification (H/A/α) was also 
applied to the SAR data to assess the characterization of soil drainage classes for agricultural 
areas. The training areas were designated on a RGB composite color and the classification 
was performed with three scattering mechanisms (single bounce scattering, double bounce 
scattering, and volume diffusion) derived from the Freeman decomposition.  
 
A principal component analysis (PCA) was used to reduce the effects of collinear data and 
matrix dimensions. The contribution of synthetized polarization and polarimetric parameters 
on soil drainage classification was assessed by forward stepwise discriminant analysis. 
 

 
Fig. 1. Study area: The Bras d’Henri watershed (QC, Canada) superimposed with the CV-580 
SAR; geo-referenced soil profile pits labelled as points (.) represent the training / validation 
dataset 
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Drainage class Count % 
D3 53 5.1 
D4 71 6.8 
D5 303 29.0 
D6 495 47.4 
D7 123 11.8 
Total 1045 100.0 

Table 1. Distribution of soil profile pits by drainage classes 

 
3. Results and discussion 

Figure 2 shows the meteorological conditions during November 2005. Two days before the 
CV-580 overpass, cumulative precipitation for November was about 30mm and mean air 
temperature was about 5°C. These conditions can cause water saturation on certain soil 
types; soil water infiltration capability and drainage states could be shown after these dates. 
 

 
Fig. 2. Meteorological  conditions during the acquisition of CV-580 SAR data 
 
Figure 3 shows the Pauli color-coded image of part of the watershed which consists of 
agricultural areas, forest, wetland, and urban zones. It was obtained by assigning the red 
color R=HH-VV, green color G=HV, and blue color B=HH+VV, respectively. The 
Freeman decomposition using R=PDB, G=Pv, and B=Psfor red, green, and blue is 
presented in Figure 4. The PDB, Pv, and Ps parameters are powers scattered by the double-
bounce, volume, and surface components of their covariance matrices, respectively. The 
Freeman decomposition uses similar characteristics as the Pauli-based decomposition, but 
provides a more realistic representation because scattering models are used for dielectric 
surfaces. 
 

 

 
Fig. 3. Image obtained using the Pauli decomposition with R=HH-VV, G=HV, 
B=HH+VV 
 

 
Fig. 4. Image obtained using the Freeman decomposition with R= PDB, G= Pv, and B= Ps 
 
Two types of agricultural areas, with Ps (blue) the predominant scattering mechanism and 
dark areas, appear to have the same contribution from the three scattering mechanisms in 
Figure 4. Some training areas were designated in these areas for the Wishart supervised 
classification (H/A/α). This study focused on these agricultural areas. 
 
Classification results are given in Figure 5. The overall classification accuracy was 86%. 
Urban areas had a lower classification accuracy (63%) but the two designated agricultural 
areas had good classification accuracy: 86% for agricultural Area 1 and 93% for agricultural 
Area 2. 
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Fig. 5. Wishart supervised classification (H/A/α) 
 

 Land use Forest Agricultural 
Area 1 

Agricultural 
Area 2 Water Wetland Urban 

Forest 90 1 3 0 0 5 
Agricultural Area 1 2 86 2 0 0 10 
Agricultural Area 2 6 0 93 0 0 1 
Water 0 0 5 91 0 2 
Wetland 1 4 2 1 91 1 
Urban 7 23 7 0 0 63 

Table 2. Confusion matrix (%). Rows represent user-defined groups while columns 
represent segmented clusters 

 
3.1 Multi-polarization analysis 
The relationship between the mean backscattering with soil drainage classes and 
synthesized polarizations is given in Figures 6 and 7 for the two designated agricultural 
areas. An increase of the backscattering signal is observed for these areas, and for all 
polarizations, as a function of soil moisture as depicted by theoretical models IEM (Fung, 
1994), SPM and GO (Ulaby et al., 1986), and soil drainage classes. For the agricultural Area 
1, there are significant differences (about 4dB) between well-drained (D3+D4) and poorly-
drained soil classes (D5+D6) (Figure 6). Unfortunately, there were no data for the very 
poorly-drained soil class (D7). For the agricultural Area 2, three sets of drainage classes can 
be distinguished: D3, D4+D5+D6, and D7. The VV backscatter is slightly greater than the 
HH polarization for the two areas. According to Dobson and Ulaby (1986), this result may 
be due to the high incidence angle (33° to 66°) of acquisition for the SAR image. Therefore, 
differences in the mean backscattering signal behaviour for the first three soil drainage 
classes in the two agricultural areas indicate that scattering mechanisms differ among these 
fields. Meteorological conditions prevailed until the date of harvest and, therefore, land 
cover was highly variable: ploughed fields (forage, cereal, soybean, or harvested corn), 

 

harvested but not ploughed fields with crop residue, and unharvested corn fields. In this 
context, polarimetric parameters may be useful for analysing the physical properties 
(dielectric and geometric) of the two agricultural fields. 
 

 
Fig. 6. Relationship of the backscattering coefficient with drainage classes in agricultural 
Area 1 for the polarizations 
 

 
Fig. 7. Relationship of the backscattering coefficient with soil drainage classes in agricultural 
Area 2 for the polarizations 

 
3.2 Polarimetric analysis 
Figures 8, 9, and 10 give the α, H, and A parameters extracted from the 3 × 3 coherency matrix, 
respectively. The α is the main parameter used to identify the dominant scattering mechanism. 
Entropy, H, is a statistical descriptor of the randomness of the scattering process which can be 
interpreted as the degree of statistical disorder. Anisotropy, A, measures the relative 
importance of the second and the third eigenvalues. It is a complementary parameter to 
entropy and can be used as a discriminating index when H > 0.7.  
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Fig. 8. Map showing the variation of the parameter, α (°) 
 

 
Fig. 9. Map showing the variation of the entropy parameter, H  

 

 
Fig. 10. Map showing the variation of the anisotropy parameter, A  
 
The relationship of these parameters with the soil drainage classes for the two agricultural 
areas is given in Figures 11 and 12. The low values of the α parameter (15°  α  31°) for the 
two agricultural areas suggest that the scattering corresponds to the single-bounce 
scattering produced by the rough surface. Therefore, the low values of the entropy (0.05  H 
 0.1) for agricultural Area 1 indicate that the scattering process corresponds to a pure 
target. For agricultural Area 2, the values (0.05  H  0.2) indicate the presence of other 
scattering mechanisms weighted by the corresponding eigenvalues (1, 2, 3). The values of 
the anisotropy were greater (A  0.6) in the agricultural Area 2 for all drainage classes, 
whereas in the agricultural Area 1, the A parameter was in the medium range. This result 
confirms the presence of two scattering mechanisms with a dominant process and a 
secondary one with medium probability (3  0). In agreement with the Freeman 
decomposition (Figure 4), we conclude that the agricultural Area 1 was composed mostly of 
bare soils while the agricultural Area 2 consisted of less dense harvested fields with short 
plants. Under conditions similar to those of agricultural Area 1, the combination of α and H 
parameters appears to be sufficient for identifying soil drainage classes (Figure 11). 
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areas is given in Figures 11 and 12. The low values of the α parameter (15°  α  31°) for the 
two agricultural areas suggest that the scattering corresponds to the single-bounce 
scattering produced by the rough surface. Therefore, the low values of the entropy (0.05  H 
 0.1) for agricultural Area 1 indicate that the scattering process corresponds to a pure 
target. For agricultural Area 2, the values (0.05  H  0.2) indicate the presence of other 
scattering mechanisms weighted by the corresponding eigenvalues (1, 2, 3). The values of 
the anisotropy were greater (A  0.6) in the agricultural Area 2 for all drainage classes, 
whereas in the agricultural Area 1, the A parameter was in the medium range. This result 
confirms the presence of two scattering mechanisms with a dominant process and a 
secondary one with medium probability (3  0). In agreement with the Freeman 
decomposition (Figure 4), we conclude that the agricultural Area 1 was composed mostly of 
bare soils while the agricultural Area 2 consisted of less dense harvested fields with short 
plants. Under conditions similar to those of agricultural Area 1, the combination of α and H 
parameters appears to be sufficient for identifying soil drainage classes (Figure 11). 
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Fig. 11. Relationship of parameters α, H, and A with soil drainage classes in the agricultural 
Area 1 

 

 
Fig. 12. Relationship of parameters α, H, and A with soil drainage classes in agricultural 
Area 2 

 
3.3 Discriminant analysis 
In an approach to reduce collinearity, a principal component analysis (PCA) was applied on 
the multi-polarization dataset. The first two components, consisting of 94% of total variance 
of the information from the multi-polarization dataset, were selected for further analyses. 
The contribution of the multi-polarization data and the polarimetric parameters was studied 
using the following discriminant analysis criteria: Wilks’ lambda, F to remove, significant 
level associated to the partial Lambda, and the tolerance (Table 3). 
 
The multivariate solution shows that the two PCA factors (PC1 for the agricultural Area 1, 
and PC2 for the agricultural Area 2) extracted from the multi-polarization dataset were the 
principal discriminators for soil drainage classes with a p-level near 0 and good tolerance. 
Anisotropy was the polarimetric parameter that had the most significant contribution to the 
discriminant function with good tolerance. The two other polarimetric parameters (α and H) 
contributed to the classification model but their tolerance was weak. 
 

 

Variables Wilks'  F to remove p-level Tolerance 
α 0.91 1.81 0.13 0.25 
A 0.91 2.32 0.06 0.89 
H 0.91 1.86 0.12 0.24 
PCA 1 0.95 14.19 0.00 0.99 
PCA2 0.92 5.9 0.00 0.91 

Table 3. Contribution of the selected parameters to the model classification 
 
The results of the classification by discriminant analysis are presented in Table 4. For the 
two agricultural areas, poorly-drained soils (D6) were clearly identified (73–97%). 
Imperfectly-drained soils (D5) were detected in the agricultural Area 1 with an overall 
classification accuracy of 63%. The well-drained class (D3) was detected with an overall 
classification accuracy of only 33%. The meteorological conditions which prevailed during 
the acquisition of polarimetric SAR data, and the small proportional size of soil drainage 
classes in the agricultural areas, can partially explain the relatively low performance of the 
classification by discriminant analysis. 
  

Drainage 
class 

Agricultural Area 1  Agricultural Area 2  
Proportion Percent correct Proportion Percent correct  

D3 0.13 33.3 0.06 0.0 
D4 0.04 0.0 0.07 0.0 
D5 0.35 62.5 0.30 2.4 
D6 0.48 72.7 0.48 96.7 
D7 0.00 0.0 0.09 19.2 

Total 1.00 60.9 1.00 49.4 
Table 4. Mean alpha, anisotropy, and entropy by drainage class for two agricultural areas 

 
4. Conclusion 

This research demonstrates the feasibility of using multi-polarization and polarimetric data 
for soil drainage classification and mapping. The new generation of SAR technology, with 
its high spatial resolution of fully polarimetric SAR data from RADARSAT-2, could help to 
clarify the complex relationship between soil drainage and radar backscatter and 
subsequently be a resource for developing operational models. Because of the dynamic 
changes of soil drainage, meteorological conditions and land use must be determined prior 
to analysis. Spring acquisition of polarimetric SAR data should produce better classification 
results for predicting soil drainage classes than late fall acquisition because weather 
conditions and land use would be less variable. 
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1. Introduction    
 

Each region of the Earth’s crust can be morphologically modeled as a suitable layered 
structure, in which some amount of roughness is presented by every interface. Actually, 
propagation in stratified soil, sand cover of arid regions, forest canopies, urban buildings, 
snow blanket, snow cover ice, sea ice and glaciers, oil flood on sea surface, and other natural 
scenes can be modeled referring to most likely discrete (piecewise-constant) systems, rather 
than continuous, with some amount of roughness presented by every interface. Moreover, a 
key issue in remote sensing of other Planets is to reveal the content under the surface 
illuminated by the sensors: also in this case a layered model is usually employed.  
The aim of this chapter is to provide a structured presentation of the main theoretical and 
conceptual foundations for the problem of the electromagnetic wave interaction with 
layered rough media. In the first part, special emphasis is on the analytical models 
obtainable in powerful framework of the perturbation approach. The comprehensive 
scattering model based on the Boundary Perturbation Theory (BPT), which permits to 
systematically analyze the bi-static scattering patterns of 3D multilayered rough media, is 
then presented highlighting the formal connections with all the previously existing 
simplified perturbative models, as well as its wide relevance in the remote sensing 
applications scenario. The polarimetric Scattering Matrix of a multilayered medium with an 
arbitrary number of rough interfaces is also provided. The second part is devoted to a 
mathematical description which connects the concepts of local scattering and global 
scattering. Consequently, a functional decomposition of the BPT global scattering solution in 
terms of basic single-scattering local processes is rigorously established. The scattering 
decomposition gives insight into the BPT analytical results, so enabling a relevant physical-
revealing interpretation involving ray-series representation. Accordingly, in first-order limit, 
the way in which the character of the local scattering processes emerges is dictated by the 
nature of the structural filter action, which is inherently governed by the series of coherent 
interactions with the medium boundaries. As a result, the phenomenologically successful 
BPT model opens the way toward new techniques for solving the inverse problem, for 
designing SAR processing algorithms, and for modelling the time-domain response of 
layered structures.  
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Fig. 1. Geometry for an N-rough boundaries layered medium 

 
2. Problem definition  
 

When stratified media with rough interfaces are concerned, the possible approaches to cope 
with the EM scattering problem fall within three main categories. First, the numerical 
approaches do not permit to attain a comprehensive understanding of the general functional 
dependence of the scattering response on the structure parameters, as well as do not allow 
capturing the physics of the involved scattering mechanisms. Layered structures with rough 
interfaces have been also treated resorting to radiative transfer theory (RT). However, coherent 
effects are not accounted for in RT theory and could not be contemplated without 
employing full wave analysis, which preserves phase information. Another approach relies 
on the full-wave methods. Although, to deal with the electromagnetic propagation and 
scattering in complex random layered media,  several analytical formulation involving some 
idealized cases and suitable approximations have been conducted in last decades, the 
relevant solutions usually turn out to be too complicated to be generally useful in the remote 
sensing scenario, even if simplified geometries are accounted for. The proliferation of the 
proposed methods for the simulation of wave propagation and scattering in a natural 
stratified medium and the continuous interest in this topic are indicative of the need of 
appropriate modelling and interpretation of the complex physical phenomena that take 
place in realistic environmental structures. Indeed, the availability of accurate, sound 
physical and manageable models turns out still to be a strong necessity, in perspective to 
apply them in retrieving of add-valued information from the data acquired by microwave 
sensors. For instance, such models are high desirable for dealing with the inversion problem 
as well as for the effective design of processing algorithms and simulation of Synthetic 
Aperture Radar signals. Generally speaking, an exact analytical solution of Maxwell 
equations can be found only for a few idealized problems. Subsequently, appropriate 
approximation methods are needed. Regarding the perturbative approaches, noticeable 
progress has been attained in the investigation on the extension of the classical SPM (small 
perturbation method) solution for the scattering from rough surface to specific layered 
configurations. Most of previous existing works analyze different layered configurations in 
the first-order limit, using procedures, formalisms and final solutions that can appear of 

  

 

difficult comparison (Yarovoy et al., 2000), (Azadegan and Sarabandi, 2003), (Fuks, 2001). 
All these formulations, which refer to the case of a single rough interface, have been recently 
unified in (Franceschetti et al, 2008). On the other hand, solution for the case of two rough 
boundaries has also been proposed in (Tabatabaeenejad and Moghaddam, 2006).  
Methodologically, we underline that all the previously mentioned existing perturbative 
approaches, followed by different authors in analyzing scattering from simplified geometry, 
imply an inherent analytical complexity, which precludes the treatment to structures with 
more than one (Fuks, 2001) (Azadegan et al., 2003) (Yarovoy et al., 2000) or two 
(Tabatabaeenejad er al., 2006) rough interfaces.  
The general problem we intend to deal with here refers to the analytical evaluation of the 
electromagnetic scattering by layered structure with an arbitrary number of rough interfaces 
(see Figure 1). As schematically shown in Figure 1, an arbitrary polarized monochromatic 
plane wave 
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where ykxk i

y
i
x

i ˆˆ k  is the two-dimensional projection of incident wave-number vector on 
the plane z=0. The parameters pertaining to layer m with boundaries –dm-1 and -dm are 
distinguished by a subscript m. Each layer is assumed to be homogeneous and characterized 
by arbitrary and deterministic parameters: the dielectric relative permittivity m, the magnetic 
relative permeability μm and the thickness m=dm-dm-1. With reference to Figure 1, it has been 
assumed that in particular, d0=0. In the following, the symbol  denotes the projection of the 
corresponding vector on the plan z=0. Here  z, rr , so we distinguish the transverse 
spatial coordinates  yx,r  and the longitudinal coordinate z. In addition, each mth rough 
interface is assumed to be characterized by a zero-mean two-dimensional stochastic process 

)(  rmm   with normal vector mn̂ . No constraints are imposed on the degree to which 
the rough interfaces are correlated.  
A general methodology has been developed by Imperatore et al. to analytically treat EM 
bistatic scattering from this class of layered structures that can be described by small 
changes with respect to an idealized (unperturbed) structure, whose associated problem is 
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the plane z=0. The parameters pertaining to layer m with boundaries –dm-1 and -dm are 
distinguished by a subscript m. Each layer is assumed to be homogeneous and characterized 
by arbitrary and deterministic parameters: the dielectric relative permittivity m, the magnetic 
relative permeability μm and the thickness m=dm-dm-1. With reference to Figure 1, it has been 
assumed that in particular, d0=0. In the following, the symbol  denotes the projection of the 
corresponding vector on the plan z=0. Here  z, rr , so we distinguish the transverse 
spatial coordinates  yx,r  and the longitudinal coordinate z. In addition, each mth rough 
interface is assumed to be characterized by a zero-mean two-dimensional stochastic process 

)(  rmm   with normal vector mn̂ . No constraints are imposed on the degree to which 
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A general methodology has been developed by Imperatore et al. to analytically treat EM 
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exactly solvable. A thorough analysis of the results of this theoretical investigation (BPT), 
which is based on perturbation of the boundary condition, will be presented in the 
following, methodologically emphasizing the development of the several inherent aspects. 
 

    
Fig. 2. Geometry for a flat boundaries layered medium 
 
3. Preliminary notation and definitions 
 

This section is devoted preliminary to introduce the formalism used in the following of this 
chapter. The Flat Boundaries layered medium (unperturbed structure) is defined as a stack of 
parallel slabs (Figure 2), sandwiched in between two half-spaces, whose structure is shift 
invariant in the direction of x and y (infinite lateral extent in x-y directions). With the notations 
p

mmT 1 and p
mmR 1 , respectively, we indicate the ordinary transmission and reflection coefficients at 

the interface between the regions (m-1) and m, with the superscript p{v, h} indicating the 
polarization state for the incident wave and may stand for horizontal (h) or vertical (v) 
polarization (Tsang et al., 1985) (Imperatore et al. 2009a). In addition, we stress that: 
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mzm

mzm

kjp
mm

p
mm

kjp
mm

p
mmp

mm eR

eR







 




2
11

2
11

1 1
.    (4) 

 

Likewise, at the interface between the regions (m+1) and m, p
mm 1 is given by:   

  

 

 
mzm

zm

kjp
mm

p
mm

mkjp
mm

p
mmp

mm eR

eR







 


 2

11

2
11

1 1
,   (5) 

where  
 

   mmmzm kkk cos22  k ,   (6) 

 
where mmm kk 0  is the wave number for the electromagnetic medium in the mth layer, 

with  /2/0  ck , and where ykxk yx ˆˆ k  is the two-dimensional projection of vector 
wave-number on the plane z=0. It should be noted that the factors 
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take into account the multiple reflections in the mth layer. On the other hand, the generalized 
transmission coefficients in downward direction can be defined as: 
 

1

1
1

1

0

1

1
0 exp)(






































  p

n

m

n

p
nn

m

n

m

n
nzn

p
m MTkjk

 ,  (10) 

 
where p {v, h}. The generalized transmission coefficients in upward direction are then given by: 
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which formally express the reciprocity of the generalized transmission coefficients for an 
arbitrary flat-boundaries layered structure (Imperatore et al. 2009b). In addition, with 
reference to a layered slab sandwiched between two half-space, we consider the generalized 
transmission coefficients in upward direction for the layered slab between two half-spaces (m,0), 
which are defined as 
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The generalized transmission coefficients in downward direction for the layered slab between 
two half-spaces (m,0), can be defined as 
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On the other hand, it should be noted that the p
m0  are distinct from the coefficients )(

0
slabp
m , 

because in the evaluation of p
m0  the effect of all the layers under the layer m is taken into 

account, whereas )(
0
slabp
m  are evaluated referring to a different configuration in which the 

intermediate layers 1...m are bounded by the half-spaces 0 and m. In the following, we 
shown how the employing the generalized reflection/transmission coefficient notions not 
only is crucial in obtaining a compact closed-form perturbation solution, but it also permit 
us to completely elucidate the obtained analytical expressions from a physical point of view, 
highlighting the role played by the equivalent reflecting interfaces and by the equivalent slabs, so 
providing the inherent connection between local and global scattering responses. 

 
4. Spectral Representation of the Stochastic Geometry Description 
 

In this section, the focus is on stochastic description for the geometry of the investigated 
structure, and the notion of wide-sense stationary process is detailed. First of all, when the 
description of a rough interface by means of deterministic function )( rm is concerned, the 
corresponding ordinary 2-D Fourier Transform pair can be defined as  
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Let us assume now that )( rm ,  which describes the generic (mth) rough interface, is a 2-D 
stochastic process satisfying the conditions 
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where the angular bracket denotes statistical ensemble averaging, and where )(ρmB  is the 
interface autocorrelation function, which quantifies the similarity of the spatial fluctuations 
with a displacement . Equations (17)-(18) constitute the basic assumptions defining a wide 
sense stationary (WSS) stochastic process: the statistical properties of the process under 
consideration are invariant to a spatial shift. Similarly, concerning two mutually correlated 
random rough interfaces m and n , we also assume that they are jointly WSS, i.e. 
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where )(ρnmB  is the corresponding cross-correlation function of the two random processes.  
It can be readily derived that 
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The integral in (15) is a Riemann integral representation for )( rm , and it exists if )( rm  is 
piecewise continuous and absolutely integrable. On the other hand, when the spectral analysis 
of a stationary random process is concerned, the integral (15) does not in general exist in the 
framework of theory of the ordinary functions. Indeed, a WSS process describing an 
interface )( rm of infinite lateral extension, for its proper nature, is not absolutely integrable, 
so the conditions for the existence of the Fourier Transform are not satisfied. In order to 
obtain a spectral representation for a WSS random process, this difficulty can be 
circumvented by resorting to the more general Fourier-Stieltjes integral (Ishimaru, 1978); 
otherwise one can define space-truncated functions. When a finite patch of the rough 
interface with area A is concerned, the space-truncated version of (15) can be introduced as 
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is not an ordinary function. Nevertheless, we will 

use again the (15)-(16), regarding them as symbolic formulas, which hold a rigorous 
mathematical meaning beyond the ordinary function theory (generalized Fourier 
Transform). We underline that by virtue of the condition (17) directly follows also that 
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where the asterisk denotes the complex conjugated, and where the operations of average 
and integration have been interchanged. When jointly WSS processes m  and n are 
concerned, accordingly to (19), the RHS of (22) must be a function of   rr only; therefore, 
it is required that  
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where (·) is the Dirac delta function, and where )(κmnW  is called the (spatial) cross power 
spectral density of two interfaces m  and n , for the spatial frequencies of the roughness. 
Equation (23) states that the different spectral components of the two considered interfaces 
must be uncorrelated. This is to say that the (generalized) Fourier transform of jointly WSS 
processes are jointly non stationary white noise with average power )( kmnW . Indeed, by 
using (23) into (22), we obtain 
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The generalized transmission coefficients in downward direction for the layered slab between 
two half-spaces (m,0), can be defined as 
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where the RHS of (24) involves an (ordinary) 2D Fourier Transform. Note also that as a 
direct consequence of the fact that )( rn  is real we have the relation )(~)(~ *

  kk nn  . 
Therefore, setting   rrρ in (24), we have  

 

)()( κκρ ρκ
mn

j WedB nm
 . (25) 

 
 

The cross-correlation function )(ρnmB   of two interfaces m  and n , is then given by the 
(inverse) 2D Fourier Transform of their (spatial) cross power spectral density, and Equation (25) 
together with its Fourier inverse 
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which is the statement of the classical Wiener-Khinchin theorem. We emphasize the physical 
meaning of yxyxmm dκdκ,κκWdW )()( κκ : it represents the power of the spectral 
components of the mth rough interface having spatial wave number between x and x +dx  
and y and y +dy,  respectively, in x and y direction. Furthermore, from (20) and (26) it 
follows that  
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This is to say that, unlike the power spectral density, the cross power spectral density is, in 
general, neither real nor necessarily positive. Furthermore, it should be noted that the 
Dirac’s delta function can be defined by the integral representation 
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By using in (27) and (23) the relation 2)2/();0(  AA  , we have, respectively, that the 
(spatial) power spectral density of nth corrugated interface can be also expressed as  
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and the (spatial) cross power spectral density of two interfaces m  and n  is given by  
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It should be noted that the domain of a rough interface is physically limited by the 
illumination beamwidth. Note also that the different definitions of the Fourier transform are 
available and used in the literature: the sign of the complex exponential function are 
sometimes exchanged and a multiplicative constant 2)2(  may appear in front of either 
integral or its square root in front of each expression (15)-(16). Finally, we recall that the 
theory of random process predicts only the averages over many realizations. 

 
5. Perturbative Field Formulation 
 

With reference to the geometry of Figure 1, in order to obtain a solution valid in each region 
of the structure, we have to enforce the continuity of the tangential fields: 
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and where  is the nabla operator in the x-y plane. In order to study the fields mE  and mH  
within the generic mth layer of the structure, we assume then that, for each mth rough 
interface, the deviations and slopes of surface with respect to the reference mean plane z=-dm 
are small enough in the sense of (Ulaby et al, 1982) (Tsang et al., 1985), so that the fields can 
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and where  is the nabla operator in the x-y plane. In order to study the fields mE  and mH  
within the generic mth layer of the structure, we assume then that, for each mth rough 
interface, the deviations and slopes of surface with respect to the reference mean plane z=-dm 
are small enough in the sense of (Ulaby et al, 1982) (Tsang et al., 1985), so that the fields can 
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be expanded about the reference mean plane. The fields expansion can be then injected into 
the boundary conditions (34)-(35), so that, retaining only up to the first-order terms, the 
following nonuniform boundary conditions can be obtained (Imperatore et al. 2009a)  
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where the field solution has been formally represented as:  
 

 ...),( )2()1()0(  mmmm z EEErE   ,   (40)  

...),( )2()1()0(  mmmm z HHHrH  .   (41) 
 

Therefore, the boundary conditions from each mth rough interface can be transferred to the 
associated equivalent flat interface. In addition, the right-hand sides of Eqs. (38) and (39) can 
be interpreted as effective magnetic ( )1(p

HmJ ) and electric ( )1(p
EmJ ) surface current densities, 

respectively, with p denoting the incident polarization; so that we can identify the first-order 
fluctuation fields as being excited by these effective surface current densities imposed on the 
unperturbed interfaces. Accordingly, the geometry randomness of each corrugated 
interfaces is then translated in random current sheets imposed on each reference mean plane 
(z=-dm), which radiate in an unperturbed (flat boundaries) layered medium. As a result, 
within the first-order approximation, the field can be than represented as the sum of an 
unperturbed part )0()0( , nn HE  and a random part, so that ,),( )1()0(

nnn z EErE    
)1()0(),( nnn z HHrH  . The first is the primary field, which exists in absence of surface 

boundaries roughness (flat-boundaries stratification), detailed in (Imperatore et al. 2009a); 
whereas )1()1( , nn HE  can be interpreted as the superposition of single-scatter fields from each 
rough interface. In order to perform the evaluation of perturbative development, the 
scattered field is then represented as the sum of up- and down-going waves, and the first-
order scattered field in each region of the layered structure can be represented in the form: 
 

 )1()1()1(   mmm ΕΕΕ ,    (42) 

   )1()1()1(   mmm HHH ,    (43) 
With 

 zjkq
mm

j

vhq
m zmeSqed 










  )()(ˆ )1(

,

)1( kkkΕ rk ,  (44) 

zjkq
mmm

j

mvhq
m zmeSqked

Z











   )()(ˆˆ1 )1(

,

)1( kkkH rk ,  (45) 

 
Therefore, a solution valid in each region of the structure can be obtained from (42)-(45) 
taking into account the non uniform boundary conditions (38)-(39). In order to solve the 

  

 

scattering problem in terms of the unknown expansion coefficients )()1( 
 kq
mS , we arrange 

their amplitudes in a single vector according to the notation: 
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Subsequently, the nonuniform boundary conditions (38)-(39) can be formulated by employing a 
suitable matrix notation, so that for the (q=h) horizontal polarized scattered wave we have 
(Imperatore et al. 2008a) (Imperatore et al. 2009a): 
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is the term associated with the effective source distribution, wherein the expressions of the 
effective currents )1(~ p

EmJ and )1(~ p
HmJ , imposed on the (flat) unperturbed boundary z = −dm, for 

an incident polarization p {v, h} are detailed in (Imperatore et al. 2009a); and where Z0 is 
the intrinsic impedance of the vacuum. Furthermore, the fundamental transfer matrix operator 
is given by:  
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with the superscripts q  {v, h} denoting the polarization. Moreover, it should be noted that 
on a (kth) flat interface Eq. (47) reduces to the uniform boundary conditions, thus getting: 
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We emphasize that Eqs. (47) states in a simpler form the problem originally set by Eqs. (38)-
(39): as matter of fact, solving Eq. (47) m implies dealing with the determination of 
unknown scalar amplitudes )()1( 

 kq
mS  instead of working with the corresponding vector 

unknowns )1()1( , mm HE . Therefore, the scattering problem in each mth layer is reduced to the 
algebraic calculation of the unknown expansion scattering coefficients vector (46). As a 
result, when a structure with rough interfaces is considered, the enforcement of the original 
non uniform boundary conditions through the stratification (m=0, ..., N-1) can be addressed 
by writing down a linear system of equations with the aid of the matrix formalism (47)-(48) 
with m=0, ..., N-1. As a result, the formulation of non-uniform boundary conditions in matrix 
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be expanded about the reference mean plane. The fields expansion can be then injected into 
the boundary conditions (34)-(35), so that, retaining only up to the first-order terms, the 
following nonuniform boundary conditions can be obtained (Imperatore et al. 2009a)  
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Therefore, a solution valid in each region of the structure can be obtained from (42)-(45) 
taking into account the non uniform boundary conditions (38)-(39). In order to solve the 
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is the term associated with the effective source distribution, wherein the expressions of the 
effective currents )1(~ p

EmJ and )1(~ p
HmJ , imposed on the (flat) unperturbed boundary z = −dm, for 

an incident polarization p {v, h} are detailed in (Imperatore et al. 2009a); and where Z0 is 
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with the superscripts q  {v, h} denoting the polarization. Moreover, it should be noted that 
on a (kth) flat interface Eq. (47) reduces to the uniform boundary conditions, thus getting: 
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(39): as matter of fact, solving Eq. (47) m implies dealing with the determination of 
unknown scalar amplitudes )()1( 

 kq
mS  instead of working with the corresponding vector 

unknowns )1()1( , mm HE . Therefore, the scattering problem in each mth layer is reduced to the 
algebraic calculation of the unknown expansion scattering coefficients vector (46). As a 
result, when a structure with rough interfaces is considered, the enforcement of the original 
non uniform boundary conditions through the stratification (m=0, ..., N-1) can be addressed 
by writing down a linear system of equations with the aid of the matrix formalism (47)-(48) 
with m=0, ..., N-1. As a result, the formulation of non-uniform boundary conditions in matrix 
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notation (47)-(48) enables a systematic method for solving the scattering problem: For the N-
layer stratification of Figure 1, we have to find 2N unknown expansion coefficients, using N 
vectorial equations (47), i.e., 2N scalar equations. It should be noted that, for the considered 
configuration, the relevant scattering coefficients )(),( )1(

0
)1(





 kk qq
N SS are obviously 

supposed to be zero. The scattering problem, therefore, results to be reduced to a formal 
solution of a linear equation system. We finally emphasize that here we are interested in the 
scattering from the stratification; therefore, the determination of the unknown expansion 
coefficients )()1(0 

 kqS  of the scattered wave into the upper half-space is required only. Full 
expressions for these coefficients are reported in (Imperatore et al. 2009a). 

 
6. BPT Closed-form Solution 
 

The field scattered upward in the upper half-space in the first-order limit can be written in 
the form (see (42)-(45)):  
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By employing the method of stationary phase, we evaluate the integral (51) in the far field zone, 
obtaining: 
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with q  {v, h} is the polarization of the scattered field. The scattering cross section of a 
generic (nth) rough interface embedded in the layered structure can be then defined as 
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where < > denotes ensemble averaging, where q  {v, h} and p  {v, h} denote, respectively, 
the polarization of scattered field and the polarization of incident field, and where A is the 
illuminated surface area. The estimate of the mean power density can be obtained by 
averaging over an ensemble of statistically identical interfaces. Therefore, considering that 
the (spatial) power spectral density )(κnW of nth corrugated interface is defined as in (32), the 
scattering cross section relative to the contribution of the nth corrugated interface, according 
to the formalism used in [Franceschetti et al. 2008], can be expressed as: 
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with p, q  {v, h} denoting, respectively, the incident and the scattered polarization states, 
which may stand for horizontal polarization (h) or vertical polarization (v); the coefficients 

1,~ mm
qp are relative to the p-polarized incident wave impinging on the structure from upper 

  

 

half space 0 and to the q-polarized scattering contribution from structure into the upper half 
space, originated from the rough interface between the layers m, m+1: 
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where )(0  kp
m are the generalized transmission coefficients in upward direction (see (11)). 

Furthermore, we stress when the backscattering case ( 0ˆˆ  
is kk ) is concerned, our cross-

polarized scattering coefficients (55)-(58) evaluated in the plane of incidence vanish, in full 
accordance with the classical first-order SPM method for a rough surface between two 
different media (Ulaby et al, 1982) (Tsang et al., 1985). 
We now show that the solution, given by the expression (55)-(58), is susceptible of a 
straightforward generalization to the case of arbitrary stratification with N-rough 
boundaries. Taking into account the contribution of each nth corrugated interface, the global 
bi-static scattering cross section of the N-rough interface layered media can be expressed as: 
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with p, q  {v, h}, where the asterisk denotes the complex conjugated, where 1,~ ii

qp are given 

by (55)-(58), and where the cross power spectral density ijW , between the interfaces i and j, for 
the spatial frequencies of the roughness is given by (33). As a result, the scattering from the 
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notation (47)-(48) enables a systematic method for solving the scattering problem: For the N-
layer stratification of Figure 1, we have to find 2N unknown expansion coefficients, using N 
vectorial equations (47), i.e., 2N scalar equations. It should be noted that, for the considered 
configuration, the relevant scattering coefficients )(),( )1(
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N SS are obviously 

supposed to be zero. The scattering problem, therefore, results to be reduced to a formal 
solution of a linear equation system. We finally emphasize that here we are interested in the 
scattering from the stratification; therefore, the determination of the unknown expansion 
coefficients )()1(0 

 kqS  of the scattered wave into the upper half-space is required only. Full 
expressions for these coefficients are reported in (Imperatore et al. 2009a). 

 
6. BPT Closed-form Solution 
 

The field scattered upward in the upper half-space in the first-order limit can be written in 
the form (see (42)-(45)):  
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where < > denotes ensemble averaging, where q  {v, h} and p  {v, h} denote, respectively, 
the polarization of scattered field and the polarization of incident field, and where A is the 
illuminated surface area. The estimate of the mean power density can be obtained by 
averaging over an ensemble of statistically identical interfaces. Therefore, considering that 
the (spatial) power spectral density )(κnW of nth corrugated interface is defined as in (32), the 
scattering cross section relative to the contribution of the nth corrugated interface, according 
to the formalism used in [Franceschetti et al. 2008], can be expressed as: 
 

  )(),(~~ 21,4
0

0
,

is
n

isnn
qpnqp Wk 

  kkkk  ,  (54) 

 
with p, q  {v, h} denoting, respectively, the incident and the scattered polarization states, 
which may stand for horizontal polarization (h) or vertical polarization (v); the coefficients 
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where )(0  kp
m are the generalized transmission coefficients in upward direction (see (11)). 

Furthermore, we stress when the backscattering case ( 0ˆˆ  
is kk ) is concerned, our cross-

polarized scattering coefficients (55)-(58) evaluated in the plane of incidence vanish, in full 
accordance with the classical first-order SPM method for a rough surface between two 
different media (Ulaby et al, 1982) (Tsang et al., 1985). 
We now show that the solution, given by the expression (55)-(58), is susceptible of a 
straightforward generalization to the case of arbitrary stratification with N-rough 
boundaries. Taking into account the contribution of each nth corrugated interface, the global 
bi-static scattering cross section of the N-rough interface layered media can be expressed as: 
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with p, q  {v, h}, where the asterisk denotes the complex conjugated, where 1,~ ii

qp are given 

by (55)-(58), and where the cross power spectral density ijW , between the interfaces i and j, for 
the spatial frequencies of the roughness is given by (33). As a result, the scattering from the 
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rough layered media is sensitive to the correlation between rough profiles of different 
interfaces. In fact, a real layered structure will have interfaces cross-correlation somewhere 
between two limiting situations: perfectly correlated and uncorrelated roughness. 
Consequently, the degree of correlation affects the phase relation between the fields 
scattered from each rough interface. Obviously, when the interfaces are supposed to be 
uncorrelated, the second term in (59) vanishes and, in the first-order approximation, the 
total scattering from the structure arises from the incoherent superposition of radiation 
scattered from each interface.  
As a result, an elegant closed form solution is established, which takes into account 
parametrically the dependence of scattering properties on structure (geometric and 
electromagnetic) parameters. In addition, as it will be shown in the following, the proposed 
global solution turns out to be completely interpretable with basic physical concepts, clearly 
discerning the physics of the involved scattering mechanisms.  

 
7. Generalized Scattering Matrix 
 

In this section, to emphasize the polarimetric character of the BPT solution, we introduce the 
generalized bistatic scattering matrix of the layered rough media, which can be then formally 
expressed by: 
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characterizes the polarimetric response of the generic (mth) rough interface of the layered 
structure, for a plane wave incident in direction ik  and for a given observation direction sk , 
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where we have introduced the notation 
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It should be noted that (63)-(67) are obtained directly by (55)-(58) by making use of (11). 
Note also that the coefficients 1,~ mm

qp are expressible in a direct closed-form and depend 
parametrically on the unperturbed structure parameters. We also emphasize that the 
scattering configuration we have considered is compliant with the classical Forward 
Scattering Alignment (FSA) convention adopted in radar polarimetry. 
Denoting with the superscript T the transpose, it can be verified that the scattering matrix 
satisfies the following relationship (Imperatore et al. 2009b) 
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which concisely expresses the reciprocity principle of the electromagnetic theory, as 
expected. This is to say that the scattering experiment is invariant for interchanging the role 
of transmitter and receiver. Note that the inversion of the projections on the z=0 plane i

k  
and s

k  are directly related to the inversion of the incident and scattered vector wave 
zkiz

ii ˆ0 kk  and zk sz
ss ˆ0 kk , respectively.  

As a result, the presented closed-form solution permits the polarimetric evaluation of the 
scattering for a bi-static configuration, once the three-dimensional layered structure’s 
parameters (shape of the roughness spectra, layers thickness and complex permittivities), 
the incident field parameters (frequency, polarization and direction) and the observation 
direction are been specified. Therefore, our formulation leads to a direct functional 
dependence (no integral evaluation is required) and, subsequently, allows us to show that 
the scattered field can be parametrically evaluated considering a set of parameters: some of 
them refer to an unperturbed structure configuration, i.e. intrinsically the physical 
parameters of the smooth boundary structure, and others which are determined exclusively 
by (random) deviations of the corrugated boundaries from their reference position. 
Procedurally, once the generalized reflection/transmission coefficients are recursively evaluated, 
the (63-67) can be than directly computed, so that the scattering cross section (59) or the 
generalized scattering matrix (60) of a structure with rough interfaces can be finally 
predicted. Finally, it should be noted that the method to be applied needs only the classical 
gently-roughness assumption, without any further approximation. 

 
8. Unifying Perspective on Perturbation Approaches  
 

In this section, we first summarize and discuss the previous existing scattering models 
introduced to cope with simplified layered geometry with only one (or two) rough interface, 
whose derivation methods belong to the class of perturbative methods. In the perspective of 
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rough layered media is sensitive to the correlation between rough profiles of different 
interfaces. In fact, a real layered structure will have interfaces cross-correlation somewhere 
between two limiting situations: perfectly correlated and uncorrelated roughness. 
Consequently, the degree of correlation affects the phase relation between the fields 
scattered from each rough interface. Obviously, when the interfaces are supposed to be 
uncorrelated, the second term in (59) vanishes and, in the first-order approximation, the 
total scattering from the structure arises from the incoherent superposition of radiation 
scattered from each interface.  
As a result, an elegant closed form solution is established, which takes into account 
parametrically the dependence of scattering properties on structure (geometric and 
electromagnetic) parameters. In addition, as it will be shown in the following, the proposed 
global solution turns out to be completely interpretable with basic physical concepts, clearly 
discerning the physics of the involved scattering mechanisms.  

 
7. Generalized Scattering Matrix 
 

In this section, to emphasize the polarimetric character of the BPT solution, we introduce the 
generalized bistatic scattering matrix of the layered rough media, which can be then formally 
expressed by: 
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It should be noted that (63)-(67) are obtained directly by (55)-(58) by making use of (11). 
Note also that the coefficients 1,~ mm

qp are expressible in a direct closed-form and depend 
parametrically on the unperturbed structure parameters. We also emphasize that the 
scattering configuration we have considered is compliant with the classical Forward 
Scattering Alignment (FSA) convention adopted in radar polarimetry. 
Denoting with the superscript T the transpose, it can be verified that the scattering matrix 
satisfies the following relationship (Imperatore et al. 2009b) 
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which concisely expresses the reciprocity principle of the electromagnetic theory, as 
expected. This is to say that the scattering experiment is invariant for interchanging the role 
of transmitter and receiver. Note that the inversion of the projections on the z=0 plane i

k  
and s

k  are directly related to the inversion of the incident and scattered vector wave 
zkiz

ii ˆ0 kk  and zk sz
ss ˆ0 kk , respectively.  

As a result, the presented closed-form solution permits the polarimetric evaluation of the 
scattering for a bi-static configuration, once the three-dimensional layered structure’s 
parameters (shape of the roughness spectra, layers thickness and complex permittivities), 
the incident field parameters (frequency, polarization and direction) and the observation 
direction are been specified. Therefore, our formulation leads to a direct functional 
dependence (no integral evaluation is required) and, subsequently, allows us to show that 
the scattered field can be parametrically evaluated considering a set of parameters: some of 
them refer to an unperturbed structure configuration, i.e. intrinsically the physical 
parameters of the smooth boundary structure, and others which are determined exclusively 
by (random) deviations of the corrugated boundaries from their reference position. 
Procedurally, once the generalized reflection/transmission coefficients are recursively evaluated, 
the (63-67) can be than directly computed, so that the scattering cross section (59) or the 
generalized scattering matrix (60) of a structure with rough interfaces can be finally 
predicted. Finally, it should be noted that the method to be applied needs only the classical 
gently-roughness assumption, without any further approximation. 

 
8. Unifying Perspective on Perturbation Approaches  
 

In this section, we first summarize and discuss the previous existing scattering models 
introduced to cope with simplified layered geometry with only one (or two) rough interface, 
whose derivation methods belong to the class of perturbative methods. In the perspective of 
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providing a unifying insight for the different perturbative formulations, the aim is to 
reconsider the state of art in an organized mathematical framework, analytically 
demonstrating the formal consistency of BPT general scattering solution, which permits to 
deal with layered media with an arbitrary number of rough interfaces, with the previous 
existing perturbative models, whose relevant first-order solutions can appear already of 
difficult mutual comparison (Franceschetti et al 2003) (Franceschetti et a. 2008).  
In (Fuks, 2001) a model to calculate scattering from a rough surface on top of a stratified 
medium (see the geometry of Figure 3a) has been proposed. Expressions for scattering bi-
static cross section were obtained by using the plane wave expansion of scattered EM fields 
and an equivalent current method, without using to the Green’s function formalism. With 
reference to the geometry pictured in Figure 3b, an analytical small-perturbation-based model 
was developed to deal with a slightly rough interface boundary covered with a homogeneous 
dielectric layer (Azadegan et al., 2003) ( Sarabandi et al, 2000). Starting from a perturbation 
series expansion and by employing the Green’s function formalism, a solution to predict the 
first order bi-static scattering coefficients was found. On the other hand, the backscattering 
problem from the two-middle layer structure with one embedded corrugation, as schematized 
in Figure 3c, was investigated in (Yarovoy et al., 2000) in the first-order approximation, by 
using the small perturbation method combined with the Green’s function approach. This 
approach leads to some cumbersome analytical expressions for backscattering coefficients. 
As matter of fact, all these models, which refer to different simplified geometry, employ 
different perturbative procedures and different notations in the relative analytical 
derivation, so that the resulting solutions turn out mutually of difficult comparison. Besides, 
the finding of the connection between these existing functional forms is not a trivial task. 
With regard to these models, in (Franceschetti et al., 2008) it was essentially demonstrated 
the equivalence of the relevant analytical procedures and the consistency of the respective 
solutions. It should be mentioned that the models in (Fuks, 2001) and (Azadegan et al., 2003) 
(Sarabandi et al, 2000) are derived for a bi-static configuration. Conversely, the solution 
derived in (Yarovoy et al., 2000) with reference to the geometry of Figure 3c, which is even 
relatively more general since contemplates flat-boundaries stratification above and under 
the roughness, is given only in backscattering case. On the other hand, none of the pertinent 
configurations of these simplistic considered models is directly applicable to an actual 
remote sensing scenario. In fact, the natural stratified media are definitely constituted by 
corrugated interfaces, each one exhibiting a certain amount of roughness, whereas the 
flatness is an idealization which does not occur in natural media. More specifically, it can 
occur that, for a given roughness, one might consider an operational EM wavelength for 
which the roughness itself can be reasonably neglected. However, in principle, there is no 
defensible motivation, beyond the relevant limitation of the involved analytical difficulties, for 
considering the effect of only one interfacial roughness, neglecting the other relevant ones. 
This poses not only a conceptual limitation. In fact, in the applications perspective of retrieving 
geo-physical parameters by scattering measurements, whether there is a dominant interfacial 
roughness, and, in case, which the dominant one is, should be established after the remote 
sensing data are analyzed and, conversely, they cannot constitute a priori assumptions.  
Each of the existing first-order models referring to a simplified geometry with one (Fuks, 
2001) (Azadegan et al., 2003) (Sarabandi et al, 2000) (Yarovoy et al., 2000) or two 
(Tabatabaeenejad et al., 2006) rough interfaces, can be rigorously regarded as a particular 
case of our general model. Indeed, it can be analytically demonstrated that when the general 

  

 

geometry reduces to each simplified one, the consistency of the relevant solutions formally 
holds. In fact, when the (63)-(66) are specialized for the case of Figure 3a, the 
factors )exp()(0 mzm
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m jkk     turn out to be unitary and the general solution formally reduces 

to the one in (Fuks, 2001). Similarly, by specializing the solution to the configuration of 
Figure 3b (Azadegan et al., 2003), the computation is reduced to only 2,1~
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 k ), the computation is reduced to only 2,1~
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equivalent solution in (Yarovoy et al., 2000) (Franceschetti et al., 2008).  
Analytically speaking, this allows us to obtain, in a unitary formal framework, a 
comprehensive insight into the first-order perturbation solutions formalism for scattering 
from stratified structure with rough interfaces.  
Finally, the Boundary Perturbation Theory results can be also regarded as a generalization of 
the classical SPM for rough surface (Ulaby et al., 1982) (Tsang et al., 1985) to layered media 
with rough interfaces.  
 

 
               a)       b)              c) 
Fig. 3. Simplified geometry considered by other Authors 

 
9. Wave Scattering Decomposition  
 

In this section, the focus is on the intrinsic significance of the global BPT scattering solution, 
getting more concrete insight into the physics of the problem of the scattering from rough 
interfaces of a layered media. In order to be able to express the solution in terms of readable 
basic physical phenomena, a key point is to exploit the local scattering concept, differently 
from (Yarovoy et al., 2000) and (Fuks, 1998) wherein the authors resort to the radar contrast. 
It should be noted that the exact analytic decomposition of the solution in terms of local 
interactions is rigorously feasible, since, in the first-order perturbative approximation, the 
scattering amplitude can be written as a single space integral with a kernel that depends 
only on the rough interface height and on its first-order derivatives at a given point. 
Moreover, since in the limit of first-order BPT solution the global response of a structure 
with all rough interfaces can be directly obtained considering the superposition of the 
response from each interface, we firstly focus our attention to a generic embedded rough 
interface. Afterwards, the general interpretation for a layered structure with an arbitrary 
number of rough interfaces can be addressed.  
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providing a unifying insight for the different perturbative formulations, the aim is to 
reconsider the state of art in an organized mathematical framework, analytically 
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existing perturbative models, whose relevant first-order solutions can appear already of 
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In (Fuks, 2001) a model to calculate scattering from a rough surface on top of a stratified 
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reference to the geometry pictured in Figure 3b, an analytical small-perturbation-based model 
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flatness is an idealization which does not occur in natural media. More specifically, it can 
occur that, for a given roughness, one might consider an operational EM wavelength for 
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case of our general model. Indeed, it can be analytically demonstrated that when the general 

  

 

geometry reduces to each simplified one, the consistency of the relevant solutions formally 
holds. In fact, when the (63)-(66) are specialized for the case of Figure 3a, the 
factors )exp()(0 mzm

p
m jkk     turn out to be unitary and the general solution formally reduces 

to the one in (Fuks, 2001). Similarly, by specializing the solution to the configuration of 
Figure 3b (Azadegan et al., 2003), the computation is reduced to only 2,1~

qp , in which 

)](1[])()(1)[()( 21
12

21101010
1111






  kReekRkRkTk pjkkjpppp zz , so the equivalent solution 

in (Azadegan et al., 2003) (Franceschetti et al., 2008) is formally obtained. Finally, 
specializing the general solution to the geometry of Figure 3c, and considering the 
backscattering case ( i

k = s
 k ), the computation is reduced to only 2,1~

qp  in which 

)](1[])()(1)[()( 21
12

21101010
1111 ipjkkjipipipip keekkRkTk z

i
z






  , so we formally obtain the 

equivalent solution in (Yarovoy et al., 2000) (Franceschetti et al., 2008).  
Analytically speaking, this allows us to obtain, in a unitary formal framework, a 
comprehensive insight into the first-order perturbation solutions formalism for scattering 
from stratified structure with rough interfaces.  
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the classical SPM for rough surface (Ulaby et al., 1982) (Tsang et al., 1985) to layered media 
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In this section, the focus is on the intrinsic significance of the global BPT scattering solution, 
getting more concrete insight into the physics of the problem of the scattering from rough 
interfaces of a layered media. In order to be able to express the solution in terms of readable 
basic physical phenomena, a key point is to exploit the local scattering concept, differently 
from (Yarovoy et al., 2000) and (Fuks, 1998) wherein the authors resort to the radar contrast. 
It should be noted that the exact analytic decomposition of the solution in terms of local 
interactions is rigorously feasible, since, in the first-order perturbative approximation, the 
scattering amplitude can be written as a single space integral with a kernel that depends 
only on the rough interface height and on its first-order derivatives at a given point. 
Moreover, since in the limit of first-order BPT solution the global response of a structure 
with all rough interfaces can be directly obtained considering the superposition of the 
response from each interface, we firstly focus our attention to a generic embedded rough 
interface. Afterwards, the general interpretation for a layered structure with an arbitrary 
number of rough interfaces can be addressed.  
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To focus formally on the relations among local and global scattering concepts, the identified 
Wave Scattering Decomposition (Imperatore et al 2008c) (Imperatore et al. 2009c), for the global 
scattering response of the structure in terms of the four types of local interactions, can be 
expressed with a compact notation as: 
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captures the local response of the mth rough interface between two layer of 
permittivity 1, mm  respectively, and the transfer vector qp

mP  is related to the coherent 
propagation inside the stratification (Imperatore et al. 2009c). Specifically, four distinct types 
of local interaction with an embedded rough interface can be distinguished: two of them 
identifiable as local scattering through the relevant interfacial roughness and other ones as 
local scattering from the roughness. We emphasize that the corresponding coefficients 

1, mm
qp and mm

qp
,1  refer to cases in which both the observation and incidence directions 

are, respectively, above and under the roughness; whereas 1, mm
qp and mm

qp
,1 concern the 

local scattering contribution that cross the roughness in opposite directions. In addition, we 
stress that the local scattering coefficients are formally identical to the classical ones relative 
to a rough surface between two half-spaces (Ulaby et al., 1982) (Tsang et al., 1985). On the 
other hand, we emphasize that the transfer vector, which measures the influence of the 
stratification on the local scattering, whatever the roughness is, can be expressed in terms of 
the generalized transmission/reflection coefficients (Imperatore et al. 2009c). Once the local 
nature has been recognized, the solution can be suitably expanded, so that it can be 
expressed as a ray series or optical geometric series, where each term of the series is 
susceptible of a powerful physical interpretation (Imperatore et al. 2008c) as illustrated in 
the next section. 

 
10. Physical Interpretation  
 

In this section, we show in detailed the physical meaning of the wave scattering 
decomposition obtained in the previous section. The analytical solution (69), after suitable 
expansion of the elements of the transfer vector, is then susceptible of an expression in terms 
of an infinite sum of contributions (geometric power series). Consequently, the suitably 
expanded solution can be expressed as an optical geometric series, where each term of the 
series is susceptible of a direct physical interpretation. In particular, each individual term of 
the absolutely summable innite series can be physically identified as a wave propagating in 
the structure that experiences a single-scattering local interaction with the roughness.  
To this purpose, we introduce the following useful notations 
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and recognize that these factors correspond to a complete roundtrip in the intermediate 
layer with coherent reflections at the layer boundaries. Moreover, in order to provide a 
symmetrical expansion, it is possible to explicit the factor )( ih
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To focus formally on the relations among local and global scattering concepts, the identified 
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Note also that when an arbitrary layered structure with all rough interfaces is concerned, 
since in the first-order limit the multiple scattering contributions are neglected, the relative 
physical interpretation can be obtained effortless by superposition of the several ray 
contributions obtained considering separately each rough interface.  
 

a) 

b) 

 c) 

d)  
Fig. 4. Physical interpretation for the scattering from an arbitrary layered structure with an 
embedded rough interface.  
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Fig. 5. Physical Interpretation:  bistatic configuration 
 

 
Fig. 6. Physical Interpretation:  mono-static configuration 
 
As a result, the obtained interpretation (Figure 4) enables the global scattering phenomenon 
involved to be visualized as a superposition of local interactions, emphasizing the role of the 
interference effects in the structure as well (Imperatore et al. 2009c). It should be also noted 
that, despite the expansion is attained rigorously without any further approximation with 
respect to the solution proposed (see (54)-(58)), the resulting interpretation turns out to be 
extremely intuitive and surprisingly simple. In particular, when the configuration reduces to 
a rough interface covered by a dielectric layer, as the reader can easily verify, we obtain the 
interpretation (Franceschetti et al., 2008) for the bistatic and monostatic configuration 
illustrated in Figure 5 and Figure 6, respectively.  

 
11. Scattering patterns computation 
 

In this section, we present some numerical examples aimed at studying scattering 
coefficients (59). To this purpose, we consider the canonical layered media with three rough 
interfaces pictured in Figure 8, which is representative of several situations of interest. In 
common with classical theoretical studies of the scattering of waves from random surfaces, 
we assume that the interfaces constitute Gaussian 2D random processes with Gaussian 
correlations, whose spectral representation is given by 
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where, with regard to the nth interface, n and ln are the surface height standard deviation 
and correlation length, respectively. In order to perform a consistent comparison, we refer to 
interfaces with the same roughness. In addition, we suppose no correlation between the 
interfaces. For instance, we analyze the layered medium with three rough interfaces 
schematized in Figure 7, which can be parametric characterized as follows. We assume 
k0ln=1.5, k0σn=0.15 for n= 0, 1, 2. In addition, the considered vertical profile is characterized 
by the following parameters: 0=1, 1=3.0+j0.0, 2=5.5+j0.00055, 3=10.5+j1.55; Δ1/=1.50, 
Δ2/=2.80 (see Table 1). Once this reference structure has been characterized, we  study  the  
scattering cross  section  of the  structure as a  function of the  scattering direction  in  the  
upper half-space, assuming  fixed the  incident  direction. It should be noted that, also 
considering a limited number of layers, the number of parameters involved by the model 
makes difficult the jointly visualization of the multi-variables dependency. As matter of fact, 
once the structure has been parametrically defined and incident direction has been fixed, it 
is possible to visualize the scattering cross section of the structure as a function of the 
scattering direction in the upper half-space (Imperatore et al. 2008c). Therefore, to 
characterize the re-irradiation pattern of the structure in three-dimensional space, scattering 
cross-section distributions are represented (Figure 8) as function of zenithal and azimuthal 
angles and are treated as three-dimensional surfaces. To save space, only the case hh is 
considered. In addition, we assume fixed the incidence angle i

0 = 45 ( xk i ˆˆ  ). Therefore, 
to evaluate the effect on the global response of each rough interface, the several single 
contributions are shown in Figure 8a, Figure 8b, and Figure 8c, respectively. In addition, the 
total contribution is also pictured (Figure 8.d). It should be noted that to visualize the 
patterns an offset of +40dB has been considered for the radial amplitude, so that scattering 
coefficients less than -40dB are represented by the axes origin.  
 

 
Fig. 7. Three rough interfaces layered media 
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Fig. 7. Three rough interfaces layered media 
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a)       b) 

 
c)       d) 

Fig. 8. Bi-static scattering coefficients hh for a three rough interfaces layered media: 0  
contribution (a), 1  contribution (b), 2 contribution (c), total contribution (d) (note that 
scattering coefficients values less than -40 dB are represented by the axes origin). 
 

 
 
 
 
 
 

 
 
 
Table 1. Parametric characterization of the layered media of Figure 7 

 

i
0  45 k0σ0 0.15 

Δ1/ 1.50 k0σ1 0.15 

Δ2/ 2.80 k0σ2 0.15 
f 1.0 GHz k0l0 1.5 
1 3.0 k0l1 1.5 

2 5.5+j 0.00055 k0l2 1.5 

3 10.5+j 1.55   

  

 

12. Conclusion 
 

A quantitative mathematical analysis of wave propagation in three-dimensional layered 
rough media is fundamental in understanding intriguing scattering phenomena in such 
structures, especially in the perspective of remote sensing applications. The results of the 
Boundary Perturbation Theory (BPT), as introduced by P. Imperatore and his coauthors in 
many different papers, essentially constitutes the content of this chapter in which the 
theoretical body of results is presented in organized manner, emphasizing the applications 
perspective. These formally symmetric and physically revealing analytical results are crucial 
and will contribute to innovatory applications in microwave remote sensing. For instance, 
they open the way toward new techniques for solving the inverse problem, for designing 
SAR processing algorithms, and for modelling the time-domain response of complex 
layered structures. 
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1. Introduction

Since 1970, AVHRR (Advanced Very High Resolution Radiometer) on board the NOAA (Na-
tional Oceanic and Atmospheric Administration) series of satellites has been an ideal obser-
vatory for daily global observation of the Earth. NOAA AVHRR data provides very useful
information about ecosystems, climate, weather and water from all over the world. It is also
widely used for land cover monitoring at global and continental scales.
NOAA AVHRR data are presented in the image coordinate system. Frequently, however,
information extracted from AVHRR data is integrated with map data or given to consumers
in a map-like form. Therefore, it is necessary to transform NOAA AVHRR data from the
image coordinate system into the map coordinate system. In those applications using NOAA
AVHRR data, geometric correction with high accuracy plays a very important role to ensure
that NOAA AVHRR data is precisely transformed from one coordinate system to another.
Some geometric correction methods for NOAA AVHRR data, or NOAA images, have been
proposed. The most popular methods can be divided into two types: orbital geometry model
and transformation based on ground control points (GCPs). In the former, the knowledge
about the characteristics of the satellite is used to build a physical model that defines the
sources of error and the direction as well as the magnitude of their effects. However, this
type of method is based on only nominal parameters. It takes into account only selected
factors that cause geometric distortion. Variations in the altitude or attitude of the satellite
are not considered because the information needed to correct caused by these variations is
not generally available (Mather, 2004). The latter looks at the problem from the opposite of
view. Rather than attempt to construct the physical model that produces errors, it uses an
empirical method to compare the differences between the positions of GCPs, which can be
identified both on the image and on the map of the same area. From the differences between
the distributions of GCPs on the image and on the map, the errors can be estimated and
removed (Mather, 2004). Recently, precise geometric correction method (Ono & Takagi, 2001;
Takagi, 2003), which uses GCP template matching and considers elevation effect, has obtained
accurate results by considering residual errors and elevation effect when acquiring the errors,
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as well as applying affine transform to correct them. Although the precision of this method is
high, the errors still exist on the rough regions after correction.
In order to improve the precision of the geometric correction for NOAA AVHRR data, this
book chapter is dedicated to introduce a novel highly accurate geometric correction method.
Section 2 of this chapter will write about NOAA AVHRR data, the steps of NOAA AVHRR
data processing (including geometric correction) and the applications relating to NOAA
AVHRR data. Section 3 will review the current geometric correction methods, which used
orbital geometry model or GCP model, to point out the advantages and disadvantages of
each type of those methods. Based on the analysis in section 3, section 4 will introduce a novel
highly accurate geometric correction for NOAA AVHRR data, which takes the advantage of
the method using GCP and adds more input data to make the result more accurate. This sec-
tion will also give some discussions on the novel method. The final section will be conclusion
and future works.

2. NOAA AVHRR data

2.1 NOAA POES satellites
Eight years from establishment, in October 1978, NOAA launched TIROS-N, their first POES
satellite. This series of satellites continued with the satellites from NOAA-6 to NOAA-14,
which were launched from to 1979 to 1994. In the spring of 1998, a new series of NOAA POES
satellites commenced with the launch of NOAA-K. NOAA-K and its immediate successors,
such as NOAA-L and NOAA-M, NOAA-N, represented an improvement over the previous
series of satellites. Figure 1 is a NOAA POES satellite (NASA, 2002).

Fig. 1. A NOAA POES satellite

POES satellite’s orbit is near-polar orbit, which means the satellite travels from the pole to
pole, and the angle between the equatorial plane and the satellite orbital plane is nearly 90 de-
grees. With the altitude between 830km and 870km, NOAA POES satellites can cover the most
difficult-to-cover parts of the world. NOAA POES satellites operate in a sun-synchronous
orbit, so they pass the equator and each latitude at the same local solar time each day. This
feature enables regular data collection at consistent times as well as long-term comparisons
(NOAA, 1998)(NOAA, 2000). NOAA has two polar-orbiting meteorological satellites in orbit

at all times (NOAASIS-a, 2008). Together they provide twice-daily global coverage, and en-
sure that data for any region of the earth are no more than 6 hours old. The swath width, the
width of the area on the Earth’s surface that the satellite can “see”, is approximately 2, 500km
(NOAA, 1998)(NOAA, 2000).

2.2 AVHRR sensor
NOAA POES satellites use Advanced Very High Resolution Radiometer (AVHRR) as the in-
strument to collect data from the Earth. AVHRR uses passive detection. Each sensor on board
an AVHRR instrument is corresponding to a channel, which is designed to record informa-
tion from a different range of wavelengths, from visible to infrared. The first AVHRR was
a 4-channel radiometer, first carried on TIROS-N (launched October 1978). This was subse-
quently improved to a 5-channel instrument (AVHRR/2) that was initially carried on NOAA-7
(launched June 1981). The latest instrument version is AVHRR/3, with channel 3 is divided
into 3A and 3B, first carried on NOAA-K launched in May 1998. The sensors scan line by line
as the satellite moves forward along its track. This forward motion of the satellite is used to
build up an image by the collection of the scan lines.

2.3 NOAA AVHRR data
After the information of Earth’s surface is recorded by the sensors, it is sent from the satellite
to the ground receiving stations in a raw digital format. This data is NOAA AVHRR data and
is stored in a digital image (NOAA AVHRR image or NOAA image) including the recorded
data lines. Figure 2 is the channel 4 of a NOAA image received in Tokyo, Japan in August
1998.

Fig. 2. Channel 4 of a NOAA image received in Tokyo, Japan in August, 1998

A NOAA image contains the lines scanned by the AVHRR sensors. Each line includes the data
from all 5 channels of the AVHRR sensors. Every channel in a line contains 2048 pixels. The
value of a pixel is coded in 10 bits. The highest spatial resolution of NOAA AVHRR image is
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as well as applying affine transform to correct them. Although the precision of this method is
high, the errors still exist on the rough regions after correction.
In order to improve the precision of the geometric correction for NOAA AVHRR data, this
book chapter is dedicated to introduce a novel highly accurate geometric correction method.
Section 2 of this chapter will write about NOAA AVHRR data, the steps of NOAA AVHRR
data processing (including geometric correction) and the applications relating to NOAA
AVHRR data. Section 3 will review the current geometric correction methods, which used
orbital geometry model or GCP model, to point out the advantages and disadvantages of
each type of those methods. Based on the analysis in section 3, section 4 will introduce a novel
highly accurate geometric correction for NOAA AVHRR data, which takes the advantage of
the method using GCP and adds more input data to make the result more accurate. This sec-
tion will also give some discussions on the novel method. The final section will be conclusion
and future works.

2. NOAA AVHRR data

2.1 NOAA POES satellites
Eight years from establishment, in October 1978, NOAA launched TIROS-N, their first POES
satellite. This series of satellites continued with the satellites from NOAA-6 to NOAA-14,
which were launched from to 1979 to 1994. In the spring of 1998, a new series of NOAA POES
satellites commenced with the launch of NOAA-K. NOAA-K and its immediate successors,
such as NOAA-L and NOAA-M, NOAA-N, represented an improvement over the previous
series of satellites. Figure 1 is a NOAA POES satellite (NASA, 2002).

Fig. 1. A NOAA POES satellite

POES satellite’s orbit is near-polar orbit, which means the satellite travels from the pole to
pole, and the angle between the equatorial plane and the satellite orbital plane is nearly 90 de-
grees. With the altitude between 830km and 870km, NOAA POES satellites can cover the most
difficult-to-cover parts of the world. NOAA POES satellites operate in a sun-synchronous
orbit, so they pass the equator and each latitude at the same local solar time each day. This
feature enables regular data collection at consistent times as well as long-term comparisons
(NOAA, 1998)(NOAA, 2000). NOAA has two polar-orbiting meteorological satellites in orbit

at all times (NOAASIS-a, 2008). Together they provide twice-daily global coverage, and en-
sure that data for any region of the earth are no more than 6 hours old. The swath width, the
width of the area on the Earth’s surface that the satellite can “see”, is approximately 2, 500km
(NOAA, 1998)(NOAA, 2000).

2.2 AVHRR sensor
NOAA POES satellites use Advanced Very High Resolution Radiometer (AVHRR) as the in-
strument to collect data from the Earth. AVHRR uses passive detection. Each sensor on board
an AVHRR instrument is corresponding to a channel, which is designed to record informa-
tion from a different range of wavelengths, from visible to infrared. The first AVHRR was
a 4-channel radiometer, first carried on TIROS-N (launched October 1978). This was subse-
quently improved to a 5-channel instrument (AVHRR/2) that was initially carried on NOAA-7
(launched June 1981). The latest instrument version is AVHRR/3, with channel 3 is divided
into 3A and 3B, first carried on NOAA-K launched in May 1998. The sensors scan line by line
as the satellite moves forward along its track. This forward motion of the satellite is used to
build up an image by the collection of the scan lines.

2.3 NOAA AVHRR data
After the information of Earth’s surface is recorded by the sensors, it is sent from the satellite
to the ground receiving stations in a raw digital format. This data is NOAA AVHRR data and
is stored in a digital image (NOAA AVHRR image or NOAA image) including the recorded
data lines. Figure 2 is the channel 4 of a NOAA image received in Tokyo, Japan in August
1998.

Fig. 2. Channel 4 of a NOAA image received in Tokyo, Japan in August, 1998

A NOAA image contains the lines scanned by the AVHRR sensors. Each line includes the data
from all 5 channels of the AVHRR sensors. Every channel in a line contains 2048 pixels. The
value of a pixel is coded in 10 bits. The highest spatial resolution of NOAA AVHRR image is
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1.1km, which means that one pixel at the nadir of the satellite is corresponding with an area of
1.1km by 1.1km. The resolution of the pixels at the edges of the images is lower (Mather, 2004).

2.4 Data processing
Many image processing and analysis techniques have been applied to extract as much infor-
mation as possible from the NOAA images. These techniques often include three basic steps:
preprocessing, image enhancement, and information extraction. The data processing begins
with the correction of the errors by some degree of preprocessing including one or more of
cosmetic correction, geometric correction, atmospheric correction and radiometric correction.
After preprocessing step, image enhancement operations are carried out to improve the inter-
pretability of the image by increasing apparent contrast among various features in the scene.
Information Extraction is the last step toward the final output of the remote sensing data pro-
cessing.
Both image enhancement and information extraction steps are deployed on the output of pre-
processing step. Therefore, the accuracy in the data preprocessing, including geometric cor-
rection, plays a very important role in the precision of remote sensing data processing.

2.5 The applications of NOAA AVHRR data
Because of the polar orbiting nature of the POES series satellites, these satellites are able to
collect global data on a daily basis for a variety of land, ocean, and atmospheric applica-
tions. NOAA AVHRR data supports a broad range of environmental monitoring applications
including weather analysis and forecasting, climate research and prediction, global sea sur-
face temperature measurements, atmospheric soundings of temperature and humidity, ocean
dynamics research, volcanic eruption monitoring, forest fire detection, global vegetation anal-
ysis, search and rescue, and many other applications. Nowadays, NOAA AVHRR data is also
combined with high-resolution remote sensing data such as MODIS, LANDSAT TM, SPOT
HRVÉ to extract very useful information.

3. Review on geometric correction for NOAA AVHRR data

3.1 Geometric distortions
NOAA AVHRR data, as other types of remote sensing data, obtained by the satellite often
contains geometric distortions. These distortions can be caused by the Earth’s rotation, the
velocity variations in the scanning process and forward movement of the satellite during the
acquisition of data, the variations of Earth’s elevation and the orbit height. Geometric distor-
tions are generally divided into two types: systematic distortion and non-systematic distortion
(Gibson & Power, 2000).
Systematic distortions are introduced by the remote sensing system itself or in combination
with Earth’s rotation or curvature characteristics. These distortions include: skew, variation
in ground resolution, and displacement or scale distortion. Most systematic distortions can be
corrected using the data obtained from accurate monitoring of the satellite’s orbital path and
the knowledge of the scanning system’s characteristics.
Non-systematic distortions are usually introduced by phenomena that vary in nature through
space and time. These distortions result mainly from variations in the satellite’s orbit and
terrain’s features, which usually involve altitude and attitude changes. Geometric non-
systematic distortions can be corrected only by using ground control points (Murai, 1980).
A ground control point (GCP) is a location on the surface of the Earth (e.g., a road intersec-
tion, a river intersection) that can be identified easily on the image and located accurately on

a map. The image analyst must be able to obtain two distinct sets of coordinates associated
with each GCP, which are image coordinates (e.g., specified in i rows and j columns) and map
coordinates (e.g., x, y measured in degrees of latitude and longitude). The paired coordinates
(i, j and x, y) from many GCPs can be modeled to derive geometric transformation coefficients
to correct the distortions (Mather, 2004).
Figure 3a is an example of the skew distortion caused by the Earth rotation effect. The dotted
rectangle is the image received from satellite; the solid parallelogram is the data after correc-
tion. Due to the Earth’s eastwards rotation, the start of each scan line is displayed slightly
westwards. Figure 3b is an example of the distortion caused by altitude change. The dotted
rectangle is the image received from satellite; the solid trapezium is the data after correction.
Due to the altitude change, a trapezium on the Earth’s surface becomes a square in the remote
sensing image.
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Scan line 3
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Earth rotating towards East

Corrected data Distorted data

Distorted data

Corrected data

a. Skew caused by Earth rotation effect b. Distortion caused by altitude change

Fig. 3. Geometric distortions

3.2 Geometric corection
Geometric correction process can be considered to include these operations: (1) determination
of a relationship between the coordinate system of map and image or image and image, (2)
establishment of a set of points defining pixel centers in the corrected image that, when con-
sidered as a rectangular grid, define an image with the desired cartographic properties, and
(3) estimation of pixel values to be associated with those points (Mather, 2004).
Based on these operations, a lot of geometric correction methods have been proposed. Gener-
ally, geometric correction methods can be divided into two types: the methods based on the
nominal parameters and the methods based on the map (Mather, 2004).
In the former, the knowledge about the characteristics of the satellite’s orbit is used to build
a physical model that defines the sources of error and the direction as well as the magnitude
of their effects. For example, Bannari (Bannari et al., 1995) used the properties of the satellite
orbit and the viewing geometry to relate the image coordinate system to the geographical
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1.1km, which means that one pixel at the nadir of the satellite is corresponding with an area of
1.1km by 1.1km. The resolution of the pixels at the edges of the images is lower (Mather, 2004).

2.4 Data processing
Many image processing and analysis techniques have been applied to extract as much infor-
mation as possible from the NOAA images. These techniques often include three basic steps:
preprocessing, image enhancement, and information extraction. The data processing begins
with the correction of the errors by some degree of preprocessing including one or more of
cosmetic correction, geometric correction, atmospheric correction and radiometric correction.
After preprocessing step, image enhancement operations are carried out to improve the inter-
pretability of the image by increasing apparent contrast among various features in the scene.
Information Extraction is the last step toward the final output of the remote sensing data pro-
cessing.
Both image enhancement and information extraction steps are deployed on the output of pre-
processing step. Therefore, the accuracy in the data preprocessing, including geometric cor-
rection, plays a very important role in the precision of remote sensing data processing.

2.5 The applications of NOAA AVHRR data
Because of the polar orbiting nature of the POES series satellites, these satellites are able to
collect global data on a daily basis for a variety of land, ocean, and atmospheric applica-
tions. NOAA AVHRR data supports a broad range of environmental monitoring applications
including weather analysis and forecasting, climate research and prediction, global sea sur-
face temperature measurements, atmospheric soundings of temperature and humidity, ocean
dynamics research, volcanic eruption monitoring, forest fire detection, global vegetation anal-
ysis, search and rescue, and many other applications. Nowadays, NOAA AVHRR data is also
combined with high-resolution remote sensing data such as MODIS, LANDSAT TM, SPOT
HRVÉ to extract very useful information.

3. Review on geometric correction for NOAA AVHRR data

3.1 Geometric distortions
NOAA AVHRR data, as other types of remote sensing data, obtained by the satellite often
contains geometric distortions. These distortions can be caused by the Earth’s rotation, the
velocity variations in the scanning process and forward movement of the satellite during the
acquisition of data, the variations of Earth’s elevation and the orbit height. Geometric distor-
tions are generally divided into two types: systematic distortion and non-systematic distortion
(Gibson & Power, 2000).
Systematic distortions are introduced by the remote sensing system itself or in combination
with Earth’s rotation or curvature characteristics. These distortions include: skew, variation
in ground resolution, and displacement or scale distortion. Most systematic distortions can be
corrected using the data obtained from accurate monitoring of the satellite’s orbital path and
the knowledge of the scanning system’s characteristics.
Non-systematic distortions are usually introduced by phenomena that vary in nature through
space and time. These distortions result mainly from variations in the satellite’s orbit and
terrain’s features, which usually involve altitude and attitude changes. Geometric non-
systematic distortions can be corrected only by using ground control points (Murai, 1980).
A ground control point (GCP) is a location on the surface of the Earth (e.g., a road intersec-
tion, a river intersection) that can be identified easily on the image and located accurately on

a map. The image analyst must be able to obtain two distinct sets of coordinates associated
with each GCP, which are image coordinates (e.g., specified in i rows and j columns) and map
coordinates (e.g., x, y measured in degrees of latitude and longitude). The paired coordinates
(i, j and x, y) from many GCPs can be modeled to derive geometric transformation coefficients
to correct the distortions (Mather, 2004).
Figure 3a is an example of the skew distortion caused by the Earth rotation effect. The dotted
rectangle is the image received from satellite; the solid parallelogram is the data after correc-
tion. Due to the Earth’s eastwards rotation, the start of each scan line is displayed slightly
westwards. Figure 3b is an example of the distortion caused by altitude change. The dotted
rectangle is the image received from satellite; the solid trapezium is the data after correction.
Due to the altitude change, a trapezium on the Earth’s surface becomes a square in the remote
sensing image.
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3.2 Geometric corection
Geometric correction process can be considered to include these operations: (1) determination
of a relationship between the coordinate system of map and image or image and image, (2)
establishment of a set of points defining pixel centers in the corrected image that, when con-
sidered as a rectangular grid, define an image with the desired cartographic properties, and
(3) estimation of pixel values to be associated with those points (Mather, 2004).
Based on these operations, a lot of geometric correction methods have been proposed. Gener-
ally, geometric correction methods can be divided into two types: the methods based on the
nominal parameters and the methods based on the map (Mather, 2004).
In the former, the knowledge about the characteristics of the satellite’s orbit is used to build
a physical model that defines the sources of error and the direction as well as the magnitude
of their effects. For example, Bannari (Bannari et al., 1995) used the properties of the satellite
orbit and the viewing geometry to relate the image coordinate system to the geographical
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coordinate system. Another method that corrects the coordinate system of remote sensing
images using approximate orbit parameters was proposed by Landgrebe (Landgrebe, 1980).
In this method, the orbital parameters are used to express and correct the distortions, such as
the skew caused by Earth rotation effect. This type of methods is based upon only the nominal
parameters than the actual orbital parameters. Only the selected factors that cause geometric
distortions are taken into account. The variations in the altitude or attitude of the satellite are
not considered because the information needed to correct for these variations is not generally
available.
The latter looks at the problem from the opposite of view. Rather than attempt to construct
the physical model that defines the sources of errors and the direction and magnitude of their
effects, an empirical method is used which compares the differences between the positions of
the GCPs on the image and on the map. From the differences between the distribution of GCPs
on the image and the distribution of GCPs on the map, the nature distortions present in the
image can be estimated, and an empirical transformation to relate the image and map coordi-
nate systems can be computed and applied. This empirical function should be calibrated (us-
ing GCPs), applied to the image, and then validated (using separate test set of GCPs) (Mather,
2004). The correction methods based on map is used to correct the non-systematic distortions,
which are caused by attitude and altitude change.
For NOAA AVHRR data, both types of geometric correction methods are described (Brush,
1985; Crawford et al., 1996; Moreno & Melia, 1993; Purevdorj & Yokoyama, 2000; Saitoh et
al., 1995; Tozawa, 1983). However, most of them did not consider or considered insufficiently
the non-systematic distortions produced by the altitude change, particularly the terrain re-
lief. As mentioned by Mather (Mather, 2004), the altitude change can cause very considerable
distortions in the satellite images. If this type of distortion can be corrected, the results of geo-
metric correction will be improved significantly. Therefore, the method to correct this type of
distortion in NOAA images is important.
Recently, precise geometric correction method (Ono & Takagi, 2001; Takagi, 2003; Yasukawa et
al., 2004), which is based on GCPs and considers the elevation effect, has obtained accurate re-
sults. In this method, the variation effect is considered to acquire the distortion more precisely.
The next section will explain the precise geometric correction method in more detail.

3.3 Precise geometric correction for NOAA AVHRR data
In the precise geometric correction method (Ono & Takagi, 2001; Takagi, 2003), because the
error correction in the image coordinate system is more accurate than the one in the map
coordinate system, the errors in NOAA images are corrected in the image coordinate system
before the images are transformed into the map coordinate system. Figure 4 shows the steps
of this method.

3.4 GCP Template Matching considering elevation effect
3.4.1 Elevation effect
Elevation effect is caused by elevation error. Figure 5 is an example of the schematic illustra-
tion of the situation that the elevation error occurs (O is the center of Earth, Re = 6378.14km is
the Radius of Earth, r = 7228km is the distance OC). There is a mountain at A, the top of this
mountain is D whose height is h. The data the satellite receives from D should be assigned to
A with the scanning angle θ1. However, because the satellite does not take the height h into
account, the data it receives from D is assigned to A′ with scanning angle θ2. In this case, AA′

is elevation error.

Image coordinate system

GCP template matching

considering Elevation effect

Residual error correction

Transform data into

map coordinate system

Fig. 4. Steps of the Precise Geometric Correction Method

In the rectangle ODC, DC is found based on θ1, Re, r and h; and the relationship between θ2
and the sides is represented by (1). Because OC = r and OD = Re + h, θ2 is found as (2).

OD2 = DC2 + OC2 − 2.DC.OC.cosθ2 (1)

θ2 = cos−1 [(DC2 + r2 − (Re + h)2)/(2.r.DC)] (2)

As point out in (Takagi, 2003), the difference of the scan angles (θ2 − θ1) is directly propor-
tional to the elevation error; furthermore, because OC (7228km) is much bigger than BC (satel-
lite’s height: 830km), the angles φ1 and φ2 in the figure 2 are very small. Therefore, AA′ can be
calculated as (3) (unit: pixel) (Takagi, 2003), where 1024 (pixels) is the half width of a NOAA
images, and maximum scan angle of AVHRR sensor is 55.4◦.

AA′ = (θ2 − θ1) ∗ 1024/55.4 (3)

The elevation errors are dominant in longitude direction near equator and in latitude direction
near polar region in the map coordinate system, which corresponds to the pixel direction in the
image coordinate system. The higher the area is, the bigger its elevation error is. The elevation
data is read from GTOPO30 dataset, whose resolution is 0.008 degree in both latitude and
longitude directions. This elevation data can be used to correct the elevation errors in NOAA
images because the resolution of AVHRR mapping system is 0.01 degree.

3.4.2 GCP Template Matching
In the precise geometric correction method, it is very important to accurately acquire the resid-
ual errors, which present the displacement of a point from incorrect to correct position. Resid-
ual errors are measured by GCP template matching. The information about GCP templates is
stored in the Digital Chart of the World. GCP templates are selected from the coastlines (such
as the coastline of islands) and the inland objects (such as the coastline of lakes or rivers),
which have robust features to specify the displacement (Takagi, 2003).
GCP template matching starts with the generating of GCP templates in the map coordinate
system. The size of each template is 33x33 pixels. These templates are then transformed
into the image coordinate system. In order to correct the elevation errors for GCP templates,
each point in every template is moved in the pixel direction according to its elevation error.
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coordinate system. Another method that corrects the coordinate system of remote sensing
images using approximate orbit parameters was proposed by Landgrebe (Landgrebe, 1980).
In this method, the orbital parameters are used to express and correct the distortions, such as
the skew caused by Earth rotation effect. This type of methods is based upon only the nominal
parameters than the actual orbital parameters. Only the selected factors that cause geometric
distortions are taken into account. The variations in the altitude or attitude of the satellite are
not considered because the information needed to correct for these variations is not generally
available.
The latter looks at the problem from the opposite of view. Rather than attempt to construct
the physical model that defines the sources of errors and the direction and magnitude of their
effects, an empirical method is used which compares the differences between the positions of
the GCPs on the image and on the map. From the differences between the distribution of GCPs
on the image and the distribution of GCPs on the map, the nature distortions present in the
image can be estimated, and an empirical transformation to relate the image and map coordi-
nate systems can be computed and applied. This empirical function should be calibrated (us-
ing GCPs), applied to the image, and then validated (using separate test set of GCPs) (Mather,
2004). The correction methods based on map is used to correct the non-systematic distortions,
which are caused by attitude and altitude change.
For NOAA AVHRR data, both types of geometric correction methods are described (Brush,
1985; Crawford et al., 1996; Moreno & Melia, 1993; Purevdorj & Yokoyama, 2000; Saitoh et
al., 1995; Tozawa, 1983). However, most of them did not consider or considered insufficiently
the non-systematic distortions produced by the altitude change, particularly the terrain re-
lief. As mentioned by Mather (Mather, 2004), the altitude change can cause very considerable
distortions in the satellite images. If this type of distortion can be corrected, the results of geo-
metric correction will be improved significantly. Therefore, the method to correct this type of
distortion in NOAA images is important.
Recently, precise geometric correction method (Ono & Takagi, 2001; Takagi, 2003; Yasukawa et
al., 2004), which is based on GCPs and considers the elevation effect, has obtained accurate re-
sults. In this method, the variation effect is considered to acquire the distortion more precisely.
The next section will explain the precise geometric correction method in more detail.

3.3 Precise geometric correction for NOAA AVHRR data
In the precise geometric correction method (Ono & Takagi, 2001; Takagi, 2003), because the
error correction in the image coordinate system is more accurate than the one in the map
coordinate system, the errors in NOAA images are corrected in the image coordinate system
before the images are transformed into the map coordinate system. Figure 4 shows the steps
of this method.

3.4 GCP Template Matching considering elevation effect
3.4.1 Elevation effect
Elevation effect is caused by elevation error. Figure 5 is an example of the schematic illustra-
tion of the situation that the elevation error occurs (O is the center of Earth, Re = 6378.14km is
the Radius of Earth, r = 7228km is the distance OC). There is a mountain at A, the top of this
mountain is D whose height is h. The data the satellite receives from D should be assigned to
A with the scanning angle θ1. However, because the satellite does not take the height h into
account, the data it receives from D is assigned to A′ with scanning angle θ2. In this case, AA′

is elevation error.

Image coordinate system

GCP template matching

considering Elevation effect

Residual error correction

Transform data into

map coordinate system

Fig. 4. Steps of the Precise Geometric Correction Method

In the rectangle ODC, DC is found based on θ1, Re, r and h; and the relationship between θ2
and the sides is represented by (1). Because OC = r and OD = Re + h, θ2 is found as (2).

OD2 = DC2 + OC2 − 2.DC.OC.cosθ2 (1)

θ2 = cos−1 [(DC2 + r2 − (Re + h)2)/(2.r.DC)] (2)

As point out in (Takagi, 2003), the difference of the scan angles (θ2 − θ1) is directly propor-
tional to the elevation error; furthermore, because OC (7228km) is much bigger than BC (satel-
lite’s height: 830km), the angles φ1 and φ2 in the figure 2 are very small. Therefore, AA′ can be
calculated as (3) (unit: pixel) (Takagi, 2003), where 1024 (pixels) is the half width of a NOAA
images, and maximum scan angle of AVHRR sensor is 55.4◦.

AA′ = (θ2 − θ1) ∗ 1024/55.4 (3)

The elevation errors are dominant in longitude direction near equator and in latitude direction
near polar region in the map coordinate system, which corresponds to the pixel direction in the
image coordinate system. The higher the area is, the bigger its elevation error is. The elevation
data is read from GTOPO30 dataset, whose resolution is 0.008 degree in both latitude and
longitude directions. This elevation data can be used to correct the elevation errors in NOAA
images because the resolution of AVHRR mapping system is 0.01 degree.

3.4.2 GCP Template Matching
In the precise geometric correction method, it is very important to accurately acquire the resid-
ual errors, which present the displacement of a point from incorrect to correct position. Resid-
ual errors are measured by GCP template matching. The information about GCP templates is
stored in the Digital Chart of the World. GCP templates are selected from the coastlines (such
as the coastline of islands) and the inland objects (such as the coastline of lakes or rivers),
which have robust features to specify the displacement (Takagi, 2003).
GCP template matching starts with the generating of GCP templates in the map coordinate
system. The size of each template is 33x33 pixels. These templates are then transformed
into the image coordinate system. In order to correct the elevation errors for GCP templates,
each point in every template is moved in the pixel direction according to its elevation error.
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Fig. 5. Schematic illustration of the situation that elevation error occurs

Next, the pieces of 65x65 pixels of the original image corresponding to GCP templates are
selected. They are binarized to create the binary and edge images. After binarizing, the piece
65x65 pixels and the GCP template are matched by SSDA (Takagi, 2003) to find out the best
matching position.

3.5 Residual Error Correction
In order to specify the residual errors, the positions of the coastlines in the image coordinate
system are generated from the coastline data in the map coordinate system considering the
elevation effect. The coastlines are then compared with the GCP templates, whose positions
are already matched by GCP template matching. The displacements from the positions of GCP
templates to the coastlines are residual error vectors, which are used to present residual errors.
Finally, the affine transform are used to correct the residual error vectors (Ono & Takagi, 2001;
Takagi, 2003).
Affine transform is used to calculate the error (∆l, ∆p) for each point (l, p) in the image coor-
dinate system. The error (∆l, ∆p) is calculated as follow:

(
∆l
∆p

)
=

(
α11 α12
α21 α22

)(
l
p

)
+

(
β1
β2

)
(4)

where α11, α12, α21, α22, β1 and β2 are the coefficients which are specified based on residual
error vectors by the precise geometric correction method (Ono & Takagi, 2001).
The correct position of the point (l, p) will be calculated by (5):

{
l = l + ∆l
p = p + ∆p (5)

According to the correction process, because affine transform is applied to calculate error vec-
tors, the variation of elevation is considered as a linear variation on all regions. However,

in fact, the variation of elevation on rough regions is complicated; therefore, affine transform
will produce incorrect results, especially on the rough regions.

3.6 Transforming Data into the Map Coordinate System
In the final step, NOAA data in the image coordinate system is transformed into the map
coordinate system. In order to transform, the data in the map coordinate system is divided
into the blocks of 16x16 points and the position in the image coordinate system of each block
is calculated. Figure 6 is an example of this transformation. Figure 5a is a block of 16x16
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Fig. 6. Bilinear Interpolation

points in the map coordinate system; the position in the image coordinate system of this block
is shown in the figure 5b. Firstly, the positions in the image coordinate system of four corner
points s, t, u and v in this block are precisely calculated based on the parameters of the satellite
and earth’s location. Next, the position in the image coordinate system of the point p inside
this block is interpolated from four corner points by using bilinear interpolation with (6) (Ono
& Takagi, 2001), where Es, Et, Eu, Ev are the elevation errors of s, t, u, v, correspondingly. This
process is repeated for all blocks. Finally, the data in the image are assigned to the correct
positions in the map.
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(6)

Referred to (6), the elevation errors of the points inside a block are interpolated from the
elevation errors of only four corner points. For this reason, (6) will produce correct result on
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Next, the pieces of 65x65 pixels of the original image corresponding to GCP templates are
selected. They are binarized to create the binary and edge images. After binarizing, the piece
65x65 pixels and the GCP template are matched by SSDA (Takagi, 2003) to find out the best
matching position.

3.5 Residual Error Correction
In order to specify the residual errors, the positions of the coastlines in the image coordinate
system are generated from the coastline data in the map coordinate system considering the
elevation effect. The coastlines are then compared with the GCP templates, whose positions
are already matched by GCP template matching. The displacements from the positions of GCP
templates to the coastlines are residual error vectors, which are used to present residual errors.
Finally, the affine transform are used to correct the residual error vectors (Ono & Takagi, 2001;
Takagi, 2003).
Affine transform is used to calculate the error (∆l, ∆p) for each point (l, p) in the image coor-
dinate system. The error (∆l, ∆p) is calculated as follow:
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where α11, α12, α21, α22, β1 and β2 are the coefficients which are specified based on residual
error vectors by the precise geometric correction method (Ono & Takagi, 2001).
The correct position of the point (l, p) will be calculated by (5):

{
l = l + ∆l
p = p + ∆p (5)

According to the correction process, because affine transform is applied to calculate error vec-
tors, the variation of elevation is considered as a linear variation on all regions. However,

in fact, the variation of elevation on rough regions is complicated; therefore, affine transform
will produce incorrect results, especially on the rough regions.

3.6 Transforming Data into the Map Coordinate System
In the final step, NOAA data in the image coordinate system is transformed into the map
coordinate system. In order to transform, the data in the map coordinate system is divided
into the blocks of 16x16 points and the position in the image coordinate system of each block
is calculated. Figure 6 is an example of this transformation. Figure 5a is a block of 16x16
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points in the map coordinate system; the position in the image coordinate system of this block
is shown in the figure 5b. Firstly, the positions in the image coordinate system of four corner
points s, t, u and v in this block are precisely calculated based on the parameters of the satellite
and earth’s location. Next, the position in the image coordinate system of the point p inside
this block is interpolated from four corner points by using bilinear interpolation with (6) (Ono
& Takagi, 2001), where Es, Et, Eu, Ev are the elevation errors of s, t, u, v, correspondingly. This
process is repeated for all blocks. Finally, the data in the image are assigned to the correct
positions in the map.
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Referred to (6), the elevation errors of the points inside a block are interpolated from the
elevation errors of only four corner points. For this reason, (6) will produce correct result on
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only the flat blocks; it will be incorrect on the rough blocks, where the variation of elevation is
complicated.

4. Highly accurate geometric correction for NOAA AVHRR data

By considering elevation effect, the precise geometric correction method (Ono & Takagi,
2001)(Takagi, 2003) has improved the correction result. After correction, the residual errors
are considerably reduced. However, as shown in the previous chapter, the precise geometric
correction method still has some problems:

• Because affine transform is applied to calculate the residual errors, the variation of ele-
vation error is considered as a linear variation on all regions of the image. However, the
variation of elevation error is complicated, especially on the rough regions, it cannot be
considered as a linear variation on all regions. Therefore, affine transform will produce
incorrect residual error correction result.

• By using bilinear interpolation to transform data from the image coordinate system into
the map coordinate system, the elevation errors of the points inside a block are interpo-
lated from the elevation errors of the corner points of that block. For this reason, bilinear
interpolation will have correct result only on the flat blocks, where the difference of the
elevation errors between the corner points and the rest points inside the block is small;
it will be wrong on the rough blocks, where the variation of elevation is big.

In order to increase the precision of geometric correction for NOAA AVHRR data, this section
proposes a new geometric correction method. The proposed method solves the problems of
the precise method by considering the variation of elevation. Depending on the variation of
elevation, residual errors are corrected by different transforms on different regions; data is
also transformed into the map coordinate system by different methods on different regions.
Additionally, to make GCP template matching to be more precise, more GCP templates are
automatically generated from the feature of the coastline.

4.1 Steps of the proposed method
Figure 7 shows the steps of the proposed method.

4.2 Finding flat and rough blocks
As mentioned above, when using affine transform to calculate the residual errors, the results
on the rough regions are not good because the variation of elevation is complicated on these
regions and affine transform is not able to express it; therefore, affine transform should be
applied only on the flat regions, where the difference of elevation between to neighboring
points is small. On the other hand, when transforming data from the image coordinate system
into the map coordinate system by using bilinear interpolation, because the elevation error of
a point inside a block is interpolated from the elevation errors of four corner points, bilinear
interpolation will produce errors on rough regions. For these reasons, to identify flat and
rough regions is necessary to reduce the error.
In order to find out the flat and rough block, the data in the map coordinate system is divided
into blocks of 16x16 points. The elevation data of every point in each block are read from
GTOPO30 dataset. The highest and lowest points in each block are compared to decide if it is
flat or rough block. If a block is rough, it will be divided into four same-size smaller blocks.
The dividing process is repeated on the rough blocks until the sizes of all rough blocks are 4x4
points.

Image coordinate system

GCP template matching

considering Elevation effect

Residual error correction

by affine transform and RBFT

Transform data into

map coordinate system

Map coordinate system

Finding flat and rough blocks

Generating more GCP templates

Fig. 7. Steps of the proposed method

Figure 8 is an example of the dividing a block into smaller flat and rough blocks. In figure 8a,
an original block of 16x16 points is identified as a rough block, and it is divided into 4 smaller
blocks of 8x8 points. The highest and lowest points in each smaller block are compared to
find out one flat block (block 1) and three rough blocks (block 2, 3, 4). Each rough block in
figure 8a continues to be divided into 4 smaller blocks of 4x4 points in figure 8b (from block 5
to block 16 in figure). The highest and lowest points in these 4x4 points blocks are compared
to identify flat blocks (block 5, 7, 10, 14, 15, 16) and rough blocks (block 6, 8, 9, 11, 12, 13).
In this study, a block is considered as a flat block if the difference in the elevation between the
lowest and the highest point is smaller than 50m; otherwise, the block is considered as a rough
block. The value 50m is selected as the threshold for a rough block because if the difference
in elevation is greater than 50m, the elevation error on the high altitude regions at the left or
right side of the image may be greater than 0.5 pixel, and when this value is rounded, it will
become 1 pixel displacement.

4.3 Generating more GCP templates
In order to acquire residual errors precisely, the number of GCP templates using in GCP tem-
plate matching is very important. The greater number of GCP templates is used in GCP tem-
plate matching, the more residual errors are calculated precisely by GCP template matching.
On some regions, because of the cloud effect or the feature of the terrain, GCP template can-
not be found or the number of GCP templates is not enough for GCP template matching.
Therefore, in addition to the templates in the GCP template database, a method which auto-
matically generates GCP templates based on the feature of the coastline described by Nakano
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only the flat blocks; it will be incorrect on the rough blocks, where the variation of elevation is
complicated.

4. Highly accurate geometric correction for NOAA AVHRR data

By considering elevation effect, the precise geometric correction method (Ono & Takagi,
2001)(Takagi, 2003) has improved the correction result. After correction, the residual errors
are considerably reduced. However, as shown in the previous chapter, the precise geometric
correction method still has some problems:

• Because affine transform is applied to calculate the residual errors, the variation of ele-
vation error is considered as a linear variation on all regions of the image. However, the
variation of elevation error is complicated, especially on the rough regions, it cannot be
considered as a linear variation on all regions. Therefore, affine transform will produce
incorrect residual error correction result.

• By using bilinear interpolation to transform data from the image coordinate system into
the map coordinate system, the elevation errors of the points inside a block are interpo-
lated from the elevation errors of the corner points of that block. For this reason, bilinear
interpolation will have correct result only on the flat blocks, where the difference of the
elevation errors between the corner points and the rest points inside the block is small;
it will be wrong on the rough blocks, where the variation of elevation is big.

In order to increase the precision of geometric correction for NOAA AVHRR data, this section
proposes a new geometric correction method. The proposed method solves the problems of
the precise method by considering the variation of elevation. Depending on the variation of
elevation, residual errors are corrected by different transforms on different regions; data is
also transformed into the map coordinate system by different methods on different regions.
Additionally, to make GCP template matching to be more precise, more GCP templates are
automatically generated from the feature of the coastline.

4.1 Steps of the proposed method
Figure 7 shows the steps of the proposed method.

4.2 Finding flat and rough blocks
As mentioned above, when using affine transform to calculate the residual errors, the results
on the rough regions are not good because the variation of elevation is complicated on these
regions and affine transform is not able to express it; therefore, affine transform should be
applied only on the flat regions, where the difference of elevation between to neighboring
points is small. On the other hand, when transforming data from the image coordinate system
into the map coordinate system by using bilinear interpolation, because the elevation error of
a point inside a block is interpolated from the elevation errors of four corner points, bilinear
interpolation will produce errors on rough regions. For these reasons, to identify flat and
rough regions is necessary to reduce the error.
In order to find out the flat and rough block, the data in the map coordinate system is divided
into blocks of 16x16 points. The elevation data of every point in each block are read from
GTOPO30 dataset. The highest and lowest points in each block are compared to decide if it is
flat or rough block. If a block is rough, it will be divided into four same-size smaller blocks.
The dividing process is repeated on the rough blocks until the sizes of all rough blocks are 4x4
points.
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Figure 8 is an example of the dividing a block into smaller flat and rough blocks. In figure 8a,
an original block of 16x16 points is identified as a rough block, and it is divided into 4 smaller
blocks of 8x8 points. The highest and lowest points in each smaller block are compared to
find out one flat block (block 1) and three rough blocks (block 2, 3, 4). Each rough block in
figure 8a continues to be divided into 4 smaller blocks of 4x4 points in figure 8b (from block 5
to block 16 in figure). The highest and lowest points in these 4x4 points blocks are compared
to identify flat blocks (block 5, 7, 10, 14, 15, 16) and rough blocks (block 6, 8, 9, 11, 12, 13).
In this study, a block is considered as a flat block if the difference in the elevation between the
lowest and the highest point is smaller than 50m; otherwise, the block is considered as a rough
block. The value 50m is selected as the threshold for a rough block because if the difference
in elevation is greater than 50m, the elevation error on the high altitude regions at the left or
right side of the image may be greater than 0.5 pixel, and when this value is rounded, it will
become 1 pixel displacement.

4.3 Generating more GCP templates
In order to acquire residual errors precisely, the number of GCP templates using in GCP tem-
plate matching is very important. The greater number of GCP templates is used in GCP tem-
plate matching, the more residual errors are calculated precisely by GCP template matching.
On some regions, because of the cloud effect or the feature of the terrain, GCP template can-
not be found or the number of GCP templates is not enough for GCP template matching.
Therefore, in addition to the templates in the GCP template database, a method which auto-
matically generates GCP templates based on the feature of the coastline described by Nakano
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et al. (Nakano et al., 2004) is considered. According to this method, GCP templates are gener-
ated based on the feature of the coastline. The complexity in the shape of the coastline is taken
into account to decide whether or not that region should become a GCP template.
GCP templates are generated automatically as following:
Firstly, the coastline image is created from the coastline database in the map coordinate sys-
tem. A square of 33x33 points whose center is a point belonging to coastline is specified. In
figure 9, a square of 33x33 points with center C1 (belongs to the coastline) is created from the
coastline image.

C1

P(i0,j0)

C2

GCP template

Square of 33x33 points

Coastline

Fig. 9. Automatically generating GCP template

With every point p in this square, P is calculated as:

P(i, j) =
r

∑
k=−r

r

∑
l=−r

c(i + k, j + l) (7)

where (i, j) is the position of the point p, r = 16, and c is a function described by (8).

c(x, y) =
{

1 if (x, y) belongs to coastline
0 otherwise (8)

The values of P corresponding to the different positions of p(i, j) are compared to find out
the maximal value Pmax. Pmax is then compared with a threshold. If Pmax is greater than
that threshold, a square of 33x33 points, whose center is the point corresponding to Pmax, is
generated. And if this template is a flat region, it will be considered as a GCP template. In
figure 9, p(i0, j0) is supposed to correspond to Pmax, and the square of 33x33 points whose
center is p(i0, j0) is generated. If Pmax is greater than the threshold and this square locates on
a flat region, it will be a GCP template.
Next, the square of 33x33 points, which locates next to the current square and whose center
belongs to the coastline, is taken into account. In the figure 9, after finding GCP template in
the square whose center is C1, the square whose center is C2 will be considered.
This process is repeated until no more squares can be found. Figure 10 (Nakano et al., 2004) is
an example of the GCP templates automatically generated by this method.

Fig. 10. A result of automatically generating GCP template

4.4 GCP template matching using reference data
Similar to the precise geometric correction method explained in the previous section, the result
of GCP template matching is used to specify the residual errors. In the proposed method, both
the GCP templates in the template database and the GCP templates generated automatically
based on the features of the coastline are used for GCP template matching. GCP template
matching is applied as it is described in the section 3.4.2.



Highly	accurate	geometric	correction	for	NOAA	AVHRR	data 215

1

2 3

4 1

5

7

10

14

1516

6

8

9

1112

13

(a) (b)

Fig. 8. Dividing data into flat and rough blocks

et al. (Nakano et al., 2004) is considered. According to this method, GCP templates are gener-
ated based on the feature of the coastline. The complexity in the shape of the coastline is taken
into account to decide whether or not that region should become a GCP template.
GCP templates are generated automatically as following:
Firstly, the coastline image is created from the coastline database in the map coordinate sys-
tem. A square of 33x33 points whose center is a point belonging to coastline is specified. In
figure 9, a square of 33x33 points with center C1 (belongs to the coastline) is created from the
coastline image.
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With every point p in this square, P is calculated as:

P(i, j) =
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c(i + k, j + l) (7)

where (i, j) is the position of the point p, r = 16, and c is a function described by (8).

c(x, y) =
{

1 if (x, y) belongs to coastline
0 otherwise (8)

The values of P corresponding to the different positions of p(i, j) are compared to find out
the maximal value Pmax. Pmax is then compared with a threshold. If Pmax is greater than
that threshold, a square of 33x33 points, whose center is the point corresponding to Pmax, is
generated. And if this template is a flat region, it will be considered as a GCP template. In
figure 9, p(i0, j0) is supposed to correspond to Pmax, and the square of 33x33 points whose
center is p(i0, j0) is generated. If Pmax is greater than the threshold and this square locates on
a flat region, it will be a GCP template.
Next, the square of 33x33 points, which locates next to the current square and whose center
belongs to the coastline, is taken into account. In the figure 9, after finding GCP template in
the square whose center is C1, the square whose center is C2 will be considered.
This process is repeated until no more squares can be found. Figure 10 (Nakano et al., 2004) is
an example of the GCP templates automatically generated by this method.

Fig. 10. A result of automatically generating GCP template

4.4 GCP template matching using reference data
Similar to the precise geometric correction method explained in the previous section, the result
of GCP template matching is used to specify the residual errors. In the proposed method, both
the GCP templates in the template database and the GCP templates generated automatically
based on the features of the coastline are used for GCP template matching. GCP template
matching is applied as it is described in the section 3.4.2.
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4.5 Residual error correction considering affine transform and Radial Basis Function Trans-
form

After GCP template matching, the residual errors of the GCP template’s center points are
found. In order to calculate the residual errors for the rest points in the NOAA image, some
mathematical transformation is applied.
In a flat block, because the difference of the height between the highest and lowest points are
quite small, the elevations of all points in this flat block are similar, and the variation of the
elevation therefore can be considered as a linear variation. For this reason, in the proposed
method, affine transform is applied to calculate the residual errors for only the points in the
flat blocks.
In the rough blocks, the variation of elevation is more complicated than that in the flat blocks.
Thus, rather than applying affine transform, another mathematical transformation should be
used to calculate the residual errors in the rough blocks. Based on the fact that the elevation
error of a point is affected more strongly by the elevation errors of its neighboring points than
by the elevation errors of the further points, Radial Basis Function Transform (RBFT) (Pighin
et al., 1998) is used to calculate the residual errors in the rough blocks.
Figure 11 shows an example of using RBFT. Supposed that N vectors ri are already known,
i = 1, N. pi and p′

i is the positional vector of the start point and end point of vector ri
respectively. Based on the vectors ri, pi and p′

i , RBFT is applied to find the vector r whose
start point is expressed by the positional vector p. In the formulas (9) and (10), g(t) is the
Radial Basis Function. Firstly, from the vectors ri and the positional vectors pi, the weight

coefficients cj are found by (9):

ri =
N

∑
j=1

cjg(
∥∥pi − pj

∥∥) (9)

Based on these weight coefficients, vector r is calculated as (10):

r =
N

∑
i=1

cig(‖p− pi‖) (10)

By using RBFT, the smaller the distance from p to pi is, the greater the vector ri affects to the
vector r.
In the proposed method, affine transform and RBFT are used to find the residual errors in the
images as the following steps:

1. Use bilinear interpolation to find the positions in the image coordinate system for the
points in the flat blocks. With the rough blocks, because the variation of elevation is
complicated, the positions in the image coordinate system of all points in these blocks
are found from the satellite’s parameters and Earth’s location.

2. Apply affine transform to calculate the residual errors for the points in the flat blocks.

3. With the rough blocks:

(a) Mark the center points of GCP templates as the calculated points. All the points
in the rough blocks are marked as un-calculated points.

(b) With each un-calculated point, find its nearest GCP template.

(c) Find the un-calculated points whose distances from them to their nearest GCP
templates are the shortest.

(d) With the points found in step (c), select the point whose elevation is the most
similar to the elevation of its nearest GCP template.

(e) Apply RBFT to the residual error vectors of the calculated points to find the resid-
ual error vector for the point found in step (d). After the residual error is found,
mark this point as a calculated point.

(f) Repeat from step (c) to step (e) until all the points in the rough blocks are calcu-
lated points.

4. All points in the image are moved to their corrected positions according to their residual
error vectors.

By applying RBFT, the residual error vector of a point in a rough block is specified based on
the residual error vectors of other points as well as the distances from the current point to
those points. The shorter the distance between points is, the more strongly these points affect
to each other. It reflects the real situation that the elevation error of a point is affected more
strongly by its neighboring points’ elevation errors than by the further points’.
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4.5 Residual error correction considering affine transform and Radial Basis Function Trans-
form

After GCP template matching, the residual errors of the GCP template’s center points are
found. In order to calculate the residual errors for the rest points in the NOAA image, some
mathematical transformation is applied.
In a flat block, because the difference of the height between the highest and lowest points are
quite small, the elevations of all points in this flat block are similar, and the variation of the
elevation therefore can be considered as a linear variation. For this reason, in the proposed
method, affine transform is applied to calculate the residual errors for only the points in the
flat blocks.
In the rough blocks, the variation of elevation is more complicated than that in the flat blocks.
Thus, rather than applying affine transform, another mathematical transformation should be
used to calculate the residual errors in the rough blocks. Based on the fact that the elevation
error of a point is affected more strongly by the elevation errors of its neighboring points than
by the elevation errors of the further points, Radial Basis Function Transform (RBFT) (Pighin
et al., 1998) is used to calculate the residual errors in the rough blocks.
Figure 11 shows an example of using RBFT. Supposed that N vectors ri are already known,
i = 1, N. pi and p′

i is the positional vector of the start point and end point of vector ri
respectively. Based on the vectors ri, pi and p′

i , RBFT is applied to find the vector r whose
start point is expressed by the positional vector p. In the formulas (9) and (10), g(t) is the
Radial Basis Function. Firstly, from the vectors ri and the positional vectors pi, the weight

coefficients cj are found by (9):

ri =
N

∑
j=1

cjg(
∥∥pi − pj

∥∥) (9)

Based on these weight coefficients, vector r is calculated as (10):

r =
N

∑
i=1

cig(‖p− pi‖) (10)

By using RBFT, the smaller the distance from p to pi is, the greater the vector ri affects to the
vector r.
In the proposed method, affine transform and RBFT are used to find the residual errors in the
images as the following steps:

1. Use bilinear interpolation to find the positions in the image coordinate system for the
points in the flat blocks. With the rough blocks, because the variation of elevation is
complicated, the positions in the image coordinate system of all points in these blocks
are found from the satellite’s parameters and Earth’s location.

2. Apply affine transform to calculate the residual errors for the points in the flat blocks.

3. With the rough blocks:

(a) Mark the center points of GCP templates as the calculated points. All the points
in the rough blocks are marked as un-calculated points.

(b) With each un-calculated point, find its nearest GCP template.

(c) Find the un-calculated points whose distances from them to their nearest GCP
templates are the shortest.

(d) With the points found in step (c), select the point whose elevation is the most
similar to the elevation of its nearest GCP template.

(e) Apply RBFT to the residual error vectors of the calculated points to find the resid-
ual error vector for the point found in step (d). After the residual error is found,
mark this point as a calculated point.

(f) Repeat from step (c) to step (e) until all the points in the rough blocks are calcu-
lated points.

4. All points in the image are moved to their corrected positions according to their residual
error vectors.

By applying RBFT, the residual error vector of a point in a rough block is specified based on
the residual error vectors of other points as well as the distances from the current point to
those points. The shorter the distance between points is, the more strongly these points affect
to each other. It reflects the real situation that the elevation error of a point is affected more
strongly by its neighboring points’ elevation errors than by the further points’.
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4.6 Transforming data into map coordinate system
In the final step, data is transformed into the map coordinate system. By transforming data
from the map coordinate system into the image coordinate system in the previous step, each
point in the image coordinate system has its corresponding point in the map coordinate sys-
tem. After moving all points in the image coordinate system to their correct positions ac-
cording to their residual errors, the values of these points are assigned to their corresponding
positions in map coordinate system.
As described in the previous step, because bilinear interpolation is applied only on the flat
blocks, where the elevation errors of all points are fairly same, the error of bilinear interpo-
lation is reduced. Furthermore, since satellite’s parameters and Earth’s location are used to
transform data on the rough regions, the precision of transformation on the rough regions is
high.

4.7 Result and Evaluation
The proposed method was applied to correct the errors for the NOAA images receiving in
Tokyo (Japan), Bangkok (Thailand) and Ulaanbaatar (Mongolia). In order to evaluate the
precision of the proposed method, the correction results of the precise geometric correction
method (precise method) - described by Ono and Takagi (Ono & Takagi, 2001), and some
different versions of the proposed method are compared.
In order to evaluate the correction results, some tests are performed. In each test, a number
of NOAA images are corrected. With each NOAA image, 90% number of GCP templates
are used for GCP template matching. After correction, the residual errors at the positions
corresponding to the rest 10% number of GCP templates (which are used as the checking
points) are acquired by using GCP template matching in the map coordinate system.

4.7.1 Selecting the radial basic function for RBFT
There are several types of radial basic function, which can be used for RBFT. In the proposed
method, to express the fact that the elevation error of a point is affected by more strongly by
the elevation errors of its neighboring points than by the elevation errors of the further points,
the non-linear radial basis function whose shape is similar to the graph in the figure 12 is used.
In this figure, the x axis is the distance between two points; the bigger the distance between
two points is, the more weakly their errors affect to each other.
From the above shape, the most common radial basis function types including Gaussian func-
tion g(t) = e−kt, Inverse-Multiquadric function (1 + kt)−1/2 and Cauchy function (1 + kt)−1

are considered. In order to select the best radial basic function for RBFT, these functions are
applied to correct the distortions and the correction results are evaluated.
The value of k in each function is specified so that the residual error vectors of all the points
in a NOAA image are used for RBFT. Because each NOAA image often includes 5000 lines,
each line contains 2048 pixels, the maximum distance between two points in the image is
around

√
(50002 + 20482) ≈ 5400 pixels. This maximum distance should correspond to the

minimum value of the radial basic function. Therefore, in the proposed method, the output
of radial basic function should be nearly zero when the value of its variable is the maximum
distance. In calculating, the minimum value of the radial basic function is selected to be equal
to 10−6.
Based on this idea, the best value of k for each radial basis function will be found by compar-
ing the average error after correction of the tests on 100 NOAA images when the maximum
distance is changed from 4000 pixels to 6000 pixels.

x

y

0

Fig. 12. The shape of the radial basic function

Table 1 is the result of this test. In this table, the average errors after correction in latitude and
longitude directions are calculated for each type of radial basis function; G is Gaussian, I.M is
Inverse Multiquadric and C is Cauchy; Lat is latitude and Lon is longitude.

Maximum Distance G I.M. C.
(pixels) Lat Lon Lat Lon Lat Lon

4000 0.25 0.28 0.31 0.35 0.33 0.40
4200 0.21 0.26 0.25 0.29 0.27 0.32
4400 0.16 0.20 0.23 0.26 0.23 0.27
4600 0.12 0.16 0.19 0.24 0.22 0.25
4800 0.15 0.17 0.22 0.25 0.23 0.26
5000 0.16 0.19 0.23 0.27 0.25 0.29
5200 0.17 0.21 0.23 0.29 0.27 0.31
5400 0.19 0.23 0.25 0.30 0.28 0.33
5600 0.21 0.25 0.25 0.32 0.30 0.34
5800 0.23 0.28 0.28 0.33 0.32 0.36
6000 0.25 0.30 0.29 0.35 0.34 0.39

Table 1. Average residual errors after correction with different maximum distances (unit:
pixel)

This table shows that with each maximum distance, the Gaussian function is the best radial
basic function because the average error of after correction when applying RBFT with this
function is the smallest. This table also points out that the best maximum distance should
be selected at around 4600 pixels, which corresponds to the value 0.003 of k in the Gaussian
function.
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point in the image coordinate system has its corresponding point in the map coordinate sys-
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method, to express the fact that the elevation error of a point is affected by more strongly by
the elevation errors of its neighboring points than by the elevation errors of the further points,
the non-linear radial basis function whose shape is similar to the graph in the figure 12 is used.
In this figure, the x axis is the distance between two points; the bigger the distance between
two points is, the more weakly their errors affect to each other.
From the above shape, the most common radial basis function types including Gaussian func-
tion g(t) = e−kt, Inverse-Multiquadric function (1 + kt)−1/2 and Cauchy function (1 + kt)−1

are considered. In order to select the best radial basic function for RBFT, these functions are
applied to correct the distortions and the correction results are evaluated.
The value of k in each function is specified so that the residual error vectors of all the points
in a NOAA image are used for RBFT. Because each NOAA image often includes 5000 lines,
each line contains 2048 pixels, the maximum distance between two points in the image is
around

√
(50002 + 20482) ≈ 5400 pixels. This maximum distance should correspond to the

minimum value of the radial basic function. Therefore, in the proposed method, the output
of radial basic function should be nearly zero when the value of its variable is the maximum
distance. In calculating, the minimum value of the radial basic function is selected to be equal
to 10−6.
Based on this idea, the best value of k for each radial basis function will be found by compar-
ing the average error after correction of the tests on 100 NOAA images when the maximum
distance is changed from 4000 pixels to 6000 pixels.
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Table 1 is the result of this test. In this table, the average errors after correction in latitude and
longitude directions are calculated for each type of radial basis function; G is Gaussian, I.M is
Inverse Multiquadric and C is Cauchy; Lat is latitude and Lon is longitude.

Maximum Distance G I.M. C.
(pixels) Lat Lon Lat Lon Lat Lon

4000 0.25 0.28 0.31 0.35 0.33 0.40
4200 0.21 0.26 0.25 0.29 0.27 0.32
4400 0.16 0.20 0.23 0.26 0.23 0.27
4600 0.12 0.16 0.19 0.24 0.22 0.25
4800 0.15 0.17 0.22 0.25 0.23 0.26
5000 0.16 0.19 0.23 0.27 0.25 0.29
5200 0.17 0.21 0.23 0.29 0.27 0.31
5400 0.19 0.23 0.25 0.30 0.28 0.33
5600 0.21 0.25 0.25 0.32 0.30 0.34
5800 0.23 0.28 0.28 0.33 0.32 0.36
6000 0.25 0.30 0.29 0.35 0.34 0.39

Table 1. Average residual errors after correction with different maximum distances (unit:
pixel)

This table shows that with each maximum distance, the Gaussian function is the best radial
basic function because the average error of after correction when applying RBFT with this
function is the smallest. This table also points out that the best maximum distance should
be selected at around 4600 pixels, which corresponds to the value 0.003 of k in the Gaussian
function.
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4.7.2 Comparing affine transform and RBFT
The effectiveness of the affine transform and RBFT is compared by applying them to correct
the same NOAA images and then finding the difference in the errors after correction.
In the first test, only the flat regions in 100 NOAA images are corrected by affine transform
and then by RBFT. Table 2 is the results this test.

Image Value Affine RBFT
(Checking Points) Latitude Longitude Latitude Longitude

AH14060402222944 Average 0.12 0.15 0.11 0.13
Maximum 1.00 1.00 1.00 1.00

(45) Minimum 0.00 0.00 0.00 0.00

AH16110602044118 Average 0.10 0.11 0.10 0.12
Maximum 1.00 1.00 1.00 1.00

(41) Minimum 0.00 0.00 0.00 0.00

AH16110702183721 Average 0.12 0.14 0.11 0.14
Maximum 1.00 2.00 1.00 1.00

(46) Minimum 0.00 0.00 0.00 0.00
100 NOAA images Average 0.11 0.12 0.10 0.12(44)

Table 2. Residual errors after correction the flat regions by using affine transform and RBFT
(unit: pixel)

Table 2 shows that, the average error after correction by affine transform and RBFT on the
flat regions are not so different. Although the result of RBFT is a little better, affine transform
will be selected for the proposed method because its computing cost is smaller than the one
of RBFT.
In the second test, 100 NOAA images are corrected by the first method, which uses only affine
transform, and the second method, which uses affine transform on the flat regions and RBFT
on the rough regions. Table 3 is the results this test.
Table 3 shows that, compared with the correction results when applying only affine transform,
the average error after correction is reduced 50% in latitude direction (0.22/0.44) and 49% in
longitude direction (0.25/0.50) when applying affine transform on the flat regions and RBFT
on the rough regions. It means that, compared with affine transform, RBFT reduces about 50%
of the errors after correction on the rough regions.

4.7.3 Comparing the correction result of the precise method and the proposed method
In this test, the correction results of the proposed method are compared with those of the
precise method. 100 NOAA images are corrected by the proposed method and the precise
method. Table 4 shows the result of acquiring residual errors after correction. The average,
maximum and minimum values of the residual errors in latitude and longitude direction are
recorded. It is seen that both methods give highly accurate correction results, but the residual
errors after correction of the proposed method are much smaller than the one of the precise
method. The smaller residual errors after correction proved that the proposed method is more
accurate than the precise method.
Figure 13 shows the correction results (in the map coordinate system) of the precise method
(left pictures) and the proposed method (right pictures) on two regions of China where the

Image Value Affine only Affine and RBFT
(Checking Points) Latitude Longitude Latitude Longitude

AH14060402222944 Average 0.53 0.64 0.24 0.27
Maximum 1.00 1.00 1.00 1.00

(45) Minimum 0.00 0.00 0.00 0.00

AH16110602044118 Average 0.37 0.62 0.22 0.27
Maximum 1.00 2.00 1.00 1.00

(41) Minimum 0.00 0.00 0.00 0.00

AH16110702183721 Average 0.41 0.45 0.21 0.23
Maximum 1.00 2.00 1.00 1.00

(46) Minimum 0.00 0.00 0.00 0.00
100 NOAA images Average 0.44 0.51 0.22 0.25(44)

Table 3. Residual errors after correction by using affine transform and by using both affine
transform and RBFT (unit: pixel)

elevation are 4392m and 4831m. In each picture, the black object is generated in the map
coordinate system from the coastline database; the white curve is the result of geometric cor-
rection, it is the border of the black object. The black objects in all pictures should fit their
white borders. The better geometric correction is, the better the black objects fit their white
borders.
From the pictures in the figure 13, it is easy to see that, at both elevations (4392m and 4831m),
the black objects fit their white borders in the right pictures (which are the result of the
proposed method) better than those in the left pictures (which are the result of the precise
method).
Figures 14 and 15 show the residual error vectors after correction (in the map coordi-
nate system) of the precise method and the proposed method for the NOAA images
AH16110602044118 and AH16110702183721, respectively. The vectors in these pictures are
the residual error vectors after correction. It is clear that the residual error vectors after cor-
rection are improved by the proposed method. On some regions where the residual error
vectors are big in the result of the precise method, the residual error vectors in the result of
the proposed method are smaller.

4.7.4 Comparing the correction result of the proposed method and other methods
In this test, the correction results of the proposed method (method P) are compared with those
of other tow methods. Method S is systematic method, which just transforms data from the
image coordinate system into map coordinate system by using bilinear interpolation (Ono
& Takagi, 2001). Method C is conventional method, which correct data using GCP template
matching but does not consider the elevation effect (Ono & Takagi, 2001). 02 NOAA images
are corrected by these methods. Table 5 shows the result of acquiring residual errors after
correction. The average, maximum and minimum values of the residual errors in latitude (Lat)
and longitude (Lon) direction are recorded. It is seen that the residual errors after correction
of the proposed method are much smaller than other two methods.
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The effectiveness of the affine transform and RBFT is compared by applying them to correct
the same NOAA images and then finding the difference in the errors after correction.
In the first test, only the flat regions in 100 NOAA images are corrected by affine transform
and then by RBFT. Table 2 is the results this test.
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Table 2 shows that, the average error after correction by affine transform and RBFT on the
flat regions are not so different. Although the result of RBFT is a little better, affine transform
will be selected for the proposed method because its computing cost is smaller than the one
of RBFT.
In the second test, 100 NOAA images are corrected by the first method, which uses only affine
transform, and the second method, which uses affine transform on the flat regions and RBFT
on the rough regions. Table 3 is the results this test.
Table 3 shows that, compared with the correction results when applying only affine transform,
the average error after correction is reduced 50% in latitude direction (0.22/0.44) and 49% in
longitude direction (0.25/0.50) when applying affine transform on the flat regions and RBFT
on the rough regions. It means that, compared with affine transform, RBFT reduces about 50%
of the errors after correction on the rough regions.

4.7.3 Comparing the correction result of the precise method and the proposed method
In this test, the correction results of the proposed method are compared with those of the
precise method. 100 NOAA images are corrected by the proposed method and the precise
method. Table 4 shows the result of acquiring residual errors after correction. The average,
maximum and minimum values of the residual errors in latitude and longitude direction are
recorded. It is seen that both methods give highly accurate correction results, but the residual
errors after correction of the proposed method are much smaller than the one of the precise
method. The smaller residual errors after correction proved that the proposed method is more
accurate than the precise method.
Figure 13 shows the correction results (in the map coordinate system) of the precise method
(left pictures) and the proposed method (right pictures) on two regions of China where the

Image Value Affine only Affine and RBFT
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elevation are 4392m and 4831m. In each picture, the black object is generated in the map
coordinate system from the coastline database; the white curve is the result of geometric cor-
rection, it is the border of the black object. The black objects in all pictures should fit their
white borders. The better geometric correction is, the better the black objects fit their white
borders.
From the pictures in the figure 13, it is easy to see that, at both elevations (4392m and 4831m),
the black objects fit their white borders in the right pictures (which are the result of the
proposed method) better than those in the left pictures (which are the result of the precise
method).
Figures 14 and 15 show the residual error vectors after correction (in the map coordi-
nate system) of the precise method and the proposed method for the NOAA images
AH16110602044118 and AH16110702183721, respectively. The vectors in these pictures are
the residual error vectors after correction. It is clear that the residual error vectors after cor-
rection are improved by the proposed method. On some regions where the residual error
vectors are big in the result of the precise method, the residual error vectors in the result of
the proposed method are smaller.

4.7.4 Comparing the correction result of the proposed method and other methods
In this test, the correction results of the proposed method (method P) are compared with those
of other tow methods. Method S is systematic method, which just transforms data from the
image coordinate system into map coordinate system by using bilinear interpolation (Ono
& Takagi, 2001). Method C is conventional method, which correct data using GCP template
matching but does not consider the elevation effect (Ono & Takagi, 2001). 02 NOAA images
are corrected by these methods. Table 5 shows the result of acquiring residual errors after
correction. The average, maximum and minimum values of the residual errors in latitude (Lat)
and longitude (Lon) direction are recorded. It is seen that the residual errors after correction
of the proposed method are much smaller than other two methods.
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Image Value Precise Method Proposed Method
(Checking points) Latitude Longitude Latitude Longitude

AH14060402222944 Average 0.53 0.64 0.17 0.20
Maximum 1.00 1.00 1.00 1.00

(Precise:37/Proposed:45) Minimum 0.00 0.00 0.00 0.00

AH16110602044118 Average 0.37 0.62 0.12 0.17
Maximum 1.00 2.00 1.00 1.00

(Precise:36/Proposed:41) Minimum 0.00 0.00 0.00 0.00

AH16110702183721 Average 0.41 0.45 0.11 0.14
Maximum 1.00 2.00 1.00 1.00

(Precise:38/Proposed:46) Minimum 0.00 0.00 0.00 0.00
100 NOAA images Average 0.44 0.51 0.12 0.16(Precise:38/Proposed:44)

Table 4. Residual errors after correction by the precise method and proposed method (unit:
pixel)

Image Value S C P
Lat Lon Lat Lon Lat Lon

AH12102499232725
Average 3.00 3.40 0.50 0.90 0.18 0.22

Maximum 5.00 12.00 2.00 3.00 1.00 1.00
Minimum 1.00 1.00 0.00 0.00 0.00 0.00

AH14092199212611
Average 1.27 3.00 0.60 0.90 0.16 0.19

Maximum 2.00 6.00 2.00 4.00 1.00 1.00
Minimum 1.00 1.00 0.00 0.00 0.00 0.00

Table 5. Residual errors after correction by the proposed method and other methods (unit:
pixel)

4.7.5 Evaluating the contribution of the steps in the proposed method
In this test, 100 NOAA images are corrected by three methods:

• M1: this is the proposed method without generating more GCP templates

• M2: this is the proposed method

Table 6 shows the average residual errors after correction by M1 and M2. When comparing
the results of M1 and the precise method (in table 4), it can be seen that M1 reduces the errors
considerably by dividing data into flat and rough blocks as well as applying both affine trans-
form and RBFT to correct residual errors. After generating more GCP templates based on the
feature of the coastline, the errors after correction are considerably reduced with M2.

Image Value M1 M2
Lat Lon Lat Lon

100 NOAA images Average 0.22 0.25 0.12 0.16

Table 6. Average residual errors after correction by M1 and M2 (unit: pixel)
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Elevation: 4831m

Fig. 13. Correction result of precise method and proposed method

4.7.6 Evaluating the processing time
Table 7 shows the processing time of the precise method and the proposed method. 100 NOAA
images are processed by both methods on the computer Sun Ultra 45 Workstation with 1.6GHz
Sun UltraSPARC IIIi processor and 1GB RAM. In these tests, all 5 channels of each image are
corrected and the mapping unit is 0.01 degree. The maximum, minimum and average pro-
cessing time of all channels are calculated. From the table 7, it is possible to say that, though
the proposed method takes longer processing time, the difference between two methods is
acceptable.

4.8 Discussion
This section proposed a novel geometric correction method for NOAA AVHRR data. The
correction results have shown that the precision of the proposed method is high. Compared
with the precise geometric correction method, which is described by Ono and Takagi (Ono &
Takagi, 2001), the proposed method has some advantages:

• Data is divided into flat and rough blocks by identifying the variation of elevation. This
dividing allows the errors in the different regions to be corrected in different ways.
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corrected and the mapping unit is 0.01 degree. The maximum, minimum and average pro-
cessing time of all channels are calculated. From the table 7, it is possible to say that, though
the proposed method takes longer processing time, the difference between two methods is
acceptable.

4.8 Discussion
This section proposed a novel geometric correction method for NOAA AVHRR data. The
correction results have shown that the precision of the proposed method is high. Compared
with the precise geometric correction method, which is described by Ono and Takagi (Ono &
Takagi, 2001), the proposed method has some advantages:

• Data is divided into flat and rough blocks by identifying the variation of elevation. This
dividing allows the errors in the different regions to be corrected in different ways.
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Fig. 14. Residual error vectors after correction the image AH16110602044118 by the precise
method and the proposed method

Time Precise Method Proposed Method
Maximum 377.16 sec 390.17 sec
Minimum 359.49 sec 375.42 sec
Average 368.27 sec 381.48 sec

Table 7. Average processing time of 100 images

• Missing lines and noise pixels are corrected before applying GCP template matching.
This improves the result of GCP template matching.

• The number of GCP templates is increased by automatically generating more GCP tem-
plates based on the feature of the coastline. With more GCP templates, more residual
errors are acquired precisely by GCP template matching.

• Residual errors on the flat regions are corrected by affine transform; residual errors on
the rough regions are corrected by RBFT with Gaussian radial basis function. With
RBFT, the residual errors on the rough regions are corrected more accurately.

• Bilinear interpolation is applied only on the flat regions. This reduces the errors of
bilinear interpolation on the rough regions, where the variation of elevation is big.

Besides the advantages, the proposed method also has some problems:

• If the interest region is a flat region, the precise method and the proposed method may
produce the same correction results; however, the proposed method will takes longer
processing time because it needs time to identify the flat and rough regions.

• There is no relationship in the residual error correction results between flat and rough
regions. The residual error correction results on the flat regions are not considered
when correcting residual errors on the rough regions. Therefore, there is a case that two
neighboring points with the same elevation error, one belongs to a flat region, another
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Fig. 15. Residual error vectors after correction the image AH16110702183721 by the precise
method and the proposed method

belongs to a rough region, will have quite different residual errors because they are
corrected by different methods.

4.9 Conclusion of future works
This book chapter proposed a novel highly accurate geometric correction method considering
the variation of elevation effect.
With the proposed method, the data in the map coordinate system is divided into flat and
rough blocks in order to identify the variation of elevation. More GCPs are generated based
on the features of the coastline. Residual errors are specified in the image coordinate system by
GCP template matching and they are corrected based on the variation of elevation. Affine and
RBFT is used to correct the residual errors on flat rough blocks, respectively. For this reason,
residual errors are corrected more precisely. When transforming data into the map coordinate
system, bilinear interpolation is applied only on the flat blocks; satellite’s parameters and
earth’s location are used to transform data on rough blocks. Therefore, the precision of this
transformation process is higher.
With higher precision and the processing time is not too different compared to the precise
geometric correction method, it is possible to say that the proposed method has higher effi-
ciency than the precise geometric correction method. It can be integrated into some NOAA
AVHRR processing applications such as PaNDA (Yasuoka and Takeuchi Laboratory, 2006) to
improve the processing results. NOAA images corrected by this algorithm can also be eas-
ier to combine with other high-resolution types satellite image to complete other processing
operations.
The correction results of proposed method show that the errors still exist after correction.
In order to improve the correction result, some future works should be taken into account.
Firstly, the number of GCPs and their precision can be increased by combination of the pro-
posed method in this book chapter with the characteristics of the terrain, not only the feature
of the coastline but also the information from the better database or from the higher resolu-
tion satellite images. Next, some new mathematical transformations should be considered
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• Missing lines and noise pixels are corrected before applying GCP template matching.
This improves the result of GCP template matching.

• The number of GCP templates is increased by automatically generating more GCP tem-
plates based on the feature of the coastline. With more GCP templates, more residual
errors are acquired precisely by GCP template matching.

• Residual errors on the flat regions are corrected by affine transform; residual errors on
the rough regions are corrected by RBFT with Gaussian radial basis function. With
RBFT, the residual errors on the rough regions are corrected more accurately.

• Bilinear interpolation is applied only on the flat regions. This reduces the errors of
bilinear interpolation on the rough regions, where the variation of elevation is big.

Besides the advantages, the proposed method also has some problems:

• If the interest region is a flat region, the precise method and the proposed method may
produce the same correction results; however, the proposed method will takes longer
processing time because it needs time to identify the flat and rough regions.

• There is no relationship in the residual error correction results between flat and rough
regions. The residual error correction results on the flat regions are not considered
when correcting residual errors on the rough regions. Therefore, there is a case that two
neighboring points with the same elevation error, one belongs to a flat region, another
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belongs to a rough region, will have quite different residual errors because they are
corrected by different methods.

4.9 Conclusion of future works
This book chapter proposed a novel highly accurate geometric correction method considering
the variation of elevation effect.
With the proposed method, the data in the map coordinate system is divided into flat and
rough blocks in order to identify the variation of elevation. More GCPs are generated based
on the features of the coastline. Residual errors are specified in the image coordinate system by
GCP template matching and they are corrected based on the variation of elevation. Affine and
RBFT is used to correct the residual errors on flat rough blocks, respectively. For this reason,
residual errors are corrected more precisely. When transforming data into the map coordinate
system, bilinear interpolation is applied only on the flat blocks; satellite’s parameters and
earth’s location are used to transform data on rough blocks. Therefore, the precision of this
transformation process is higher.
With higher precision and the processing time is not too different compared to the precise
geometric correction method, it is possible to say that the proposed method has higher effi-
ciency than the precise geometric correction method. It can be integrated into some NOAA
AVHRR processing applications such as PaNDA (Yasuoka and Takeuchi Laboratory, 2006) to
improve the processing results. NOAA images corrected by this algorithm can also be eas-
ier to combine with other high-resolution types satellite image to complete other processing
operations.
The correction results of proposed method show that the errors still exist after correction.
In order to improve the correction result, some future works should be taken into account.
Firstly, the number of GCPs and their precision can be increased by combination of the pro-
posed method in this book chapter with the characteristics of the terrain, not only the feature
of the coastline but also the information from the better database or from the higher resolu-
tion satellite images. Next, some new mathematical transformations should be considered
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to select the appropriate transformations between the image coordinate system and the map
coordinate system. Finally, other geometric correction methods, which have been applied for
the high resolution satellite images can be a good references for NOAA images.
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1. Introduction 
 

Scatterometers are non-imaging active sensors used to measure the intensity of microwave 
backscatter while scanning the surface of the earth from an aircraft or a satellite. Active 
microwave sensors are radars providing their own illumination and do not depend upon 
ambient radiation like passive microwave sensors. They transmit microwave 
electromagnetic pulses toward the surface and measure how much of that signals return 
after interacting with the target. Scatterometer is a form of radar that is used to investigate 
different geophysical properties of the surface and few centimeters beneath. Spaceborne 
scatterometers have the advantage of providing global coverage on a continuous basis, 
which cannot be achieved through airborne or ground measurements. They have the 
capability of providing day and night time measurements unaffected by cloud cover. 
Scatterometers were originally designed to study ocean winds but have been also used to 
study of cryosphere, vegetation, and soil surface properties. 
A number of scatterometers have been flown on space missions since the early 1970s. The 
first scatterometer in space was a Ku-band instrument on Skylab mission. Investigations on 
the potential use of scatterometers in geosciences achieved a major technical milestone with 
the launch of Seasat, carrying a Ku-band scatterometer (SASS), in 1978. Other missions have 
followed SASS; C-band scatterometers onboard the European Space Agency’s (ESA) Earth 
Remote Sensing (ERS 1 & ERS-2) satellites in 1991 and 1995, the NASA’s Ku-band 
scatterometer (NSCAT) in 1996, SeaWinds on QuikSCAT in 1999, SeaWinds on ADEOS-II in 
2002, and Advanced Scatterometer (ASCAT) onboard Metop-A launched in 2006. 
In this study we focus on spaceborne C-band scatterometers and present an overview of 
their applications in geoscience.  

 
2. C-band Scatterometers 
 

2.1 SCAT onboard ERS satellites 
The first spaceborne C-band scatterometer was flown on ERS-1, the European Earth 
observation mission. ERS-1, launched in July 1991, was aimed to provide environmental 
monitoring particularly in the microwave spectrum. ERS-1 has been placed in a near-polar 
orbit at a mean altitude of about 780km with an instrument payload comprising active and 
passive microwave sensors and a thermal infra-red radiometer. ERS-2 the follow-up ESA 
mission of ERS-1 was launched in 1995. The ERS-2 satellite is a copy of ERS-1 except that it 
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includes a number of enhancements and new payload instruments. Both scatterometers 
onboard ERS-1 and ERS-2 are part of an Active Microwave Instrument (AMI) operating in 
C-band (5.3 GHz). The AMI incorporates two separate radar systems; Synthetic Aperture 
Radar (SAR) and scatterometer (SCAT) operating in three different modes. SAR for Image 
and Wave mode operations, and scatterometer for Wind mode operation. The Wind and 
Wave modes are capable of interleaved operation, i.e. so-called Wind/Wave mode, but the 
operation in Image mode excludes the operation of the other two modes (Attema, 1991). 

 
2.2 ASCAT onboard Metop satellites 
The Advanced Scatterometer (ASCAT) is the new generation and successor of the ERS 
SCATs onboard the Meteorological Operational (Metop) series of satellites. Metop-A, 
launched on 19 October 2006, is the first satellite in the series foreseen in EUMETSAT Polar 
System (EPS) program (Klaes et al., 2007). Like SCAT, ASCAT system uses a fan-beam 
antenna technology and transmits vertically polarized pulses at frequency of 5.255 GHz 
with high radiometric stability. Contrary to SCAT it uses two sets of three antennas instead 
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Fig. 1. Viewing geometries of the scatterometers onboard ERS and Metop satellites. 

 

of one. For ASCAT the incidence angle range has been extended from 25° to 65°. Hence 
ASCAT covers two 550 km swaths to the left and right of the satellite ground track which 
are separated from the satellite ground track by about 336 km. This results in over twice 
faster global-coverage capability than its predecessor SCAT. Beside an optimized viewing 
geometry, ASCAT also features a number of technical improvements. The improved 
instrument design and radiometric performance results in higher stability and reliability of 
ASCAT measurements. Additionally EUMETSAT foresees to generate a research product at 
a resolution of 25km (Figa-Saldana et al., 2002). Figure 1 illustrates the viewing geometries 
of SCAT and ASCAT. Specifications of the C-band scatterometers and their carrier satellites 
are given in table-1. 

 
3. Wind Speed and Direction Measurement  
 

The primary application of the spaceborne scatterometry has been the measurement of near-
surface winds over the ocean. The concept of retrieving wind speed at sea surface from the 
radar backscatter goes back to the Second World War. During the World War II, marine 
radar operators observed disturbing noises, called “clutter”, on their radar screens, which 
made them difficult detecting targets on the ocean surface (Moore et al., 1979). The clutters 
were the backscatter of the radar pulses from the small waves on the sea surface. Since that 
time many theoretical studies and experiments have been carried out to find the relationship 
between the microwave backscatter and the surface wind speed (Liu, 2002). The idea of 
remote sensing of the wind relies on the fact that winds over the sea cause small-scale 
disturbances of the sea surface which modify the radar backscattering characteristics. The 
backscatter from oceans is largely due to these small centimeter ripples, capillary waves, 
which is in equilibrium with the local wind stress. The backscatter depends not only on the 
magnitude of the wind stress but also the wind direction relative to the direction of the 

Satellite Specifications ERS-1 ERS-2 Metop-A 
        Launch Time 17 July 1991 21 April 1995 19 October 2006 
        Launch Mass 2354 kg 2516 kg 4093 kg 
        launcher Ariane 4 Soyuz/ST 
        Spacecraft Altitude 770 to 785 km 800 to 850 km 
        Inclination 98.52° 98.7° 
        Local Solar Time 10:30 am* 9:30 am* 
        Orbit Period 100 minutes 101 minutes 
        Orbit Near-circular, polar, Sun-synchronous 
   
Scatterometer Specifications SCAT ASCAT 
        Frequency 5.3 GHz. (C-Band) 5.255 GHz. (C-Band) 
        Polarization VV VV 
        Swath Width 500 km 550 km (double swath) 
        Swath Stand-off 200 km to the right of sub-satellite track 336 km 
        Localization Accuracy 5 km 4.4 km 
        Spatial Resolution 50 km 50 km, 25 km  
        Sampling Interval  25 km 25 km, 12.5 km 
 
* equatorial crossing time at the descending node 

Table 1. Specifications of the European C-band scatterometers 
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includes a number of enhancements and new payload instruments. Both scatterometers 
onboard ERS-1 and ERS-2 are part of an Active Microwave Instrument (AMI) operating in 
C-band (5.3 GHz). The AMI incorporates two separate radar systems; Synthetic Aperture 
Radar (SAR) and scatterometer (SCAT) operating in three different modes. SAR for Image 
and Wave mode operations, and scatterometer for Wind mode operation. The Wind and 
Wave modes are capable of interleaved operation, i.e. so-called Wind/Wave mode, but the 
operation in Image mode excludes the operation of the other two modes (Attema, 1991). 
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The Advanced Scatterometer (ASCAT) is the new generation and successor of the ERS 
SCATs onboard the Meteorological Operational (Metop) series of satellites. Metop-A, 
launched on 19 October 2006, is the first satellite in the series foreseen in EUMETSAT Polar 
System (EPS) program (Klaes et al., 2007). Like SCAT, ASCAT system uses a fan-beam 
antenna technology and transmits vertically polarized pulses at frequency of 5.255 GHz 
with high radiometric stability. Contrary to SCAT it uses two sets of three antennas instead 
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Fig. 1. Viewing geometries of the scatterometers onboard ERS and Metop satellites. 
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which is in equilibrium with the local wind stress. The backscatter depends not only on the 
magnitude of the wind stress but also the wind direction relative to the direction of the 
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radar beam. By combining backscatter measurements from different azimuth angles, the 
near-surface wind vector over the ocean's surface can be determined using a Geophysical 
Model Function (GMF). The first operational GMF used for ERS-1 scatterometer data by 
ESA was a prelaunch transfer function denoted CMOD2, derived from aircraft-mounted 
instrument data (Long, 1985). An improved transfer function, CMOD4 was presented by 
Stoffelen et al. (1997) with full specification. CMOD4 adopted by ESA since March 1993 for 
wind retrieval. The latest C-band GMF used for wind retrieval is CMOD5, which is derived 
on the basis of measurements from the ERS-2 scatterometer. The CMOD5 algorithm corrects 
some shortcomings in the earlier models and result in a better wind retrieval at high wind 
speed and more uniform performance across the scatterometer swath (Hersbach et al., 2007). 
The estimated accuracy of the ASCAT 50-km wind product is 2 m/s RMS difference in wind 
vector components and 0.5 m/s bias in wind speed (ASCAT product guide). The wind 
observations at sea surface are essential to describe the atmospheric flow and therefore have 
many meteorological and oceanographic applications. Wind information is useful for 
weather forecasting, prediction of extreme events, and climate studies. Figure 2 indicates 
two examples of the ASCAT 25- and 12.5-km wind products (Verhoef et al., 2009). 
Processing of the wind product is done in near-real time at EUMETSAT’s processing facility. 
From the sensing time, it takes approximately 2 hours to get the corresponding wind 
product ready at KNMI. The wind data are disseminated through the EUMETCast system 
(EUMETCast). 
 

ASCAT Winds 25km ASCAT Winds 12.5km

13 December 2008, 22:20 UTC

 
Fig. 2. ASCAT wind product over Atlantic Ocean (55°N-65°N, ~15° West, South of Iceland). 
Background image shows the infrared cloud image of the METEOSAT9 geostationary 
satellite. Images are adopted from (Verhoef et al., 2009). 
 

 

4. Monitoring Seasonal Dynamics of Vegetation 

The intensity of the backscattered signal over land is affected by roughness, vegetation 
structure, vegetation water content, and soil moisture. These factors influence the 
backscattering coefficient 0  on different time scales. At the resolution of the ERS and 
Metop scatterometers, surface roughness can be in general considered as a temporally 
invariant parameter. Surface soil moisture changes rapidly within hours to days, contrary to 
the vegetation canopy and vegetation water content, which vary within several days to 
weeks. Scattering from the vegetated surface is a complex phenomenon and difficult to 
model as the volume scattering contributes in total backscattering. Preliminary studies 
indicated the potential of the C-band scatterometer data for monitoring the seasonal 
variation of vegetation using multi-temporal analysis (Wismann et al., 1994; Mougin et al., 
1995; Frison et al., 1996a; Frison et al., 1996b). Many studies used semi-empirical models to 
model vegetation effect on backscatter (Magagi et al., 1997; Woodhouse et al., 2000; Jarlan et 
al., 2003). There have been several canopy scattering models developed to describe  0  in 
terms of vegetation and soil surface parameters based on a solution of the radiative transfer 
equation (Attema et al., 1978; Ulaby et al., 1990; Karam et al., 1992; Saatchi et al., 1994). 
Radiative transfer theory describes the propagation of radiation through a medium affected 
by absorption, emission and scattering processes (Fung, 1994). But the problem with all 
complex theoretical scattering models is that their input data requirements are very 
challenging and for solving the equations many parameters are needed such as leaf 
diameter, branch length, trunk moisture, and probability functions representing the 
orientational distribution of leaves, branches, and trunks.  
The incidence angle of scatterometer observations varies from acquisition to acquisition. 
Since the intensity of backscatter signal strongly depends on the incidence angle, in the most 
of the multi-temporal vegetation studies using scatterometer data, 0  measurements are 
averaged over longer periods (e.g. one month) to make 0  measurements comparable. But 
the averaging procedure does not allow us to distinguish the impact of the soil moisture and 
vegetation cover on backscatter. Wagner et al. (1999a) used a simple model fitted to 
scatterometer observations to model the incidence angle dependency of backscatter: 
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where the index m stands for the mid-beam and the indices a and  f for the aft and fore beam 
measurements. 
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observations at sea surface are essential to describe the atmospheric flow and therefore have 
many meteorological and oceanographic applications. Wind information is useful for 
weather forecasting, prediction of extreme events, and climate studies. Figure 2 indicates 
two examples of the ASCAT 25- and 12.5-km wind products (Verhoef et al., 2009). 
Processing of the wind product is done in near-real time at EUMETSAT’s processing facility. 
From the sensing time, it takes approximately 2 hours to get the corresponding wind 
product ready at KNMI. The wind data are disseminated through the EUMETCast system 
(EUMETCast). 
 

ASCAT Winds 25km ASCAT Winds 12.5km

13 December 2008, 22:20 UTC

 
Fig. 2. ASCAT wind product over Atlantic Ocean (55°N-65°N, ~15° West, South of Iceland). 
Background image shows the infrared cloud image of the METEOSAT9 geostationary 
satellite. Images are adopted from (Verhoef et al., 2009). 
 

 

4. Monitoring Seasonal Dynamics of Vegetation 

The intensity of the backscattered signal over land is affected by roughness, vegetation 
structure, vegetation water content, and soil moisture. These factors influence the 
backscattering coefficient 0  on different time scales. At the resolution of the ERS and 
Metop scatterometers, surface roughness can be in general considered as a temporally 
invariant parameter. Surface soil moisture changes rapidly within hours to days, contrary to 
the vegetation canopy and vegetation water content, which vary within several days to 
weeks. Scattering from the vegetated surface is a complex phenomenon and difficult to 
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where the index m stands for the mid-beam and the indices a and  f for the aft and fore beam 
measurements. 
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The backscattered energy received by the scatterometer sensor increases with decreasing 
incidence angle. The rate of backscatter change due to incidence angle variation depends on 
the surface roughness. Bare soil roughness is basically constant in time but vegetation can 
have a seasonal influence on the incidence angle dependency behavior of backscatter. With 
increasing vegetation density, the shape of incidence angle dependency of backscatter 
changes depending on the type and density of vegetation as well as the orientation of 
vegetation elements. Having multi-year scatterometer data, the seasonal variation of slope 
can be extracted for a reference incidence angle (e.g. 40°). Slope function at 40°, )40(   
correlates pretty well with the seasonal vegetation change (Naeimi et al., 2009a). Figure 3-
top shows slope values globally calculated for the mid of July. Figure 3-bottom illustrates 
three examples of )40(   from different regions compared with the Normalized Vegetation 
index (NDVI). The vegetation index data have been derived from a 16-day Moderate 
Resolution Imaging Spectroradiometer (MODIS) NDVI product (Huete et al., 2002). NDVI  
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Fig. 3. Above: Global slope values in July. Bottom: Comparison of slope function with 
NDVI in three different areas.  
 

 

values are averaged over three years (2000–2002) to estimate the yearly vegetation variation. 
Depending on land cover type there is a time lag between NDVI and )40(   in most 
regions (Doubkova et al., 2009). This implies the fact that the    derived from C-band 
backscatter observations corresponds to vegetation structure development whereas NDVI 
represents only greenness of vegetation canopy.  

 
5. Soil Moisture Change Detection 
 

As it mentioned in section 4, 0  is affected over land by surface roughness, vegetation, and 
soil moisture. The major challenge of extracting soil moisture from scatterometer data is the 
presence of the other additional factors influencing the signal. Most studies have introduced 
physical inversion methods describing scattering process to model roughness and 
vegetation contributions on backscatter signal (Frison et al., 1997; Pulliainen et al., 1998; 
Woodhouse et al., 2000; Magagi et al., 2001; Jarlan et al., 2002; Zine et al., 2005). Although 
theoretical models are useful for understanding and interpreting scattering behavior of 
natural surfaces, the major problems of these retrieval concepts appear to be their 
complexity and physical validity at large scales. A promising solution to the problems of 
physically based inversion models is using change detection method rather than using a 
complex model to describe the full range of parameters influencing the scattering process. 
Availability of several years of backscatter data, multi-viewing capability, and high 
temporal sampling rate of scatterometers make them appropriate instruments for change 
detection methods. The potential of using change detection techniques for active sensors has 
been demonstrated in several studies (Wagner, 1998, Moeremans et al., 1998, Quesney et al., 
2000; Moran et al., 2000; Le Hegarat-Mascle et al., 2002; De Ridder,  2000). 

 
5.1 TUWien change detection method 
Wagner et al., (1999b) presented a change detection method for soil moisture retrieval from 
ERS scatterometers. A processing algorithm for soil moisture retrieval based on change 
detection technique has been developed at the Institute of Photogrammetry and Remote 
Sensing (IPF) of the Vienna University of Technology (TUWien) which will further be 
referred to as the TUWien method. In the TUWien method soil moisture dynamics are 
extracted after modeling the behavior of 0  with respect to the surface roughness and the 
local variability of vegetation and eventually subtracting them from the backscatter signal. 
In the retrieval algorithm, multi-looking direction ability of scatterometer is used to describe 
the incidence angle behavior of the backscatter signal as a seasonal function, )(  . The 
incidence angle dependency of backscatter can be described by the derivatives of 0  at a 
reference incidence angle (set to 40°) according to the Taylor series expansion: 
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)40(   and )40(  , called slope and curvature at 40°, are calculated by fitting a regression 
line to the obtained local slope values in equation-2 during a certain period of the year. After 
determination of slope and curvature for each day of year and using the following second-
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values are averaged over three years (2000–2002) to estimate the yearly vegetation variation. 
Depending on land cover type there is a time lag between NDVI and )40(   in most 
regions (Doubkova et al., 2009). This implies the fact that the    derived from C-band 
backscatter observations corresponds to vegetation structure development whereas NDVI 
represents only greenness of vegetation canopy.  
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order polynomial equation based on Taylor series, )(0   measurements are extrapolated to 
40° incidence angle: 
 

200 )40)(40(
2
1)40)(40()()40(    (4) 

 
Eventually the normalized backscatter )40(0  is scaled between the lowest and highest 
values ever measured within the long-term )40(0  observations, )40(0

wet  and )40(0
dry , 

which represent the driest and wettest conditions: 
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s  corresponds to the normalized volumetric water content at topmost 2 cm soil surface 

ranging between 0% and 100% with presumption of linear relationship between )40(0  
and the surface soil moisture (Ulaby et al., 1982). In addition the TUWien retrieval algorithm 
includes processing modules for vegetation correction, wet reference correction and soil 
moisture uncertainty analysis (Naeimi et al., 2009a). An operational processing system 
based on the TUWien retrieval algorithm is implemented at EUMETSAT to provide near-
real time ASCAT soil moisture data (Hasenauer et al., 2006). The data have been made 
available through the EUMETCast system (EUMETCast). Figure 4 shows SCAT/ASCAT soil 
moisture time series compared with precipitation data at a grid point located in Lower 
Austria. An example of global distribution of the mean soil moisture values retrieved from 
long-term SCAT time series is shown in Figure 5. The spatial variability of the estimated 
mean of soil moisture is connected to atmospheric-forcing related soil moisture signal. Soil 
moisture retrieval from scatterometer data has also limitations when the soil is frozen or 
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Fig. 4. Soil moisture time series retrieved from SCAT and ASCAT data compared with 
precipitation data in lower Austria. 

 

covered with snow. As soon as the soil freezes the dielectric constant of the soil drops 
drastically and results in low backscatter. Therefore the backscattering behaviors of dry and 
frozen soil are similar. The scattering behavior of snow is more complex and depends on the 
dielectric properties of the ice particles and on their distribution and density. Furthermore, 
land cover has also impacts on the quality of soil moisture retrieval from scatterometer data. 
There is a strong response of the azimuthal noise level of backscatter to different land cover 
types like rainforests, lakes, rivers, floodplains, coastal areas, urban areas, and sand deserts 
as well as areas with complex topography (Naeimi et al., 2008). An uncertainty analysis 
module using Monte Carlo error propagation (Naeimi, 2009b) is implemented within the 
TUWien algorithm which identifies such problematic areas for soil moisture retrieval from 
scatterometer data. 
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Fig. 5. Mean of surface soil moisture retrieved from long-term SCAT time series. 

 
5.2 Surface soil moisture anomalies 
Anomalies of soil moisture, precipitation, temperature, and vegetation indices are 
parameters that are used as indicator of extreme weather conditions. Scatterometer soil 
moisture anomalies can be calculated by comparing the current values with mean and 
standard deviation values in the same time of year over the long-term ERS/Metop 
scatterometer time series. Figure 6 illustrates monthly anomalies of ASCAT soil moisture 
compared with the NDVI anomaly images derived from MODIS data (NASA-EO). The 
extremely dry conditions are visible in parts of Europe during July 2007 (Figure 6-a). As 
reported by the authorities the 2007 drought in Moldova was the most severe in living 
memory. The World Food Program compared its severity to the drought of 1946 during 
which many Moldovans starved. The Cereal production at that year was down by 63% 
compared to the year before, and was about 70% lower than the average of the five years 
before (FAO news). Figure 6-b shows another example of extreme condition, which is 
evident in ASCAT soil moisture anomalies. The anomalous wet soil in March 2008 in parts 



C-band	Scatterometers	and	Their	Applications 237

 

order polynomial equation based on Taylor series, )(0   measurements are extrapolated to 
40° incidence angle: 
 

200 )40)(40(
2
1)40)(40()()40(    (4) 

 
Eventually the normalized backscatter )40(0  is scaled between the lowest and highest 
values ever measured within the long-term )40(0  observations, )40(0

wet  and )40(0
dry , 

which represent the driest and wettest conditions: 
 

100
)40()40(
)40()40(

00

00







drywet

dry
s 


 (5) 

 
s  corresponds to the normalized volumetric water content at topmost 2 cm soil surface 

ranging between 0% and 100% with presumption of linear relationship between )40(0  
and the surface soil moisture (Ulaby et al., 1982). In addition the TUWien retrieval algorithm 
includes processing modules for vegetation correction, wet reference correction and soil 
moisture uncertainty analysis (Naeimi et al., 2009a). An operational processing system 
based on the TUWien retrieval algorithm is implemented at EUMETSAT to provide near-
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Austria. An example of global distribution of the mean soil moisture values retrieved from 
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mean of soil moisture is connected to atmospheric-forcing related soil moisture signal. Soil 
moisture retrieval from scatterometer data has also limitations when the soil is frozen or 
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Fig. 4. Soil moisture time series retrieved from SCAT and ASCAT data compared with 
precipitation data in lower Austria. 

 

covered with snow. As soon as the soil freezes the dielectric constant of the soil drops 
drastically and results in low backscatter. Therefore the backscattering behaviors of dry and 
frozen soil are similar. The scattering behavior of snow is more complex and depends on the 
dielectric properties of the ice particles and on their distribution and density. Furthermore, 
land cover has also impacts on the quality of soil moisture retrieval from scatterometer data. 
There is a strong response of the azimuthal noise level of backscatter to different land cover 
types like rainforests, lakes, rivers, floodplains, coastal areas, urban areas, and sand deserts 
as well as areas with complex topography (Naeimi et al., 2008). An uncertainty analysis 
module using Monte Carlo error propagation (Naeimi, 2009b) is implemented within the 
TUWien algorithm which identifies such problematic areas for soil moisture retrieval from 
scatterometer data. 
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which many Moldovans starved. The Cereal production at that year was down by 63% 
compared to the year before, and was about 70% lower than the average of the five years 
before (FAO news). Figure 6-b shows another example of extreme condition, which is 
evident in ASCAT soil moisture anomalies. The anomalous wet soil in March 2008 in parts 
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of India provided a suitable condition for vegetation growth. By early April 2008, plants 
throughout the country were responding to the plentiful water supply that led to record of 
harvest yield in April (NASA-EO). 

 
5.3 Soil Water index (SWI) 
The C-band scatterometer derived soil moisture represent only top few centimeter of soil. 
Nevertheless, thanks to the high temporal sampling of scatterometers (about 80% global 
daily coverage for ASCAT), soil moisture in plant root zone can be estimated by using an 
infiltration model. Wagner et al. (1999b) proposed a simple two-layer water balance model 
to estimate profile soil moisture. The remotely sensed topsoil represents the first layer and 
the second layer extends downwards from the bottom of the surface layer. In this model, the 
water content of the reservoir layer is described in terms of a Soil Water Index (SWI), which 
is controlled only by the past soil moisture conditions in the surface layer in a way that the 
influence of measurements decreases by increasing the time: 
 

 

-4 -2 0 2 4

ASCAT Soil Moisture Monthly Anomaly

Snow Cover, Frozen Soil

low average high

Vegetation Anomaly (NDVI)*

July 28 - August 12, 2007

April 1-10, 2008March, 2008 April, 2008

July, 2007

Ukraine

Romania

M
oldova

Bulgaria Black Sea

Poland

Hungary

Indian OceanIndian Ocean

Ukraine

Romania

Russia

Turkey

Poland

Black Sea

Indian Ocean

* NASA's Earth Observatory  (MODIS instrument)

a)

b)

 
 

Fig. 6. Examples of the ASCAT soil moisture anomalies showing extreme dry (top) and 
wet conditions (bottom) compared with NDVI anomalies extracted from MODIS data. 
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)( is t  is the surface soil moisture measured at time it  and T  is the characteristic time 

length connected to the depth of reservoir which describes the linkage between the surface 
layer and the reservoir by: 
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  (7) 

 
where L  is the depth of the reservoir layer and C  is a pseudo-diffusivity coefficient that 
depends on soil properties. s  and r  are the volumetric moisture content of the surface 
and reservoir respectively.  
Daily images of SWI calculated at five different T  values (10, 20, 40, 60, 100) retrieved from 
ASCAT-25km observations using a near-real time recursive processor will be available 
through the geoland project (geoland-II). Figure 7 indicates the global ASCAT-50km SWI 
image calculated for T=10 as an example. 

 
6. Monitoring Cryosphere 
 

The cryosphere consists of the parts of the Earth’s surface where water exists in solid form, 
including snow cover, frozen ground, glacier, see ice, ice sheets and any other form of ice on 
land or in ocean. The cryosphere plays an important role in the global climate system and 
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Fig. 7. ASCAT-50km Soil Water Index (SWI) at T=10. 
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throughout the country were responding to the plentiful water supply that led to record of 
harvest yield in April (NASA-EO). 
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wet conditions (bottom) compared with NDVI anomalies extracted from MODIS data. 
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therefore impacts significantly human life. More than about 70% of the Earth’s freshwater is 
frozen in ocean ice sheets, glaciers or permafrost areas (UNESCO report, 2006). Permafrost 
regions are of major interest in climate studies as several hundred gigatons of carbon are 
stored in frozen soils in high latitudes. Thawing of permafrost could supercharge the global 
warming process. There is also a major concern about the possibility of shrinking the Earth’s 
ice sheets due to the global warming which could raise the global sea level by several 
meters. There are many cryosphere-climate feedback mechanisms in the global climate 
system over a wide range of spatial and temporal scales. Snow and ice have a remarkable 
effect on climate as they modulate energy exchanges between the surface and the 
atmosphere because of their physical properties. One of the most important properties is the 
surface reflectance (albedo). Non-melting snow and ice can reflect between ~80-90% of 
incident solar energy whereas vegetation and soil surface reflect as little as 20-30%. The 
reflected sunlight into space does not get absorbed by the Earth as heat. Therefore the high 
albedo plays as a cooling factor in the global climate system. The thermal properties of 
cryospheric elements have also major consequences for the climate and hydrological cycle. 
Snow and ice have much lower thermal diffusivities than air and build an insulating layer 
over land and ocean surfaces decoupling the surface-atmosphere interface with respect to 
both heat and moisture fluxes. High latent heat is another thermal property of snow and ice 
that act to moderate temperature in warm seasons because of the large amount of energy 
required to melt ice.  
Scatterometry has been proven to be useful for monitoring and understanding the 
cryosphere. Several studies have investigated the applicability of scatterometer data in 
various cryosphere research areas for instance; mapping snowmelt extent (Wismann et al., 
1997; Wismann, 2000), snow accumulation in Greenland (Drinkwater et al., 2001), snow 
cover over the Northern Hemisphere (Nghiem et al., 2001), frozen terrain in Alaska (Kimball 
et al., 2001). Other studies have used scatterometer data for determination of freeze/thaw 
cycles in Northern Latitudes (Bartsch et al., 2007), spatial and temporal variability of sea ice 
(Drinkwater et al., 2000), classification of sea ice in Polar Regions (Remund et al., 2000), 
deriving the surface wind-induced patterns over Antarctica by measuring the azimuthal 
modulation of backscatter (Long et al., 2000). 
In winter when soil surface freezes, dielectric properties of the soil changes significantly 
which results in low backscatter values. As snow begins to fall and accumulates over the 
surface, due to volume scattering, backscatter signals increase depending on microwave 
frequency. The response of dry snow volume to microwaves is rather complex and depends 
on snow properties like snow depth, density, and average grain size as well as the age of 
snowpack. With increasing temperature in spring, snow begins to melt and water covers the 
surface of snow pack which causes a sudden drop in backscatter. After snow melting 
period, soil and vegetation begin to thaw and consequently backscatter arise again. Figure 8 
shows a typical example of freeze/thaw process as described above observable in ASCAT 
normalized backscatter at 40°. High diurnal difference of backscatter (green bars) implies 
frozen condition in the morning and thawing in the evening which can be used as an 
indicator of the transition between different phases. 
 
 
 
 
 

 

 
ASCAT (METOP-A), WARP5 GPI:3116271 Longitude: 94.3396°E Latitude: 72.7431°N

-20

-15

-5

N
o

rm
al

iz
ed

 B
ac

ks
ca

tt
er

 (d
B

)

Time (2007)

01 13 25 06 19 03 15 27 08 20 02 14 27 08 20 02 14 26 07 20 01 13 25 07 19 31 12 25 07 19 31
Jan Jan Jan Feb Feb Mar Mar Mar Apr Apr May May May Jun Jul Jul Jul Aug Aug Sep Sep Sep Oct Oct Oct Nov Nov Dec Dec DecJun

-10

Desending passes (9 am - 2 pm)*
Ascending passes (4 pm - 9 pm)*
* local time 

20

0

d
iu

rn
al d

ifferen
ce (d

B
)

10

 
 

Fig. 8. ASCAT normalized backscatter at 40° indicating seasonal freeze/thaw process. 
 
The high temporal sampling of the scatterometers in Polar Regions despite the frequent 
cloud cover and poor sunlight make them valuable instruments for sea ice observations. The 
sea ice imaging is based on the sensitivity of scatterometer to ice roughness and relatively 
high difference between the backscatter from open water and sea ice. 
Long et al. (1999) used a simple linear function to approximate the backscatter at 40° 
(reference incidence angle): 
 

)40()(0   BA  (8) 
 
where A is the 0  at 40° incidence and B describes the incidence angle dependency of 
backscatter.  
The A and B parameters are calculated after combining the scatterometer observations from 
multiple passes from several days and using the Scatterometer Image Reconstruction (SIR) 
algorithm to enhance the resolution (Early et al., 2001). The A and B images represent the 
backscatter properties of the surface and are related to ice and snow characteristics over the 
imaging period (Long et al., 2001). Figure 9 illustrates examples of the normalized 
backscatter retrieved from ERS-1/2 scatterometer data available through the Scatterometer 
Climate Record Pathfinder (SCP) project (NASA-SCP). 

 
7. Conclusion 
 

C-band scatterometers have demonstrated to be valuable sensors for large-scale observation 
of the Earth’s surface in a variety of disciplines. High temporal sampling in all weather 
conditions, multi-viewing capability and availability of long-term measurements make the 
European C-band scatterometers excellent Earth observation tools. Scatterometer data are 
used to extract geophysical parameters such as wind speed and direction, surface soil 
moisture, seasonal dynamics of vegetation, spatial and temporal variability of frozen train in 
high latitudes, snowmelt and sea ice. Furthermore the scatterometer data are utilized in 
hydrological modeling, observation of extreme events, flood and drought monitoring, and 
also used for climate change studies. The observations of the ERS-1/2 scatterometers 
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therefore impacts significantly human life. More than about 70% of the Earth’s freshwater is 
frozen in ocean ice sheets, glaciers or permafrost areas (UNESCO report, 2006). Permafrost 
regions are of major interest in climate studies as several hundred gigatons of carbon are 
stored in frozen soils in high latitudes. Thawing of permafrost could supercharge the global 
warming process. There is also a major concern about the possibility of shrinking the Earth’s 
ice sheets due to the global warming which could raise the global sea level by several 
meters. There are many cryosphere-climate feedback mechanisms in the global climate 
system over a wide range of spatial and temporal scales. Snow and ice have a remarkable 
effect on climate as they modulate energy exchanges between the surface and the 
atmosphere because of their physical properties. One of the most important properties is the 
surface reflectance (albedo). Non-melting snow and ice can reflect between ~80-90% of 
incident solar energy whereas vegetation and soil surface reflect as little as 20-30%. The 
reflected sunlight into space does not get absorbed by the Earth as heat. Therefore the high 
albedo plays as a cooling factor in the global climate system. The thermal properties of 
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that act to moderate temperature in warm seasons because of the large amount of energy 
required to melt ice.  
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(Drinkwater et al., 2000), classification of sea ice in Polar Regions (Remund et al., 2000), 
deriving the surface wind-induced patterns over Antarctica by measuring the azimuthal 
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In winter when soil surface freezes, dielectric properties of the soil changes significantly 
which results in low backscatter values. As snow begins to fall and accumulates over the 
surface, due to volume scattering, backscatter signals increase depending on microwave 
frequency. The response of dry snow volume to microwaves is rather complex and depends 
on snow properties like snow depth, density, and average grain size as well as the age of 
snowpack. With increasing temperature in spring, snow begins to melt and water covers the 
surface of snow pack which causes a sudden drop in backscatter. After snow melting 
period, soil and vegetation begin to thaw and consequently backscatter arise again. Figure 8 
shows a typical example of freeze/thaw process as described above observable in ASCAT 
normalized backscatter at 40°. High diurnal difference of backscatter (green bars) implies 
frozen condition in the morning and thawing in the evening which can be used as an 
indicator of the transition between different phases. 
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Fig. 8. ASCAT normalized backscatter at 40° indicating seasonal freeze/thaw process. 
 
The high temporal sampling of the scatterometers in Polar Regions despite the frequent 
cloud cover and poor sunlight make them valuable instruments for sea ice observations. The 
sea ice imaging is based on the sensitivity of scatterometer to ice roughness and relatively 
high difference between the backscatter from open water and sea ice. 
Long et al. (1999) used a simple linear function to approximate the backscatter at 40° 
(reference incidence angle): 
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where A is the 0  at 40° incidence and B describes the incidence angle dependency of 
backscatter.  
The A and B parameters are calculated after combining the scatterometer observations from 
multiple passes from several days and using the Scatterometer Image Reconstruction (SIR) 
algorithm to enhance the resolution (Early et al., 2001). The A and B images represent the 
backscatter properties of the surface and are related to ice and snow characteristics over the 
imaging period (Long et al., 2001). Figure 9 illustrates examples of the normalized 
backscatter retrieved from ERS-1/2 scatterometer data available through the Scatterometer 
Climate Record Pathfinder (SCP) project (NASA-SCP). 

 
7. Conclusion 
 

C-band scatterometers have demonstrated to be valuable sensors for large-scale observation 
of the Earth’s surface in a variety of disciplines. High temporal sampling in all weather 
conditions, multi-viewing capability and availability of long-term measurements make the 
European C-band scatterometers excellent Earth observation tools. Scatterometer data are 
used to extract geophysical parameters such as wind speed and direction, surface soil 
moisture, seasonal dynamics of vegetation, spatial and temporal variability of frozen train in 
high latitudes, snowmelt and sea ice. Furthermore the scatterometer data are utilized in 
hydrological modeling, observation of extreme events, flood and drought monitoring, and 
also used for climate change studies. The observations of the ERS-1/2 scatterometers 



Geoscience	and	Remote	Sensing,	New	Achievements242

 

(SCATs) together with the new series of advanced scatterometers (ASCAT) onboard Metop 
satellites ensure long-term global observation (from 1991 until at least 2020). 
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satellites ensure long-term global observation (from 1991 until at least 2020). 
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1. Introduction

The mission of this chapter is to provide insight into the capabilities of scatterometer data for
climate change relevant monitoring at high latitudes of the terrestrial hydrosphere (excluding
large ice caps). Scatterometer are active microwave instruments. Spaceborne sensors have
been developed for operational ocean wind monitoring but they have also been proven of
high value for applications over land area within especially the last decade (Wagner et al.,
2007). The applications cover a wide range of subjects from snowmelt to phenology. What all
have in common is the focus on monitoring of dynamic processes.

Scatterometer are non-imaging radars. Currently operational sensors which are used for land
applications operate in Ku- (≈ 2.1 cm wavelength) and C-band (≈ 5.6 cm wavelength). The
spatial resolution is coarse compared to most optical and SAR sensors and ranges between
25 km and 50 km. The temporal resolution, however, can be better than daily especially at
high latitudes as they are mounted on polar orbiting platforms what results in overlapping
orbits. Especially issues in hydrology require a high sampling rate. The interaction of the
electromagnetic waves at the earth surface is influenced by dielectric properties, roughness
and land cover parameters such as vegetation (Ulaby et al., 1982). Additionally the properties
of the waves (frequency, polarization, incidence angle) determine the sensitivity to certain
changes (spatially and temporally) at the earth surface. For the derivation of most land
surface parameters single sensor approaches have been developed which exploit the specific
sensor properties. As the backscatter return is complex to model, they are largely based
on change detection approaches. These parameters and thus results from scatterometers
with different configurations can be jointly used in order to get an advanced insight to earth
surface processes and long term changes (Bartsch et al., 2007a).

The focus of this chapter is on applicability of scatterometer products for investigation
of basin hydrology. High latitudes are of special interest for climate change monitoring
(Hinzman et al., 2005; IPCC, 2007). Predicted and observed changes affect the hydrosphere,
especially snowmelt timing (Dye & Tucker, 2003; Smith et al., 2004) and permafrost (e.g.
Callaghan et al. (2004)). Scatterometers provide valuable data for the monitoring of these
changes on regional to global scale. River runoff maxima occur in conjunction with snowmelt
(e.g.Khan et al. (2008); Yang et al. (2007)). These melt patterns can be determined using
scatterometer products (Bartsch et al., 2007b; Frolking et al., 1999; Kimball et al., 2004a;
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Wismann, 2000). Frozen ground impedes drainage (French, 1996; Lilly et al., 2008; Williams
& Smith, 1989) and may thus impact the relationship between snowmelt patterns and river
discharge (Kane, 1997; Kane et al., 2003). When snowmelt has ceased changes in discharge
result from e.g. precipitation and subsurface melt. Near surface soil water content can be also
captured with active microwave data and therefore allow an assessment of the hydrological
status of entire basins (Scipal et al., 2005).

In the following sections, available sensors and change detection approaches relevant to basin
hydrology at high latitudes are reviewed and eventually results for selected basins presented
and discussed.

2. Sensors and data

ERS-1 has been launched in 1991 and ERS-2 in 1996. The wind scatterometer on these
platforms provide 50 km resolution datasets in C-band. A global coverage can be theoret-
ically achieved within 3-4 days (Wagner et al., 1999a). A similar sensor has been launched
with METOP ASCAT (Advanced Scatterometer) in October 2006. The ground coverage is
considerably improved compared to ERS due to a second swath and spatial resolution is
25km (Klaes et al., 2007). Measurements are consistent with the preceding sensors and allow
continuation of products developed for ERS (Bartalis et al., 2007; Naeimi et al., 2009).

First Ku-band scatterometer studies are based on NSCAT onboard the Advanced Earth
Observation Satellite (ADEOS). It was launched on August 1996 and operated until June
1997. The spatial resolution was 25km and a 90% global coverage has been achieved within
two days allowing for twice daily acquisitions at high latitudes (Frolking et al., 1999). The
later Seawinds instruments (on QuikScat and ADEOS2) cover 90% of the Earth’s surface daily
and provide up to 10 measurements towards 75 ◦N (Bartsch et al., 2007b). Seawinds QuikScat
is also a Ku-Band sensor with 25km resolution and is to date in operation.

Important steps in the preprocessing of scatterometer data are normalization and gridding
as they are non-imaging radars. Normalization is required since the incidence angle varies
from acquisition to acquisition what causes differences in backscatter. Both NSCAT and
ERS measurements are usually normalized to 40 ◦ (Kimball et al., 2001; Wagner et al.,
1999a; Wismann, 2000; Zhribi et al., 2008). Nghiem & Tsai (2001) used 45 ◦ for NSCAT.
Often scatterometer data have been gridded into rectangular cells of e.g. 0.5 ◦ x 1 ◦ (Prigent
et al., 2007; Wismann, 2000), 0.5 ◦ x 0.5 ◦ (Abdel-Messeh & Quegan, 2000) or 0.25 ◦ x 0.25 ◦

(Zhribi et al., 2008) for ERS, 25 km x 25 km for NSCAT (Kimball et al., 2004a; 2001; Nghiem
& Tsai, 2001) and 12.5 km x 12.5 km for QuikScat (Kidd et al., 2003). The TU Wien ERS
product (Scipal, 2002) uses a Discrete Global Grid (DGG) which is a sinusoidal global grid
generated by an adapted partitioning of the globe with orininally a 25 km grid spacing for
ERS and recently a 12.5 km grid incorporating also ASCAT (Bartalis et al., 2006; Naeimi
et al., in press). The spatial interpolation of the data in each grid point is performed after
the incidence angle normalization of the backscatter measurements in dB (σ0), by using the
Hamming window function (Scipal, 2002). A resolution enhanced QuikScat product has
been developed based on multiple measurements available during short time intervals (Early
& Long, 2001). QuikScat σ0 data are made available as "eggs" or "slices" depending on the
processing method. Egg-based QuikScat images have a nominal pixel spacing of 4.45 km and
an estimated effective resolution of 8-10 km (Long & Hicks, 2005, BYU product). Daily "eggs"

data have been used by Hardin & Jackson (2003), Frolking et al. (2005), Brown et al. (2007)
and Wang et al. (2008) for land applications outside glaciated areas. On a global level those
are assembled from four days of data and for polar regions for separated day times due to
increased revisit intervals (applied in e.g. Wang et al. (2008)).

Fig. 1. Typical backscatter time series (in dB) for C-Band (blue crosses, source: ERS) and Ku-
band (grey points, source: QuikScat) at Ust Usa (56.92 ◦ E, 65.97 ◦ N) for August 2003 to July
2004. Daily air temperature range in ◦C extracted from the WMO512 dataset is shown as
yellow bars. Diamonds represent Ku-band diurnal backscatter difference in dB.

A typical backscatter time series of C-band (ERS) and Ku-band (QuikScat) for high latitude
environment is shown in Figure 1. Although there are similarities in surface interaction, sea-
sonal backscatter behaviour differs between Ku- and C-Band. This is especially pronounced
if a snow cover is present. Microwave backscatter differs significiantly due to changing
dielectric properties between frozen and unfrozen ground (e.g. Ulaby et al. (1982); Way et al.
(1997); Wegmüller (1990)). In case of Ku-band, the backscatter is low before snow arrival, it
gradually increases with snow accumulation, then rapidly decreases when the snow starts
melting and eventually increases again when all snow has melted (Nghiem & Tsai, 2001).
The level of summer backscatter is lower than winter backscatter. In C-band, the summer
backscatter is higher than when snow is present or the ground is frozen. When the snow
surfaces recyristallize after a midwinter short-term melt event, backscatter can increase up to
summer levels in C-band (Wismann, 2000). The formation of ice crust after mid-winter thaw
and subsequent backscatter increase is also strongly visibly in Ku-band (Kimball et al., 2001).
QuikScat also allows the investigation of diurnal differences during the snowmelt period
(Bartsch et al., 2007b; Nghiem & Tsai, 2001). The snow is then often frozen in the morning
and the surface is undergoing melt in the evening due to air temperatures increase above 0 ◦C
during the day. This results in strong differences between morning and evening backscatter
(Figure 1).

Microwave backscatter during freeze/snow free conditions increases with increasing
soil moisture (Ulaby et al., 1982). This has been demonstrated for C-band (e.g. Wagner
et al. (1999b); Zhribi et al. (2008)) and Ku-Band (Mladenova et al., in press) scatterometer.
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Wismann, 2000). Frozen ground impedes drainage (French, 1996; Lilly et al., 2008; Williams
& Smith, 1989) and may thus impact the relationship between snowmelt patterns and river
discharge (Kane, 1997; Kane et al., 2003). When snowmelt has ceased changes in discharge
result from e.g. precipitation and subsurface melt. Near surface soil water content can be also
captured with active microwave data and therefore allow an assessment of the hydrological
status of entire basins (Scipal et al., 2005).

In the following sections, available sensors and change detection approaches relevant to basin
hydrology at high latitudes are reviewed and eventually results for selected basins presented
and discussed.

2. Sensors and data

ERS-1 has been launched in 1991 and ERS-2 in 1996. The wind scatterometer on these
platforms provide 50 km resolution datasets in C-band. A global coverage can be theoret-
ically achieved within 3-4 days (Wagner et al., 1999a). A similar sensor has been launched
with METOP ASCAT (Advanced Scatterometer) in October 2006. The ground coverage is
considerably improved compared to ERS due to a second swath and spatial resolution is
25km (Klaes et al., 2007). Measurements are consistent with the preceding sensors and allow
continuation of products developed for ERS (Bartalis et al., 2007; Naeimi et al., 2009).

First Ku-band scatterometer studies are based on NSCAT onboard the Advanced Earth
Observation Satellite (ADEOS). It was launched on August 1996 and operated until June
1997. The spatial resolution was 25km and a 90% global coverage has been achieved within
two days allowing for twice daily acquisitions at high latitudes (Frolking et al., 1999). The
later Seawinds instruments (on QuikScat and ADEOS2) cover 90% of the Earth’s surface daily
and provide up to 10 measurements towards 75 ◦N (Bartsch et al., 2007b). Seawinds QuikScat
is also a Ku-Band sensor with 25km resolution and is to date in operation.

Important steps in the preprocessing of scatterometer data are normalization and gridding
as they are non-imaging radars. Normalization is required since the incidence angle varies
from acquisition to acquisition what causes differences in backscatter. Both NSCAT and
ERS measurements are usually normalized to 40 ◦ (Kimball et al., 2001; Wagner et al.,
1999a; Wismann, 2000; Zhribi et al., 2008). Nghiem & Tsai (2001) used 45 ◦ for NSCAT.
Often scatterometer data have been gridded into rectangular cells of e.g. 0.5 ◦ x 1 ◦ (Prigent
et al., 2007; Wismann, 2000), 0.5 ◦ x 0.5 ◦ (Abdel-Messeh & Quegan, 2000) or 0.25 ◦ x 0.25 ◦

(Zhribi et al., 2008) for ERS, 25 km x 25 km for NSCAT (Kimball et al., 2004a; 2001; Nghiem
& Tsai, 2001) and 12.5 km x 12.5 km for QuikScat (Kidd et al., 2003). The TU Wien ERS
product (Scipal, 2002) uses a Discrete Global Grid (DGG) which is a sinusoidal global grid
generated by an adapted partitioning of the globe with orininally a 25 km grid spacing for
ERS and recently a 12.5 km grid incorporating also ASCAT (Bartalis et al., 2006; Naeimi
et al., in press). The spatial interpolation of the data in each grid point is performed after
the incidence angle normalization of the backscatter measurements in dB (σ0), by using the
Hamming window function (Scipal, 2002). A resolution enhanced QuikScat product has
been developed based on multiple measurements available during short time intervals (Early
& Long, 2001). QuikScat σ0 data are made available as "eggs" or "slices" depending on the
processing method. Egg-based QuikScat images have a nominal pixel spacing of 4.45 km and
an estimated effective resolution of 8-10 km (Long & Hicks, 2005, BYU product). Daily "eggs"

data have been used by Hardin & Jackson (2003), Frolking et al. (2005), Brown et al. (2007)
and Wang et al. (2008) for land applications outside glaciated areas. On a global level those
are assembled from four days of data and for polar regions for separated day times due to
increased revisit intervals (applied in e.g. Wang et al. (2008)).

Fig. 1. Typical backscatter time series (in dB) for C-Band (blue crosses, source: ERS) and Ku-
band (grey points, source: QuikScat) at Ust Usa (56.92 ◦ E, 65.97 ◦ N) for August 2003 to July
2004. Daily air temperature range in ◦C extracted from the WMO512 dataset is shown as
yellow bars. Diamonds represent Ku-band diurnal backscatter difference in dB.

A typical backscatter time series of C-band (ERS) and Ku-band (QuikScat) for high latitude
environment is shown in Figure 1. Although there are similarities in surface interaction, sea-
sonal backscatter behaviour differs between Ku- and C-Band. This is especially pronounced
if a snow cover is present. Microwave backscatter differs significiantly due to changing
dielectric properties between frozen and unfrozen ground (e.g. Ulaby et al. (1982); Way et al.
(1997); Wegmüller (1990)). In case of Ku-band, the backscatter is low before snow arrival, it
gradually increases with snow accumulation, then rapidly decreases when the snow starts
melting and eventually increases again when all snow has melted (Nghiem & Tsai, 2001).
The level of summer backscatter is lower than winter backscatter. In C-band, the summer
backscatter is higher than when snow is present or the ground is frozen. When the snow
surfaces recyristallize after a midwinter short-term melt event, backscatter can increase up to
summer levels in C-band (Wismann, 2000). The formation of ice crust after mid-winter thaw
and subsequent backscatter increase is also strongly visibly in Ku-band (Kimball et al., 2001).
QuikScat also allows the investigation of diurnal differences during the snowmelt period
(Bartsch et al., 2007b; Nghiem & Tsai, 2001). The snow is then often frozen in the morning
and the surface is undergoing melt in the evening due to air temperatures increase above 0 ◦C
during the day. This results in strong differences between morning and evening backscatter
(Figure 1).

Microwave backscatter during freeze/snow free conditions increases with increasing
soil moisture (Ulaby et al., 1982). This has been demonstrated for C-band (e.g. Wagner
et al. (1999b); Zhribi et al. (2008)) and Ku-Band (Mladenova et al., in press) scatterometer.
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Additionally, variation in summer can be caused by phenology. Backscatter increases
with vegetation growth (Frolking et al., 2005; Hardin & Jackson, 2003). The magnitude of
contribution at C-band is, however, low compared to soil water changes (Wagner et al., 1999c).

Tundra regions are often characterized by a high number of small lakes and ponds which
can be easily identified with higher resolution microwave satellite data (Synthetic aperture
radars - SARs) due to the specific low backscatter of smooth water surfaces (e.g. Bartsch et al.
(2008a). For coarse resolution data such as from the ERS scatterometer, however, it has been
found that contributions of lakes and rivers to the overall backscatter is very small and can be
neglected (Wismann, 2000).

Variations in backscatter are also introduced by instrument noise, speckle and azimuthal
effects (Wagner et al., 1999b). In C-band especially azimuthal effects add to noise for different
land cover types (Bartalis et al., 2006; Naeimi et al., in press). Seawinds QuikScat data
exhibit also strong noise which varies over differing land cover (Bartsch et al., 2007b).
Figure 2 demonstrates the typical noise at Ku-Band of un-glaciated terrain in high latitudes
(Estimated standard deviation of noise - ESD). It is much higher than the ESD determined
for ASCAT in those environments (Naeimi et al., in press). It is typically below 0.3 dB for
ASCAT. It usually exceeds 0.5 dB (mean of 0.57 above 60 ◦ north) for QuikScat. This needs to
be accounted for especially when change detection methods which use thresholds are applied.

C-band scatterometer (ERS-1, Metop ASCAT) find mostly application for detection of soil
moisture changes (Bartalis et al., 2007; Wagner et al., 1999b; Zhribi et al., 2008). The higher
sensitivity to changes in snow properties of the shorter Ku-band (from Seawinds/QuikScat
and NSCAT) is employed for mostly glaciological and seasonal snow cover monitoring
applications. These sensors have been also investigated outside the high latitudes for
phenology (Frolking et al., 2005; Hardin & Jackson, 2003; Oza & Parihar, 2007; Prigent et al.,
2001), urban mapping (Nghiem et al., in press) and soil moisture (Mladenova et al., in press)
applications.

3. Change Detection Approaches

3.1 Freeze/thaw and snow monitoring
First analyses of scatterometer for seasonal thaw are based on ERS-1 data as complete
coverage of seasonal cycles from this sensor are already available since 1992. Boehnke &
Wismann (1996) calculated the typical summer (July) and Winter (February) backscatter level
in order to determine the thaw timing. When a minimum of 50% of the winter summer
difference is exceeded for at least two consecutive measurements ground thaw is detected.
However, since re-crystallization of snow can cause similar backscatter levels as during
summer in C-band an enhanced method has been developed (Wismann, 2000) which applies
additionally a maximum likelihood classification over neighbouring pixels in cases when the
initial detection fails.

Although the available record of NSCAT (Ku-band) is rather short (eleven months) it
provided a first dataset covering an entire northern hemisphere winter and spring period
at this wavelength. Its suitability for detection of freeze/thaw was tested by Frolking et al.
(1999). They introduced a change detection algorithm which considers differences between

Fig. 2. Estimated Standard Deviation (ESD) of QuikScat long-term noise above 60 ◦ N; oceans
and ice caps are excluded

five day averages and location specific differences from the overall mean value. This ap-
proach has been build on and extended within a number of follow-up studies with Ku-Band
scatterometer. Kimball et al. (2001) transferred the C-band approach of Boehnke & Wismann
(1996) to NSCAT data. The five day average method (Frolking et al., 1999) has been extended
for NSCAT by extraction of three instead of one specific date of thaw: the start, the end and
the primary thaw date which is the day with the highest backscatter difference (Kimball
et al., 2004a). The five day moving average approach has been subsequently transferred to
QuikScat (launched 1999) for final thaw date extraction and also applied in a similar way to
autumn refreeze (Kimball et al., 2004b). A further method which is taking winter (February)
mean backscatter into consideration is applying fixed thresholds for daily mean values in
order to determine the onset of snowmelt (Brown et al., 2007). As QuikScat provides sufficient
morning and evening measurement, a new adaptive approach based on diurnal thaw and
refreeze of snow cover could be developed (Bartsch et al., 2007b; Kidd et al., 2003, TU Wien
method). Thresholds are defined for each single grid cell depended on the estimated standard
deviation of long-term noise (Figure 2) and the actual number of measurements available
during each 12 hour period. Significant diurnal backscatter changes occur throughout the
snowmelt period several times but not necessarily on subsequent days. This occurrence of
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Additionally, variation in summer can be caused by phenology. Backscatter increases
with vegetation growth (Frolking et al., 2005; Hardin & Jackson, 2003). The magnitude of
contribution at C-band is, however, low compared to soil water changes (Wagner et al., 1999c).

Tundra regions are often characterized by a high number of small lakes and ponds which
can be easily identified with higher resolution microwave satellite data (Synthetic aperture
radars - SARs) due to the specific low backscatter of smooth water surfaces (e.g. Bartsch et al.
(2008a). For coarse resolution data such as from the ERS scatterometer, however, it has been
found that contributions of lakes and rivers to the overall backscatter is very small and can be
neglected (Wismann, 2000).

Variations in backscatter are also introduced by instrument noise, speckle and azimuthal
effects (Wagner et al., 1999b). In C-band especially azimuthal effects add to noise for different
land cover types (Bartalis et al., 2006; Naeimi et al., in press). Seawinds QuikScat data
exhibit also strong noise which varies over differing land cover (Bartsch et al., 2007b).
Figure 2 demonstrates the typical noise at Ku-Band of un-glaciated terrain in high latitudes
(Estimated standard deviation of noise - ESD). It is much higher than the ESD determined
for ASCAT in those environments (Naeimi et al., in press). It is typically below 0.3 dB for
ASCAT. It usually exceeds 0.5 dB (mean of 0.57 above 60 ◦ north) for QuikScat. This needs to
be accounted for especially when change detection methods which use thresholds are applied.

C-band scatterometer (ERS-1, Metop ASCAT) find mostly application for detection of soil
moisture changes (Bartalis et al., 2007; Wagner et al., 1999b; Zhribi et al., 2008). The higher
sensitivity to changes in snow properties of the shorter Ku-band (from Seawinds/QuikScat
and NSCAT) is employed for mostly glaciological and seasonal snow cover monitoring
applications. These sensors have been also investigated outside the high latitudes for
phenology (Frolking et al., 2005; Hardin & Jackson, 2003; Oza & Parihar, 2007; Prigent et al.,
2001), urban mapping (Nghiem et al., in press) and soil moisture (Mladenova et al., in press)
applications.

3. Change Detection Approaches

3.1 Freeze/thaw and snow monitoring
First analyses of scatterometer for seasonal thaw are based on ERS-1 data as complete
coverage of seasonal cycles from this sensor are already available since 1992. Boehnke &
Wismann (1996) calculated the typical summer (July) and Winter (February) backscatter level
in order to determine the thaw timing. When a minimum of 50% of the winter summer
difference is exceeded for at least two consecutive measurements ground thaw is detected.
However, since re-crystallization of snow can cause similar backscatter levels as during
summer in C-band an enhanced method has been developed (Wismann, 2000) which applies
additionally a maximum likelihood classification over neighbouring pixels in cases when the
initial detection fails.

Although the available record of NSCAT (Ku-band) is rather short (eleven months) it
provided a first dataset covering an entire northern hemisphere winter and spring period
at this wavelength. Its suitability for detection of freeze/thaw was tested by Frolking et al.
(1999). They introduced a change detection algorithm which considers differences between
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five day averages and location specific differences from the overall mean value. This ap-
proach has been build on and extended within a number of follow-up studies with Ku-Band
scatterometer. Kimball et al. (2001) transferred the C-band approach of Boehnke & Wismann
(1996) to NSCAT data. The five day average method (Frolking et al., 1999) has been extended
for NSCAT by extraction of three instead of one specific date of thaw: the start, the end and
the primary thaw date which is the day with the highest backscatter difference (Kimball
et al., 2004a). The five day moving average approach has been subsequently transferred to
QuikScat (launched 1999) for final thaw date extraction and also applied in a similar way to
autumn refreeze (Kimball et al., 2004b). A further method which is taking winter (February)
mean backscatter into consideration is applying fixed thresholds for daily mean values in
order to determine the onset of snowmelt (Brown et al., 2007). As QuikScat provides sufficient
morning and evening measurement, a new adaptive approach based on diurnal thaw and
refreeze of snow cover could be developed (Bartsch et al., 2007b; Kidd et al., 2003, TU Wien
method). Thresholds are defined for each single grid cell depended on the estimated standard
deviation of long-term noise (Figure 2) and the actual number of measurements available
during each 12 hour period. Significant diurnal backscatter changes occur throughout the
snowmelt period several times but not necessarily on subsequent days. This occurrence of
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multiple events has been solved with a clustering method. In case of multiple melt periods
(several clusters of at minimum two days with diurnal thaw and refreeze), the last one is
identified as the major melt period. An analyses limited to evening measurements using the
five day average approach (Frolking et al., 1999) plus the summer mean backscatter (August)
has been carried out by Wang et al. (2008). The evening values are taken from the BYU "egg"
product (Long & Hicks, 2005). Static thresholds are used for thaw day definitions and it
is assumed that relevant melt periods are longer than two days. If multiple events occur,
the longest has been selected. This does not account for short term interruptions and thus
supplies the end of melt only with respect to the entire spring melt.

Advanced products are snow covered area and melt area. The snow covered area can be
determined with all above mentioned approaches as well as with optical data (Scherer et al.,
2005). The melt area can be derived with the methods of Kimball et al. (2001) or Bartsch et al.
(2007b) as they consider beginning and end of spring thaw. This differs from glaciological
applications where single days or consequtive days with surface melt need to be identified
for melt season length determination (e.g. Tedesco (2007)) as any interruption of melt impacts
the mass balance. Surface melt of seasonal snow cover, especially in relation to rain-on-snow
events, affects thermal properties of the snow pack and the soil beneath (Putkonen & Roe,
2003). Even, single days of thaw during spring can cause an increase in heterotrophic soil
respiration (Bartsch et al., 2007b). The primary thaw day (Kimball et al., 2001) extracted for
the year 2000 in the circum-boreal and -arctic regions showed good correlations (R=0.75) with
modelled timing of water content increase in the snowpack (Rawlins et al., 2005).

Current approaches are not applicable in regions where no continuous snow cover/frozen
ground conditions during the winter time exists as they are designed to identify one seasonal
thaw event or period only. The presence of snow itself is not considered in all approaches.
The presence of melting snow causes decreased backscatter similar to water in both C-band
and Ku-Band. Independent whether ground thaw or snow thaw is sought for multiple thaw
periods within one winter season need to be accounted for at all latitudes. This has been
so far considered in two mapping approaches only (Bartsch et al., 2007b; Wang et al., 2008).
The for QuikScat typical variations in noise are only accounted for by the TU Wien method
(Bartsch et al., 2007b; Kidd et al., 2003).

3.2 Soil moisture monitoring
The only change detection method for the determination of surface soil moisture from scat-
terometer data has been introduced by Wagner et al. (1999a). It is based on the assumption
that most backscatter variation within the freeze free period is caused by changes in soil
water content. The minimum (dry reference) and maximum (wet reference) values are
site specific. Once they have been determined from a sufficiently long enough record each
measurement can be scaled between those boundary values and a relative near surface soil
moisture content determined. These datasets are available globally (since 2002, Scipal (2002))
and in case of ASCAT in near-real-time (Naeimi et al., in press). They can be thus applied
e.g. for operational applications such as assimilation into weather forecasts (Scipal et al., 2008).

4. Examples

4.1 Snow melt
The TU Wien product which is based on an adaptive diurnal difference approach introduced
by Bartsch et al. (2007b) can be applied to QuikScat data for the extraction of the beginning
and the end of thaw. It has therefore been chosen for investigation of the melt area and river
discharge behaviour over selected Russian basins. It considers the varying noise levels and
captures the final thaw period with respect to multiple thaw events before the final snowmelt
period and short term variations during spring thaw. Typical duration of final spring melt in
central Siberia above 60 ◦ N is two weeks to one month.
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Fig. 3. Overview map of selected basins in Russia and proportion of permafrost types (source:
NSDIC, Brown et al. (1998))

The area which undergoes snowmelt at a certain day has been extracted for three basins in
Russia for the years 2001 to 2008. Those are the Dvina upstream of Ust Pinega (≈270.000 km2),
the Lena river upstream of Kyusyur (≈2.440.000 km2) and two of its subbasins: the upper
Lena upstream of Solyanka (≈770.000 km2) and the Lena river tributary Aldan (Verkhoyan-
ski’ Perevoz, ≈695.000 km2). These basins show varying Permafrost characteristics (Figure
3, source: NSDIC, Brown et al. (1998)). Dvina has only 12.5% continuous permafrost. This
proportion is higher for all other selected basins, 50% for upper Lena and 80% for Aldan
and the entire Lena basin. The upper Lena basin constitutes most of the none-continuous
permafrost of the Lena basin. Most of it, however, is also characterized by discontinuous and
sporadic permafrost.

Figure 4 and Figure 5 show time series of melt area and discharge for the years 2001-2008.
River runoff measurements are provided through ArcticRIMS (Regional, integrated Hydro-
logical Monitoring System)/ R-ArcticNET (www.russia-arcticnet.sr.unh.edu). All basins are
characterized by a pronounced runoff peak in spring.
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multiple events has been solved with a clustering method. In case of multiple melt periods
(several clusters of at minimum two days with diurnal thaw and refreeze), the last one is
identified as the major melt period. An analyses limited to evening measurements using the
five day average approach (Frolking et al., 1999) plus the summer mean backscatter (August)
has been carried out by Wang et al. (2008). The evening values are taken from the BYU "egg"
product (Long & Hicks, 2005). Static thresholds are used for thaw day definitions and it
is assumed that relevant melt periods are longer than two days. If multiple events occur,
the longest has been selected. This does not account for short term interruptions and thus
supplies the end of melt only with respect to the entire spring melt.

Advanced products are snow covered area and melt area. The snow covered area can be
determined with all above mentioned approaches as well as with optical data (Scherer et al.,
2005). The melt area can be derived with the methods of Kimball et al. (2001) or Bartsch et al.
(2007b) as they consider beginning and end of spring thaw. This differs from glaciological
applications where single days or consequtive days with surface melt need to be identified
for melt season length determination (e.g. Tedesco (2007)) as any interruption of melt impacts
the mass balance. Surface melt of seasonal snow cover, especially in relation to rain-on-snow
events, affects thermal properties of the snow pack and the soil beneath (Putkonen & Roe,
2003). Even, single days of thaw during spring can cause an increase in heterotrophic soil
respiration (Bartsch et al., 2007b). The primary thaw day (Kimball et al., 2001) extracted for
the year 2000 in the circum-boreal and -arctic regions showed good correlations (R=0.75) with
modelled timing of water content increase in the snowpack (Rawlins et al., 2005).

Current approaches are not applicable in regions where no continuous snow cover/frozen
ground conditions during the winter time exists as they are designed to identify one seasonal
thaw event or period only. The presence of snow itself is not considered in all approaches.
The presence of melting snow causes decreased backscatter similar to water in both C-band
and Ku-Band. Independent whether ground thaw or snow thaw is sought for multiple thaw
periods within one winter season need to be accounted for at all latitudes. This has been
so far considered in two mapping approaches only (Bartsch et al., 2007b; Wang et al., 2008).
The for QuikScat typical variations in noise are only accounted for by the TU Wien method
(Bartsch et al., 2007b; Kidd et al., 2003).

3.2 Soil moisture monitoring
The only change detection method for the determination of surface soil moisture from scat-
terometer data has been introduced by Wagner et al. (1999a). It is based on the assumption
that most backscatter variation within the freeze free period is caused by changes in soil
water content. The minimum (dry reference) and maximum (wet reference) values are
site specific. Once they have been determined from a sufficiently long enough record each
measurement can be scaled between those boundary values and a relative near surface soil
moisture content determined. These datasets are available globally (since 2002, Scipal (2002))
and in case of ASCAT in near-real-time (Naeimi et al., in press). They can be thus applied
e.g. for operational applications such as assimilation into weather forecasts (Scipal et al., 2008).

4. Examples

4.1 Snow melt
The TU Wien product which is based on an adaptive diurnal difference approach introduced
by Bartsch et al. (2007b) can be applied to QuikScat data for the extraction of the beginning
and the end of thaw. It has therefore been chosen for investigation of the melt area and river
discharge behaviour over selected Russian basins. It considers the varying noise levels and
captures the final thaw period with respect to multiple thaw events before the final snowmelt
period and short term variations during spring thaw. Typical duration of final spring melt in
central Siberia above 60 ◦ N is two weeks to one month.
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The area which undergoes snowmelt at a certain day has been extracted for three basins in
Russia for the years 2001 to 2008. Those are the Dvina upstream of Ust Pinega (≈270.000 km2),
the Lena river upstream of Kyusyur (≈2.440.000 km2) and two of its subbasins: the upper
Lena upstream of Solyanka (≈770.000 km2) and the Lena river tributary Aldan (Verkhoyan-
ski’ Perevoz, ≈695.000 km2). These basins show varying Permafrost characteristics (Figure
3, source: NSDIC, Brown et al. (1998)). Dvina has only 12.5% continuous permafrost. This
proportion is higher for all other selected basins, 50% for upper Lena and 80% for Aldan
and the entire Lena basin. The upper Lena basin constitutes most of the none-continuous
permafrost of the Lena basin. Most of it, however, is also characterized by discontinuous and
sporadic permafrost.

Figure 4 and Figure 5 show time series of melt area and discharge for the years 2001-2008.
River runoff measurements are provided through ArcticRIMS (Regional, integrated Hydro-
logical Monitoring System)/ R-ArcticNET (www.russia-arcticnet.sr.unh.edu). All basins are
characterized by a pronounced runoff peak in spring.
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Fig. 4. QuikScat derived daily basin melt area in % of the Dvina basin (solid line) and river
discharge in m3/s at Ust Pinega (dashed line), 2001-2008

Dvina melt area and discharge measurements vary considerably over the eight analysed
years. This applies to the magnitude as well as timing. The timing for the Lena is more
constant and also does not vary much between the subbasins. Although the start of the
snowmelt in the upper Lena basin is often earlier, it only slightly deviates from Aldan or
entire Lena. This overlap may contribute to the distinct peak discharge observed at Kyusyur.
The duration of spring snow smelt of Dvina is longer than for all Lena subbasins. This could
be related to the higher average snow depth in the Eurasian Arctic than over the Lena basin
(Khan et al., 2008).

Fig. 5. QuikScat derived daily basin melt area in % of the Lena Kyusyur basin (black solid
thick line), Uppler Lena Solyanka basin (solid thin grey line), Aldan basin (thick grey solid
line) and river discharge in m3/s at corresponding stations (dashed lines), 2001-2008

The magnitude of the melt area maximum and the river discharge spring maximum shows
only a high correlation (R2=0.79) for the upper Lena basin (Figure 6). This relationship is also
partly visible for Aldan, but no distinct discharge peak could be observed in 2005 (Figure 5).
The overall Lena basin spans over several degrees latitude and includes mountain ranges and
therefore does not show a direct relationship.
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be related to the higher average snow depth in the Eurasian Arctic than over the Lena basin
(Khan et al., 2008).

Fig. 5. QuikScat derived daily basin melt area in % of the Lena Kyusyur basin (black solid
thick line), Uppler Lena Solyanka basin (solid thin grey line), Aldan basin (thick grey solid
line) and river discharge in m3/s at corresponding stations (dashed lines), 2001-2008

The magnitude of the melt area maximum and the river discharge spring maximum shows
only a high correlation (R2=0.79) for the upper Lena basin (Figure 6). This relationship is also
partly visible for Aldan, but no distinct discharge peak could be observed in 2005 (Figure 5).
The overall Lena basin spans over several degrees latitude and includes mountain ranges and
therefore does not show a direct relationship.
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Fig. 6. Spring peak discharge (m3/s) and QuikScat derived annual peak basin melt area (in%)
comparison, 2001-2008

In order to compare the actual temporal offset between the melt area and discharge maxima
for the different basins, the basin size needs to be taken into consideration. Therefore, the
offset (in days) has been divided by basin area (100.000 km2). The normalized offset is
shortest for Aldan and Lena (Kyusyur), somewhat longer in most years for the upper Lena
and clearly longer (and more variable) for the Dvina basin (Figure 7). The higher the extent
of continuous permafrost the shorter the temporal offset between melt area maximum and
spring discharge peak.

4.2 Near surface soil moisture
River discharge measurements from subtropic environment have already shown to have
high correlation with ERS estimated soil water index (SWI, Scipal et al. (2005)). The soil
water index is derived from the original surface soil moisture product using an exponential
function in order to model infiltration (Wagner et al., 1999a). The advantage is that moisture
estimates for larger depths become available. The original measurements only represent the
upper 2-5 cm. The surface values are available in irregular intervals. The model output on the
other hand supplies a regular 10-day dataset with respect to the varying global coverage. The
percolation depth is static for the specified analyses region. However, if permafrost is present,
the depth of unthawed ground (active layer) varies throughout the season. Therefore, 10-day
means have been extracted from the original surface soil moisture calculations for the high
latitude analyses. These values are averaged over the entire basins. In case of the Lena basin
upstream of Kyusyur (Figure 3) a Pearson correlation of R2=0.62 between the basin mean
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Fig. 7. Peak offset between spring discharge and QuikScat derived annual maximum melt
area in days by basin area (in 100.000 km2), 2001-2008

surface soil moisture and the river discharge measured at Kyusyur can be determined for the
summer periods (Mid-June to end of August) of 1992-2000 (Figure 8).
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Fig. 8. ERS scatterometer derived 10-day mean basin surface soil moisture in % and River
discharge in m3/s for the Lena Kyusyur basin, Mid-June to end of August 1992-2000
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Fig. 6. Spring peak discharge (m3/s) and QuikScat derived annual peak basin melt area (in%)
comparison, 2001-2008

In order to compare the actual temporal offset between the melt area and discharge maxima
for the different basins, the basin size needs to be taken into consideration. Therefore, the
offset (in days) has been divided by basin area (100.000 km2). The normalized offset is
shortest for Aldan and Lena (Kyusyur), somewhat longer in most years for the upper Lena
and clearly longer (and more variable) for the Dvina basin (Figure 7). The higher the extent
of continuous permafrost the shorter the temporal offset between melt area maximum and
spring discharge peak.

4.2 Near surface soil moisture
River discharge measurements from subtropic environment have already shown to have
high correlation with ERS estimated soil water index (SWI, Scipal et al. (2005)). The soil
water index is derived from the original surface soil moisture product using an exponential
function in order to model infiltration (Wagner et al., 1999a). The advantage is that moisture
estimates for larger depths become available. The original measurements only represent the
upper 2-5 cm. The surface values are available in irregular intervals. The model output on the
other hand supplies a regular 10-day dataset with respect to the varying global coverage. The
percolation depth is static for the specified analyses region. However, if permafrost is present,
the depth of unthawed ground (active layer) varies throughout the season. Therefore, 10-day
means have been extracted from the original surface soil moisture calculations for the high
latitude analyses. These values are averaged over the entire basins. In case of the Lena basin
upstream of Kyusyur (Figure 3) a Pearson correlation of R2=0.62 between the basin mean
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surface soil moisture and the river discharge measured at Kyusyur can be determined for the
summer periods (Mid-June to end of August) of 1992-2000 (Figure 8).
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5. Discussion

Variation in melt area and soil moisture can be introduced by variations in terrain and
latitude. This has been show especially for the Mackenzie previously (Bartsch et al., 2007a).
The use of the surface wetness in order to monitor runoff is only applicable when there are no
other sources than rain or local ground thaw. This limits the application to regions without
significant contribution by glacier melt water. Intermediate storage in lakes and wetlands
can also decrease this relationship (Bartsch et al., 2007a). Surface wetness can be also derived
from ScanSAR data as the ENVISAT ASAR operating in Global Monitoring Mode (Pathe
et al., 2009). This provides more detailed (1km) although less frequent measurements and has
been also demonstrated to be correlated to river runoff in subtropical environments (Bartsch
et al., 2008b).

Although drainage can be also impeded by other ground characteristics, a decrease in
permafrost extent may impact the for those basins currently determined relationship between
river discharge and both soil moisture and snow melt patterns. Additionally a change in
greening-up dates has been observed during the recent decades (Myneni et al., 1997). A
possible related change in snowmelt timing can be monitored with the currently available
scatterometers complementary to optical satellite data which are impacted by cloud coverage.
Continuation of C-band scatterometer is ensured until 2020 within the Metop series of
satellites (Naeimi et al., in press). Both C-band and Ku-band scatterometer are widely used
for ocean applications and therefore a need for continuation exists for different purposes. So
far, the joint use of both bands was limited due to the unavailability of ERS data after 2000 for
many parts of the globe. A synergistic use became now possible due to the launch of ASCAT.
This will allow a comprehensive monitoring of catchment hydrology in regions with seasonal
snow cover.

6. Conclusion

Scatterometer are capable of providing a range of climate change relevant land surface pa-
rameters. They are especially sensitive to changes in the hydrological cycle. Products cover
freeze/thaw status, snowmelt patterns and soil moisture variations. C-band data have been
especially proven valuable for soil moisture monitoring. The variation of surface wetness
over Lena River basin with more than ≈80% continuous permafrost captured during the
snow/freeze free period highly correlates to measured river runoff without any offset. This
significantly differs from basins in subtropic environments with similar size where water can
percolate deeper into the ground. This delays the transport to the river courses and offsets
can be several months. An impact of impeded drainage over permafrost can be also observed
for the peak runoff associated with spring snowmelt. The temporal offset between melt area
maximum and river discharge maximum decreases with increasing proportion of continuous
permafrost in the basin. The maximum melt area reached over basins with high proportion of
continuous permafrost can correlate in cases with the magnitude of peak discharge (R2= 0.8
for upper Lena). In spite of the coarse resolution of scatterometer data, they provide valuable
operational monitoring tools of terrestrial hydrology at high latitudes on regional to circum-
polar scale.
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1. The Marine Atmospheric Boundary Layer

"In the Earth’s atmosphere, the planetary boundary layer is the air layer near the ground
affected by diurnal heat, moisture or momentum transfer to or from the surface". This
definition, obtained from 1, may introduce the Marine Atmospheric Boundary Layer (MABL)
as the planetary boundary layer over the sea surface. In this layer, important exchanges
of sensible and latent heat and momentum take place over a large spectrum of time and
spatial scales, driving the sea waves, the drift ocean currents and the storage of CO2 by the
sea due to the wind and the breaking waves. In this context, the leading quantity is the
wind vector U. Its assessment is of paramount importance in the evaluation of the wind
stress τ = Cd(Ta, Ts, Td) · |U|2, (the drag coefficient Cd is a function depending, in a first
approximation, on the air Ta, the sea Ts and the dew Td temperatures), and of the gas transfer
velocity k = 2.8310−2 · |U|3 (Monahan, 2002), for instance.
One of the major problems in understanding the dynamics of the wind in the surface layer,
the bottom layer inside the MABL where the turbulent fluxes exhibit a variability smaller
than 10%, is the difficulty to get experimental data at spatial scales from few meters to few
kilometers.
The satellite sensors discussed in this chapter measure the backscatter from the sea surface,
providing maps directly related to the characteristics of the surface layer and to the wind
blowing inside this layer. Satellite active microwave sensors are the only instruments able to
provide information about the spatial structure of the wind in the marine surface layer over
large areas.

2. Satellite active microwave sensors

The active microwave sensors (Campbell, 2002; CCRS, 2009; Elachi, 1988) are radars operating
in the microwave region (1 to 30 GHz in frequency, 1 to 30 cm in wavelength) at different
polarizations and incidence angles. Over the sea, the radar return depends, besides the
geometry of the radar illumination, from the degree of development of the sea surface
roughness (Valenzuela, 1978), composed by centimeter sea waves produced by the wind.
Since the wind field has its own spatial pattern, which depends on its strength, on the
thermodynamic characteristics at the air-sea interface and on the interaction between the wind

1 http://en.wikipedia.org/wiki/Boundary_layer
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flow and the orography, the sea surface roughness it generates its spatial features. The radar
backscatter does reproduce, in turns, the sea surface roughness. Therefore, the study of the
characteristics of the radar backscatter provides information on the characteristics of the wind
and of the MABL.
The sea surface roughness is also modulated by some pre-existing oceanographic phenomena,
like sea surface gravity waves, internal waves and ocean currents, or by the presence of oil
slicks on the sea surface, which muffle the roughness. These modulations permit the detection
of these oceanographic phenomena, besides the wind field.
This section introduces the two most popular radar sensors: the scatterometer, used to
measure the wind field over the ocean, and the Synthetic Aperture Radar (SAR), used for
a variety of applications, from land (forestry, geology, agriculture) to ocean (ocean surface
waves, currents, ocean wind).

2.1 Spaceborne scatterometers
At present, the two most important satellites carrying scatterometers are the NASA QuikSCAT
(JPL, 2006) and the Eumetsat Metop (Eumetsat, 2007). Both fly on a polar sun-synchronous
orbit of about 100 minute of period. QuikSCAT has a repetition cycle of 4 days, whereas Metop
of 29 days. This means that every 4 (29) days the scatterometers cover exactly the same areas
of the Earth. The scatterometer winds are referenced to 10 m of height above the sea surface
and to equivalent neutral air-sea stability conditions.
Scatterometer data are widely used by the scientific meteorologic community: they are
assimilated into the global atmospheric models (Isaksen & Janssen, 2008; Isaksen & Stoffelen,
2000), used operationally for coastal (Lislie et al., 2008; Milliff & Stamus, 2008) and tropical
cyclone (Brennan et al., 2008; Singh et al., 2008) wind forecasting, in global scale and mesoscale
meteorology studies (Chelton et al., 2004; Liu et al., 1998; Zecchetto & Cappa, 2001), in
climatological studies (Kolstad, 2008; Risien & Chelton, 2008; Zecchetto & De Biasio, 2007),
in the assessment of the performances of the global (Chelton & Freilich, 2005) and regional
atmospheric models (Accadia et al., 2007), in the oceanic simulations (Millif et al., 2001; Ruti
et al., 2008).

2.1.1 SeaWinds on board of QuikSCAT satellite
QuikSCAT is a NASA satellite launched in June 1999. It provides, by means of the on board
scatterometer SeaWinds working at Ku band (13.4 GHz), wind fields with spatial resolution
of 25 km × 25 km and 12.5 km × 12.5 km at neutral air-sea stability conditions. SeaWinds
is a scatterometer with a rotating antenna, measuring the wind in swaths 1800 km wide.
Because of the operating frequency, QuikSCAT data can be seriously contaminated by rain
(Jones et al., 1999; Portabella & Stoffelen, 2001). For this reason the wind data are provided
with the probability that the columnar rate of rain exceedes 2 km mm h−1, (Huddleston &
Stiles, 2000), which can be used to discard the contaminated data. Figure 1 reports a SeaWinds
swath over the European waters.
The data used here are the level L2B data set, available at PODAAC2. According to the sensor
specifications, the QuikSCAT winds have an accuracy of 2 ms−1 in speed and 20◦ in direction
in the wind speed range 3-20 ms−1, but the actual accuracies are generally better (1 m s−1 and
23◦ (Ebuchi et al., 2002), 1.3 m s−1 and 27◦ (Pickett et al., 2003), 1.7 m s−1 and 14◦ (Chelton &
Freilich, 2005)).

2 available at podaac.jpl.nasa.gov/pub/ocean_wind/quikscat

Fig. 1. A swath of SeaWinds over the European waters. 1 January 2007 at 04:22 GMT.
Ascending orbit.

2.1.2 ASCAT on board of Metop satellite
Since May 2007, the European satellite Metop is operational: among other instruments, it
carries the scatterometer ASCAT. Differently from QuikSCAT, ASCAT has fixed antennas in
the two sides of the satellite, producing a swath composed by two sub-swaths 500 km wide,
768 km apart. The available spatial resolutions are 25 km by 25 km and 12.5 km by 12.5
km. Working at C-band (5.255 GHz), ASCAT data are only slightly affected by rain. Figure 2
reports a swath of ASCAT over the European waters at spatial resolution of 25 km by 25 km.
ASCAT wind data are available at Eumetsat3 or in near real time from the Dutch Met Office
(www.knmi.nl), disseminating the data on behalf of the Ocean & Sea Ice Satellite Application
Facility (www.osi-saf.org) of EUMETSAT (www.eumetsat.org).

2.2 The Synthetic Aperture Radar
At present, several Synthetic Aperture Radar (SAR) instruments are flying above us: the
Advanced SAR instrument of Envisat (March 2002) (ESA, 2002), the German TerraSAR-X
(June 2007) (DLR, 2003), the Italian Cosmo-Skymed programme (from June 2007) (ASI, 2007),
the Canadian commercial satellite RADARSAT-2 (December 2007) (CSA, 2001; Morena et al.,
2004). Table 1 reports the main characteristics of the mentioned SARs.
The term polarization refers to the polarization of the transmitted Tx and received Rx
electromagnetic waves. Single polarization can be (TxRx) VV or HH or VH or HV; dual
polarization comprises HH and HV or VV and VH; quad (fully) polarization is when all
the possible polarization combinations are acquired, i. e. HH, HV, VV, VH. Terrasar-X,
CosmoSkyMed and RADARSAT-2 are fully polarimetric SARs.

3 http://archive.eumetsat.int/umarf/
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backscatter does reproduce, in turns, the sea surface roughness. Therefore, the study of the
characteristics of the radar backscatter provides information on the characteristics of the wind
and of the MABL.
The sea surface roughness is also modulated by some pre-existing oceanographic phenomena,
like sea surface gravity waves, internal waves and ocean currents, or by the presence of oil
slicks on the sea surface, which muffle the roughness. These modulations permit the detection
of these oceanographic phenomena, besides the wind field.
This section introduces the two most popular radar sensors: the scatterometer, used to
measure the wind field over the ocean, and the Synthetic Aperture Radar (SAR), used for
a variety of applications, from land (forestry, geology, agriculture) to ocean (ocean surface
waves, currents, ocean wind).

2.1 Spaceborne scatterometers
At present, the two most important satellites carrying scatterometers are the NASA QuikSCAT
(JPL, 2006) and the Eumetsat Metop (Eumetsat, 2007). Both fly on a polar sun-synchronous
orbit of about 100 minute of period. QuikSCAT has a repetition cycle of 4 days, whereas Metop
of 29 days. This means that every 4 (29) days the scatterometers cover exactly the same areas
of the Earth. The scatterometer winds are referenced to 10 m of height above the sea surface
and to equivalent neutral air-sea stability conditions.
Scatterometer data are widely used by the scientific meteorologic community: they are
assimilated into the global atmospheric models (Isaksen & Janssen, 2008; Isaksen & Stoffelen,
2000), used operationally for coastal (Lislie et al., 2008; Milliff & Stamus, 2008) and tropical
cyclone (Brennan et al., 2008; Singh et al., 2008) wind forecasting, in global scale and mesoscale
meteorology studies (Chelton et al., 2004; Liu et al., 1998; Zecchetto & Cappa, 2001), in
climatological studies (Kolstad, 2008; Risien & Chelton, 2008; Zecchetto & De Biasio, 2007),
in the assessment of the performances of the global (Chelton & Freilich, 2005) and regional
atmospheric models (Accadia et al., 2007), in the oceanic simulations (Millif et al., 2001; Ruti
et al., 2008).

2.1.1 SeaWinds on board of QuikSCAT satellite
QuikSCAT is a NASA satellite launched in June 1999. It provides, by means of the on board
scatterometer SeaWinds working at Ku band (13.4 GHz), wind fields with spatial resolution
of 25 km × 25 km and 12.5 km × 12.5 km at neutral air-sea stability conditions. SeaWinds
is a scatterometer with a rotating antenna, measuring the wind in swaths 1800 km wide.
Because of the operating frequency, QuikSCAT data can be seriously contaminated by rain
(Jones et al., 1999; Portabella & Stoffelen, 2001). For this reason the wind data are provided
with the probability that the columnar rate of rain exceedes 2 km mm h−1, (Huddleston &
Stiles, 2000), which can be used to discard the contaminated data. Figure 1 reports a SeaWinds
swath over the European waters.
The data used here are the level L2B data set, available at PODAAC2. According to the sensor
specifications, the QuikSCAT winds have an accuracy of 2 ms−1 in speed and 20◦ in direction
in the wind speed range 3-20 ms−1, but the actual accuracies are generally better (1 m s−1 and
23◦ (Ebuchi et al., 2002), 1.3 m s−1 and 27◦ (Pickett et al., 2003), 1.7 m s−1 and 14◦ (Chelton &
Freilich, 2005)).

2 available at podaac.jpl.nasa.gov/pub/ocean_wind/quikscat

Fig. 1. A swath of SeaWinds over the European waters. 1 January 2007 at 04:22 GMT.
Ascending orbit.

2.1.2 ASCAT on board of Metop satellite
Since May 2007, the European satellite Metop is operational: among other instruments, it
carries the scatterometer ASCAT. Differently from QuikSCAT, ASCAT has fixed antennas in
the two sides of the satellite, producing a swath composed by two sub-swaths 500 km wide,
768 km apart. The available spatial resolutions are 25 km by 25 km and 12.5 km by 12.5
km. Working at C-band (5.255 GHz), ASCAT data are only slightly affected by rain. Figure 2
reports a swath of ASCAT over the European waters at spatial resolution of 25 km by 25 km.
ASCAT wind data are available at Eumetsat3 or in near real time from the Dutch Met Office
(www.knmi.nl), disseminating the data on behalf of the Ocean & Sea Ice Satellite Application
Facility (www.osi-saf.org) of EUMETSAT (www.eumetsat.org).

2.2 The Synthetic Aperture Radar
At present, several Synthetic Aperture Radar (SAR) instruments are flying above us: the
Advanced SAR instrument of Envisat (March 2002) (ESA, 2002), the German TerraSAR-X
(June 2007) (DLR, 2003), the Italian Cosmo-Skymed programme (from June 2007) (ASI, 2007),
the Canadian commercial satellite RADARSAT-2 (December 2007) (CSA, 2001; Morena et al.,
2004). Table 1 reports the main characteristics of the mentioned SARs.
The term polarization refers to the polarization of the transmitted Tx and received Rx
electromagnetic waves. Single polarization can be (TxRx) VV or HH or VH or HV; dual
polarization comprises HH and HV or VV and VH; quad (fully) polarization is when all
the possible polarization combinations are acquired, i. e. HH, HV, VV, VH. Terrasar-X,
CosmoSkyMed and RADARSAT-2 are fully polarimetric SARs.

3 http://archive.eumetsat.int/umarf/
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Fig. 2. A swath of ASCAT over the European waters. 1 January 2009 at 20:43 GMT. Ascending
orbit.

Satellite Polarization Frequency Spatial resolution Swath
(width x length) m width (km)

Envisat1 Single, dual C-band Polarization mode:
(5.3 GHz) ∼ 30 x 30 up to 100

Wide Swath mode:
∼ 150 x 150 400
Global Monitoring mode:
∼ 1000 x 1000 > 400

TerraSAR-X2 Single, dual, X-band SpotLight: up to 1 10
(9.6 GHz)

quad StripMap: up to 3 30
ScanSAR: up to 18 100

Radarsat-23 Single, dual, C-band Ultra-Fine: 3 x 3 20
quad (5.4 GHz) Multi-Look Fine: 8 x 8 50

Standard: 25 x 26 100
Wide: 30 x 26 150
ScanSAR narrow: 50 x 50 300
ScanSAR wide: 100 x 100 500
Standard Quad-pol: 12 x 8 25
Fine Quad-pol: 25 x 8 25

CosmoSkyMed4 Single, dual, X-band Spotlight-2: 1 x 1 10
quad (9.6 GHz) Stripmap: 3 x 3 30

5 x 5 40
Scansar: 30 x 30 100
100 x 100 200

Table 1. The main characteristics of the operational SAR instruments. From: 1envisat.esa.int;
2www.infoterra.de/terrasar-x; 3www.radarsat2.info;4www.e-geos.it/docs/asi.pdf

3. Mesoscale wind meteorology from scatterometer data

The mesoscale may be defined, according to Orlanski (1975), as composed by three subranges:
the mesoscale γ, from 2 km to 20 km, β, from 20 km to 200 km and α, from 200 km to 2000 km.
This range is of uttermost importance, since in this range the wind controls the atmosphere’s
dynamics. This range is also sensitive to local modulations of the wind field, especially in
regions where steep orography surrounds the various basins. Indeed, this is the range where
global models have a decreased ability in reproducing the surface wind field. One of the
regions where the atmospheric phenomena frequently occur in the mesoscale range is the
Mediterranean Basin, which is chosen here as the area of interest.
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Fig. 3. Frequency distribution of QuikSCAT (red) and ASCAT (yellow) passes over the
Mediterranean Basin as a function of the day time (GMT). January 2008.

The Mediterranean Basin is a semi-enclosed basin, having maximum extent of about 4000 km
east-west and of about 1200 km north-south. It is almost entirely surrounded by mountain
chains (with the exception of the east coast of Tunisia), which often raise nearby the coastline.
The complexity of the coastal orography and the presence of mountainous islands deeply
influence the local scale atmospheric circulation in the MABL, producing local effects at
spatial scales down to a few kilometers. In the Mediterranean Basin, many regional wind
systems, local cyclogeneses and wind flow disturbances induced by orography have a spatial
variability at the mesoscale β. Up to now, the atmospheric phenomena at this scale in the
Mediterranean Basin have not been extensively studied, mainly due to the lack of high spatial
resolution data.
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Fig. 2. A swath of ASCAT over the European waters. 1 January 2009 at 20:43 GMT. Ascending
orbit.
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(width x length) m width (km)

Envisat1 Single, dual C-band Polarization mode:
(5.3 GHz) ∼ 30 x 30 up to 100

Wide Swath mode:
∼ 150 x 150 400
Global Monitoring mode:
∼ 1000 x 1000 > 400

TerraSAR-X2 Single, dual, X-band SpotLight: up to 1 10
(9.6 GHz)

quad StripMap: up to 3 30
ScanSAR: up to 18 100

Radarsat-23 Single, dual, C-band Ultra-Fine: 3 x 3 20
quad (5.4 GHz) Multi-Look Fine: 8 x 8 50

Standard: 25 x 26 100
Wide: 30 x 26 150
ScanSAR narrow: 50 x 50 300
ScanSAR wide: 100 x 100 500
Standard Quad-pol: 12 x 8 25
Fine Quad-pol: 25 x 8 25

CosmoSkyMed4 Single, dual, X-band Spotlight-2: 1 x 1 10
quad (9.6 GHz) Stripmap: 3 x 3 30

5 x 5 40
Scansar: 30 x 30 100
100 x 100 200

Table 1. The main characteristics of the operational SAR instruments. From: 1envisat.esa.int;
2www.infoterra.de/terrasar-x; 3www.radarsat2.info;4www.e-geos.it/docs/asi.pdf

3. Mesoscale wind meteorology from scatterometer data

The mesoscale may be defined, according to Orlanski (1975), as composed by three subranges:
the mesoscale γ, from 2 km to 20 km, β, from 20 km to 200 km and α, from 200 km to 2000 km.
This range is of uttermost importance, since in this range the wind controls the atmosphere’s
dynamics. This range is also sensitive to local modulations of the wind field, especially in
regions where steep orography surrounds the various basins. Indeed, this is the range where
global models have a decreased ability in reproducing the surface wind field. One of the
regions where the atmospheric phenomena frequently occur in the mesoscale range is the
Mediterranean Basin, which is chosen here as the area of interest.
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Fig. 3. Frequency distribution of QuikSCAT (red) and ASCAT (yellow) passes over the
Mediterranean Basin as a function of the day time (GMT). January 2008.

The Mediterranean Basin is a semi-enclosed basin, having maximum extent of about 4000 km
east-west and of about 1200 km north-south. It is almost entirely surrounded by mountain
chains (with the exception of the east coast of Tunisia), which often raise nearby the coastline.
The complexity of the coastal orography and the presence of mountainous islands deeply
influence the local scale atmospheric circulation in the MABL, producing local effects at
spatial scales down to a few kilometers. In the Mediterranean Basin, many regional wind
systems, local cyclogeneses and wind flow disturbances induced by orography have a spatial
variability at the mesoscale β. Up to now, the atmospheric phenomena at this scale in the
Mediterranean Basin have not been extensively studied, mainly due to the lack of high spatial
resolution data.
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Fig. 4. Monthly coverage of QuikSCAT and ASCAT scatterometers over the European waters.
January 2008.

Fig. 5. Mean wind speed field over the Mediterranean Basin (July 1999 to May 2009) derived
from QuikSCAT data. The vectors are plotted at one third of their original space resolution
for readability

3.1 Parameters describing the wind field characteristics
Besides the mean wind field, several other parameters are important in defining the wind
spatial structure, i. e. the wind gustiness, the wind steadiness and the wind speed variability.

The wind speed gustiness G is defined as:

G = (
n

∑
i=1

(Ui − U)2)1/2/U (1)

where Ui is the wind speed modulus at time i, and U the mean value of ensemble {Ui}. The
gustiness is a non-dimensional parameter providing information on the turbulent intensity of
the wind. All the previous quantities are related to wind speed, neglecting wind direction.
The wind steadiness coefficient S, expressed as

S = 100
[(∑n

i=1(ui)
2) + (∑n

i=1(vi)
2)]1/2

∑n
i=1(ui

2 + vi
2)1/2 (2)

where ui and vi are the zonal and meridional wind components, provides insights into the
variability of the wind direction. This non-dimensional parameter, which expresses the ratio
between the mean vector and the mean scalar wind speed, ranges from 0 (wind direction
randomly changing) to 100 (constant wind direction). It permits the identification of persistent
wind regimes. The wind speed variability σw is the wind standard deviation computed over
the period considered, and may be considered to integrate the information provided by the
non-dimensional gustiness.

3.2 Temporal sampling and spatial coverage
To study the climatological spatial properties of a field, it is important to know how it has
been produced and the temporal sampling of the area of interest.
One of the important aspects concerns the scatterometer pass time over a region of interest.
Considering the Mediterranean Basin, the pass time of QuikSCAT and ASCAT, regardless
the number of data per passage, may be inferred from Fig. 3, which reports the frequency
distribution of the pass time as a function of the day time for January 2008. QuikSCAT swaths
the Mediterranean Basin in the early morning and early afternoon, while ASCAT in the middle
morning and evening. Figure 4 reports the map of the number of hits provided by QuikSCAT
and ASCAT together over the European waters for one month (January 2008). The sampling
roughly increases with latitude, from the ≈ 50 hit month−1 of the eastern Mediterranean to the
≈ 140 hit month−1 above 60◦. In the Mediterranean Basin there are about two measurements
per day: this permits to represent the temporal evolution of the wind only at scales longer
than one day, but prevents to study of the wind associated to phenomena like fronts or
cyclogeneses.
With the present coverage provided jointly by QuikSCAT and ASCAT in the Mediterranean
Basin, it is possible to study the spatial structure of the winds in the mesoscale α and β, while
their temporal evolution only in the mesoscale α.

3.3 Climatological spatial structure of the wind
The short time climatology of the spatial structure of the wind has been built over the ten
years of QuikSCAT data available (July 1999 to May 2009), and presented here in terms of
seasonal fields. To illustrate some aspect of the climatological spatial structure of the wind
over the Mediterranean Basin, the winter and summer maps of wind speed variability σw and
of wind steadiness S are presented. Before to present them, it is useful to sketch the general
characteristics of the large scale wind circulation over the Mediterranean basin.
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To study the climatological spatial properties of a field, it is important to know how it has
been produced and the temporal sampling of the area of interest.
One of the important aspects concerns the scatterometer pass time over a region of interest.
Considering the Mediterranean Basin, the pass time of QuikSCAT and ASCAT, regardless
the number of data per passage, may be inferred from Fig. 3, which reports the frequency
distribution of the pass time as a function of the day time for January 2008. QuikSCAT swaths
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morning and evening. Figure 4 reports the map of the number of hits provided by QuikSCAT
and ASCAT together over the European waters for one month (January 2008). The sampling
roughly increases with latitude, from the ≈ 50 hit month−1 of the eastern Mediterranean to the
≈ 140 hit month−1 above 60◦. In the Mediterranean Basin there are about two measurements
per day: this permits to represent the temporal evolution of the wind only at scales longer
than one day, but prevents to study of the wind associated to phenomena like fronts or
cyclogeneses.
With the present coverage provided jointly by QuikSCAT and ASCAT in the Mediterranean
Basin, it is possible to study the spatial structure of the winds in the mesoscale α and β, while
their temporal evolution only in the mesoscale α.

3.3 Climatological spatial structure of the wind
The short time climatology of the spatial structure of the wind has been built over the ten
years of QuikSCAT data available (July 1999 to May 2009), and presented here in terms of
seasonal fields. To illustrate some aspect of the climatological spatial structure of the wind
over the Mediterranean Basin, the winter and summer maps of wind speed variability σw and
of wind steadiness S are presented. Before to present them, it is useful to sketch the general
characteristics of the large scale wind circulation over the Mediterranean basin.
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The Mediterranean weather is mainly driven by the Atlantic weather which, locally modified
over the Mediterranean area (HMSO, 1962), produces a secondary weather system of spatial
scales smaller than 500 km or so, frequent in all seasons. This is due both to the basin size and
its geographic configuration: the coastal steep orography and the presence of large islands
may modify the synoptic scale air flows over the region producing well distinct circulations
on regional scale (Zecchetto & Cappa, 2001; Zecchetto & De Biasio, 2007). Many of the most
important regional winds in this basin are indeed the product of the interaction between the
synoptic scale flow and the local orography. However, the Mediterranean Sea, due to its
longitudinal extension, can be subject to various (sometimes co-exiting) circulation regimes
as, for instance, the etesian wind circulation in the Eastern Mediterranean during summer,
mainly linked to the Asian Monsoon (Ziv et al., 2004).

Fig. 6. Seasonal wind speed variability over the Mediterranean Basin (July 1999 to May 2009)
derived from QuikSCAT data. Top panel: winter. Bottom panel: summer.

Figure 5 reports the QuikSCAT mean wind field over ten years (July 1999 to May 2009), plotted
at one third of its original space resolution for readability. The basin scale wind circulation
is mainly from northwest, with a strong signature of mistral in the Gulf of Lion and of the

etesian in the eastern part of the basin. However, several regional wind circulations are co-
existing, such as the northeastern bora wind (Pandžić & Likso, 2005; Yoshino, 1976) affecting
the Adriatic Sea, and the northern winds of Black Sea, where a cyclonic circulation dominates
the eastern part of the basin and an anticyclonic one prevails in its western side (Efimov &
Shokurov, 2002).

Fig. 7. Seasonal wind steadiness over the Mediterranean Basin (July 1999 to May 2009) derived
from QuikSCAT data. Top panel: winter. Bottom panel: summer.

Figure 6 reports the maps of wind speed variability (top panel) for winter (December to
February) and summer (June to August, bottom panel). Keeping in mind the general
circulation shown in Fig. 5, it is easy to attribute the highest wind variability, found in
areas at the wind lee side, to the influence of the interaction between the wind flow and
the orography. This is particularly evident between Corsica and Sardinia and between Crete
and Rhodos islands in the eastern basin in winter and summer, both due to the funneling
and island shielding effects. The orographically induced effects may be seen also in Adriatic
and Aegean seas in winter and in the southern Turkey. Figure 7 reports the maps of wind
steadiness for winter (top panel) and summer (bottom panel). The highest steadiness is found
in the eastern Mediterranean in summer, as effect of the etesian wind circulation. In winter,
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the moderate steadiness is highest in the area interested by the mistral (Gulf of Lion up to
the Sicily Channel) and south of the Crete-Rhodos islands. In this season, also the steadiness
pattern in the Adriatic Sea reveals the signature of the northeastern bora.

Fig. 8. Normalized mean wind speed fields from QuikSCAT (top panel) and QBOLAM
(bottom panel) over the Mediterranean. October 2000.

3.4 Atmospheric models and scatterometer wind fields
This section is aimed to show similarities and differences of the wind fields derived from
scatterometer and from a regional atmospheric model, a topic faced in Accadia et al. (2007).
The surface wind has been forecasted by a limited area model, the Quadrics Bologna Limited-
Area Model (QBOLAM) (Speranza et al., 2004), a parallelized version of BOLAM (Buzzi et al.,
1994), covering the whole Mediterranean area with 0.1◦ by 0.1◦ grid resolution. Figure 8
reports the fields of the normalized mean wind speed for October 2000, as derived from
QuikSCAT (top panel) and QBOLAM (bottom panel). The fields are normalized to make
them more comparable. Apart from the differences on the spatial structure of the wind (the
model winds are more westerlies than those measured by scatterometer), note the different
representation of details provided by the two fields. Despite QBOLAM has a nominal spatial

resolution of 0.1◦ (about 10 km in latitude and 7 km in longitude), higher than that of
scatterometer (12.5 km by 12.5 km), its fields result smoother. This common feature of the
model fields, discussed in Chèruy et al. (2004) and Skamarock (2004), stresses the importance
of the satellite winds in studying the mesoscale spatial features of the wind.

4. Small-scale structure of the MABL from SAR images

The increased availability of satellite SAR images offers to scientists many opportunities to
investigate the structure of the MABL over the sea and coastal areas. Scientific literature about
SAR images over the ocean has shown a variety of geophysical phenomena detectable by SAR
(Alpers & Brümmer, 1994; Kravtsov et al., 1999; Mitnik et al., 1996; Mityagina et al., 1998;
Mourad, 1996; Sikora et al., 1997; Zecchetto et al., 1998), including the multiscale structure in
the atmospheric turbulence under high winds and the structure of the convective turbulence
under low wind. More recently, some effort has been devoted to evaluate the wind direction,
using the backscatter signatures produced by the atmospheric wind rolls or those occurring
at the lee side of islands (Vachon & Dobson, 2000) as effect of wind shielding, by computing
the local gradient of the image backscatter (Horstmann et al., 2002; Koch, 2004) or by using
the two dimensional Continuous Wavelet Transform (CWT2) (Zecchetto & De Biasio, 2002;
Zecchetto & De Biasio, 2008).
This section illustrates the ability of the CWT2 in detecting and quantifying the backscatter
pattern linked to the spatial structure of the MABL. It summarizes the CWT2 methodology
applied to SAR images, providing the results obtainable by showing a case study chosen
among the hundreds of images analyzed. The extraction of the wind field from SAR images,
a follow up of the CWT2 analysis, is then illustrated at the end.

4.1 The methodology
The Continuous Wavelet Transform (Beylkin et al., 1992; Foufoula-Georgiou & Kumar, 1994)
f̃ of a function f (u) is a local transform, dependent on the parameters s and τ, defined as

f̃ (s, τ) = 〈ψ(s,τ), f 〉 =
∫ +∞

−∞
du ψ∗

(s,τ)(u) f (u) (3)

where ψ(s,τ)(u) = ψ
( u−τ

s
)

is the mother wavelet at a given scale (or dilation) s and location
τ (the asterisk denotes complex conjugation). The quantity | f̃ (s, τ)|2 plays the role of local
energy density at given (s, τ). The Continuous Wavelet Transform in two dimensions (CWT2)
is then,

f̃ (sx, τx; sy, τy) =
∫∫ +∞

−∞
du dv ψ∗

(sx ,τx)
(u) ψ∗

(sy ,τy)
(v) f (u, v).

The CWT2 has been computed using the Mexican Hat as mother wavelet, able to capture the
fine scale structure of the data and suitable for the continuous wavelet transform because it is
non-orthogonal.
The images must be preprocessed before the CWT2 analysis, to mask the land and to mitigate
the effects introduced by the variation in range of the radar incidence angle. This avoids that
structures on the inner part of the image, where the radar incidence angle is smaller and the
radar backscatter higher, prevail on the outer ones.
The choice of the scales is very important because it defines the geophysical phenomena to
investigate: if the wind field retrieval is of interest, the spatial range is set from 300 m to 4 km;
if phenomena such as the atmospheric gravity waves are the object of study, the spatial range
has to be set from 4 km up to 20 km.
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Fig. 9. The Envisat ASAR Wide Swath image selected for the case study. Top panel: the ASAR
image (15-May-2008 at 08:20:47 GMT). Bottom panel: the image location in the Mediterranean
Sea.

A basic quantity yielded by the CWT2 is the wavelet variance map, derived from the wavelet
coefficients. Providing information about the energy distribution as a function of (sr, sc), in
the same way as the two dimensional Fourier spectrum does as a function of wavenumbers, it
is used to select the scales, taken around the maximum of the wavelet variance map, to build
a SAR-like map (reconstructed map). This is obtained adding the wavelet coefficient maps at
the selected scales: a SAR-like image is thus obtained, representing a spatial pattern due to
the most energetic spatial scales present in the original SAR image.
The reconstructed map undergoes a threshold process to isolate the structures from the
background. The result of this procedure is a map of backscatter cells, then used as a mask
on the original SAR image to get the values of the radar backscatter inside the detected cells,
as well as to estimate their shape and size. The reconstructed map depends on the range of

scales chosen in the analysis. As used here, the CWT2 methodology acts as a filtering based
on energetic considerations.

4.2 A case study
The image selected for the case study (Fig. 9, top panel) is an Envisat ASAR Wide Swath
image taken in the Crete island area (eastern Mediterranean Sea, Fig. 9, bottom panel). This
image covers about 400 km by 400 km, with a pixel resolution of 75 m by 75 m. It has been
downloaded from the ESA site4.
The tilting effect due to the change of the radar incidence angle - from 16◦ on the right side
to 43◦ on the left side, hinders to see the fine structure of the radar backscatter, however well
visible in the image blow-up reported in Fig. 10: the wind rolls may be seen in many parts of
this image, especially in its top right part.

Fig. 10. A blow-up of the ASAR Wide Swath image shown in Fig. 9, roughly corresponding
to the area at north-east of Crete.

The larger backscatter structures, as those due to the atmospheric gravity waves east of
Karpathos and to the wind sheltering by islands, at the islands lee side) (the wind blowed
from northwest) are easily detectable.

4 http : //oa − ip.eo.esa.int/ra/asa
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4 http : //oa − ip.eo.esa.int/ra/asa
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Fig. 11. Map reconstruction in the spatial range 0.3 km ÷ 4 km. Inside panel: the distribution
of the orientation of cells’ major axis as a function of the angle RGN.

The map reconstructed in the range 0.3 km ÷ 4 km, shown in the left panel of Fig. 11,
evidences the small scale structure of the radar backscatter, formed by elliptic cells with major
axis orientation falling into two classes, as evidenced by their distribution reported in the
inset. The existence of these two classes is due to the texture of the SAR images, and does not
represent the geophysical pattern of the backscatter cells excited by the turbulent wind, which
may be singled out taking those with directions close to the most probable one, in this case θ =
300◦. Thus a reconstructed map with only the cells produced by the wind can be obtained.
Figure 12 reports it for the whole image of Fig. 9 (left panel) and for a portion of it (right
panel). Note the uneven spatial distribution of the cells but also the high spatial resolution of
information obtained. From this map, used as a mask over the original one, it is then possible
to retrieve the wind field (Zecchetto & De Biasio, 2008) and to produce a statistics of the cell’s
size, which may have important implications of the study of the air-sea interaction because it
can be linked to the structure of the MABL.
The map reconstructed in the range 4 km ÷ 20 km, reported in the left panel of Fig. 13,
clearly shows the pattern of the atmospheric gravity waves in its upper right part. The two
dimensional spectral analysis of this map yields the 2D spectrum shown in the right panel of
Fig. 13, where two directions are evidenced: that of the maximum energy, occurring at a peak
wavelength of 8350 m and an aliased direction of propagation of 296◦, and a secondary one,
due to the presence of different atmospheric gravity wave trains in the image, with a peak
wavelength of 16.7 km and a direction of 63◦.
These information may be used, as in Sikora et al. (1997), to estimate the vertical thickness of
the MABL.
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Fig. 12. Reconstructed map with only the cells produced by the wind. Left panel: whole map,
corresponding to Fig. 9. Right panel: a blow up of it.

4.3 Wind field extraction: choice of the wind aliased direction
The aliased wind orientation is taken as that corresponding to the most frequent mode of the
distribution of cell’s direction: in the example reported, the directions around Φ = 300◦ have
a frequency of 54%, whereas those around Φ = 60◦ a frequency of 46 %. These frequencies
may differ more in some case (70% to 30% or so), while in some other they can result very
similar making difficult the choice of the aliased direction. Their variability across the SAR
data set likely depends on the characteristics of the images.

4.4 Wind field extraction: dealiasing
The dealiasing technique takes advantage of the idea, formulated by Zecchetto et al. (1998) in
a case of convective turbulence, that the wind gustiness, modulating the mean wind speed,
produces patches of roughness characterized by an asymmetric distribution of energy along
the wind direction. The speed modulation acts inside the cells: higher backscatter is expected
at the leading edge of the patches, then decreasing towards the trailing edge, allowing the
wind direction dealiasing. This figure is coherent with the layout of the wind cells, organized
like “pearls on a string” (Etling & Brown, 1993), as well as with their inner structure (Zecchetto
& De Biasio, 2002).

4.5 Wind field extraction: wind speed computation
Once assessed the wind direction, the speed has been computed from the mean radar
backscatter of the selected cells using the CMOD5 model (Hersbach et al., 2007), an empirical
model converting the radar cross section at C-band to the wind speed, once the radar
incidence angle and the wind direction are known.

4.6 The resulting wind field
The wind field derived from the ASAR image of Fig. 9 is shown in the left panel of Fig. 14,
along with the contour plot of the wind speed in the right panel. The wind field is spatially
uneven because it has been computed over the detected cells. Where the wind is low, as at
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Fig. 11. Map reconstruction in the spatial range 0.3 km ÷ 4 km. Inside panel: the distribution
of the orientation of cells’ major axis as a function of the angle RGN.

The map reconstructed in the range 0.3 km ÷ 4 km, shown in the left panel of Fig. 11,
evidences the small scale structure of the radar backscatter, formed by elliptic cells with major
axis orientation falling into two classes, as evidenced by their distribution reported in the
inset. The existence of these two classes is due to the texture of the SAR images, and does not
represent the geophysical pattern of the backscatter cells excited by the turbulent wind, which
may be singled out taking those with directions close to the most probable one, in this case θ =
300◦. Thus a reconstructed map with only the cells produced by the wind can be obtained.
Figure 12 reports it for the whole image of Fig. 9 (left panel) and for a portion of it (right
panel). Note the uneven spatial distribution of the cells but also the high spatial resolution of
information obtained. From this map, used as a mask over the original one, it is then possible
to retrieve the wind field (Zecchetto & De Biasio, 2008) and to produce a statistics of the cell’s
size, which may have important implications of the study of the air-sea interaction because it
can be linked to the structure of the MABL.
The map reconstructed in the range 4 km ÷ 20 km, reported in the left panel of Fig. 13,
clearly shows the pattern of the atmospheric gravity waves in its upper right part. The two
dimensional spectral analysis of this map yields the 2D spectrum shown in the right panel of
Fig. 13, where two directions are evidenced: that of the maximum energy, occurring at a peak
wavelength of 8350 m and an aliased direction of propagation of 296◦, and a secondary one,
due to the presence of different atmospheric gravity wave trains in the image, with a peak
wavelength of 16.7 km and a direction of 63◦.
These information may be used, as in Sikora et al. (1997), to estimate the vertical thickness of
the MABL.
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Fig. 12. Reconstructed map with only the cells produced by the wind. Left panel: whole map,
corresponding to Fig. 9. Right panel: a blow up of it.

4.3 Wind field extraction: choice of the wind aliased direction
The aliased wind orientation is taken as that corresponding to the most frequent mode of the
distribution of cell’s direction: in the example reported, the directions around Φ = 300◦ have
a frequency of 54%, whereas those around Φ = 60◦ a frequency of 46 %. These frequencies
may differ more in some case (70% to 30% or so), while in some other they can result very
similar making difficult the choice of the aliased direction. Their variability across the SAR
data set likely depends on the characteristics of the images.

4.4 Wind field extraction: dealiasing
The dealiasing technique takes advantage of the idea, formulated by Zecchetto et al. (1998) in
a case of convective turbulence, that the wind gustiness, modulating the mean wind speed,
produces patches of roughness characterized by an asymmetric distribution of energy along
the wind direction. The speed modulation acts inside the cells: higher backscatter is expected
at the leading edge of the patches, then decreasing towards the trailing edge, allowing the
wind direction dealiasing. This figure is coherent with the layout of the wind cells, organized
like “pearls on a string” (Etling & Brown, 1993), as well as with their inner structure (Zecchetto
& De Biasio, 2002).

4.5 Wind field extraction: wind speed computation
Once assessed the wind direction, the speed has been computed from the mean radar
backscatter of the selected cells using the CMOD5 model (Hersbach et al., 2007), an empirical
model converting the radar cross section at C-band to the wind speed, once the radar
incidence angle and the wind direction are known.

4.6 The resulting wind field
The wind field derived from the ASAR image of Fig. 9 is shown in the left panel of Fig. 14,
along with the contour plot of the wind speed in the right panel. The wind field is spatially
uneven because it has been computed over the detected cells. Where the wind is low, as at



Geoscience	and	Remote	Sensing,	New	Achievements278

Fig. 13. Map reconstruction in the spatial range 4 km ÷ 20 km. Left panel: the reconstructed
map. Right panel: the 2D power spectrum of the reconstructed map.

the lee side of eastern Crete, the spatial density of cells is low too and the wind vectors result
more sparse.
The SAR derived wind field provides very detailed information about the spatial structure of
the wind and an estimate of the wind much closer to coast than scatterometer, as the Fig. 15,
which reports the QuikSCAT wind field at 12.5 km of resolution (left panel) and the contour
plot of the wind speed (right panel) suggests.

Fig. 14. The wind field derived from the processing with CWT2 method of the ASAR image
of Fig. 9. Left panel: the wind field. Right panel: contour map of the wind speed.

Thus, SAR derived winds are an unique experimental tool for coastal wind study in the
mesoscale β and γ.

Fig. 15. The wind field from QuikSCAT in the area imaged by ASAR, taken 8 hours and 57
minutes later the ASAR pass time. Left panel: the wind field. Right panel: contour map of the
wind speed.

5. Conclusions

This chapter has introduced the satellite scatterometer and SAR, the two satellite radar sensors
which may be used to evaluate the wind fields over the sea. A third instrument, the radar
altimeter, able to provide only the wind speed over the satellite track, has not be treated
because it hardly can be used for mesoscale wind study.
Scatterometer is the most experienced sensor for the measure of the wind field, and its ability
to detect detailed features of the wind in the mesoscale is well known. The spatial resolution
it provides is sufficient for open sea applications, but insufficient for coastal wind studies,
since the data closest to coast are at least 25 km away. Furthermore, the temporal sampling at
middle latitudes, roughly two samples per day, is still insufficient for a suitable description of
the time evolution of the winds associated to the frontal passage or local cyclogenesis.
The SAR derived wind fields solve the problem of coverage close to coasts, providing very
resolute wind fields and permitting to infer the wind speed variability in these areas, as done
by Young et al. (2008). Concerning the time sampling provided by operative SARs, this is an
open question, the answer depending on many factors: the imaging capabilities of satellites
(Radarsat2 has an imaging capability of 28 minutes/orbit, Envisat ASAR 30 minute/orbit for
imaging modes and all orbit in the Global Monitoring Mode), the priorities of the different
SAR missions (SAR is used over land and over sea), the spatial resolution required. To
provide some number, the Envisat ASAR has an average revisit of seven days at the equator,
improving to nearly every five days at 45◦. With such a revisit time, only research applications
can be envisaged, as a monitoring of whatever atmospheric phenomenon would suffer for the
unsuitable time sampling. However, the constellations of satellites like the CosmoSkyMed
mission, will offer, in principle, a revisiting period of < 12 hours, approaching the threshold
of six hours considered the minimum time sampling to describe the evolution of the winds.
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Fig. 13. Map reconstruction in the spatial range 4 km ÷ 20 km. Left panel: the reconstructed
map. Right panel: the 2D power spectrum of the reconstructed map.

the lee side of eastern Crete, the spatial density of cells is low too and the wind vectors result
more sparse.
The SAR derived wind field provides very detailed information about the spatial structure of
the wind and an estimate of the wind much closer to coast than scatterometer, as the Fig. 15,
which reports the QuikSCAT wind field at 12.5 km of resolution (left panel) and the contour
plot of the wind speed (right panel) suggests.

Fig. 14. The wind field derived from the processing with CWT2 method of the ASAR image
of Fig. 9. Left panel: the wind field. Right panel: contour map of the wind speed.

Thus, SAR derived winds are an unique experimental tool for coastal wind study in the
mesoscale β and γ.

Fig. 15. The wind field from QuikSCAT in the area imaged by ASAR, taken 8 hours and 57
minutes later the ASAR pass time. Left panel: the wind field. Right panel: contour map of the
wind speed.

5. Conclusions

This chapter has introduced the satellite scatterometer and SAR, the two satellite radar sensors
which may be used to evaluate the wind fields over the sea. A third instrument, the radar
altimeter, able to provide only the wind speed over the satellite track, has not be treated
because it hardly can be used for mesoscale wind study.
Scatterometer is the most experienced sensor for the measure of the wind field, and its ability
to detect detailed features of the wind in the mesoscale is well known. The spatial resolution
it provides is sufficient for open sea applications, but insufficient for coastal wind studies,
since the data closest to coast are at least 25 km away. Furthermore, the temporal sampling at
middle latitudes, roughly two samples per day, is still insufficient for a suitable description of
the time evolution of the winds associated to the frontal passage or local cyclogenesis.
The SAR derived wind fields solve the problem of coverage close to coasts, providing very
resolute wind fields and permitting to infer the wind speed variability in these areas, as done
by Young et al. (2008). Concerning the time sampling provided by operative SARs, this is an
open question, the answer depending on many factors: the imaging capabilities of satellites
(Radarsat2 has an imaging capability of 28 minutes/orbit, Envisat ASAR 30 minute/orbit for
imaging modes and all orbit in the Global Monitoring Mode), the priorities of the different
SAR missions (SAR is used over land and over sea), the spatial resolution required. To
provide some number, the Envisat ASAR has an average revisit of seven days at the equator,
improving to nearly every five days at 45◦. With such a revisit time, only research applications
can be envisaged, as a monitoring of whatever atmospheric phenomenon would suffer for the
unsuitable time sampling. However, the constellations of satellites like the CosmoSkyMed
mission, will offer, in principle, a revisiting period of < 12 hours, approaching the threshold
of six hours considered the minimum time sampling to describe the evolution of the winds.
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Pandžić, K. & Likso, T. (2005). Eastern Adriatic typical wind field patterns and large-scale
atmospheric conditions, Int. J. of Climatology 25: 81–98.

Pickett, M. H., Tang, W., Rosenfeld, L. K. & Wash, C. H. (2003). QuikSCAT satellite
comparisons with nearshore buoy wind data off the U.S. west coast, J. of Atmos. and
Ocean. Tech. 20: 1869–1879.

Portabella, M. & Stoffelen, A. (2001). Rain detection and quality control of SeaWinds, J. of
Atmos. and Ocean. Tech. 18: 1171–1183.

Risien, C. M. & Chelton, D. B. (2008). A global climatology of surface wind and wind
stress fields from eight years of QuikSCAT scatterometer data, Journal of Phys. Ocean.
38(11): 2379–2413. (doi: 10.1175/2008JPO3881.1).

Ruti, P. M., Marullo, S., D’Ortenzio, F. & Tremant, M. (2008). Comparison of analyzed
and measured wind speeds in the perspective of oceanic simulation over the
Mediterranean basin: analysed, QuikSCAT and buoy data, J. of Marine Systems 70: 33–
48. (doi: 10,1016/j.jmarsys.2007.02.026).

Sikora, T., Young, G., Shirer, H. & Chapman, R. (1997). Estimating convective atmospheric
boundary layer depth from microwave radar imagery of the sea surface, J. Appl.
Meteorol. 36: 833–845.

Singh, R., Pal, P. K., Kishtawal, C. M. & Joshi, P. C. (2008). The impact of variational
assimilation of SSM/I and QuikSCAT satellite observations on the numerical
simulation of Indian ocean tropical cyclones, Weather and Forecasting 23: 460–476. (doi:
10.1175/2007WAF2007014.1).

Skamarock, W. C. (2004). Evaluating mesoscale NWP models using kinetic energy spectra,
Monthly Weather Review 132: 3019–3032.

Speranza, A., Accadia, C., Casaioli, M., Mariani, S., Monacelli, G., Inghilesi, R., Tartaglione,
N., Ruti, P. M., Carillo, A., Bargagli, A., Pisacane, G., Valentinotti, F. & Lavagnini, A.
(2004). POSEIDON: an integrated system for analysis and forecast of hydrological,
meteorological and surface marine fields in the Mediterranean area, Il Nuovo Cimento
27C: 329–345.

Vachon, P. & Dobson, F. (2000). Wind retrieval from Radarsat SAR images: selection of a
suitable C-Band HH polarization wind retrieval model, Canadian Journal of Remote
Sensing 24(4): 306 – 313.

Valenzuela, G. (1978). Theories for the interaction of electromagnetic and oceanic waves- A
review, Boundary Layer Meteorology 13: 61–85.

Yoshino, M. (1976). Local wind Bora, University of Tokio Press, Tokio, Japan.
Young, G., Sikora, T. & Winstead, N. (2008). Mesoscale near-surface wind speed

variability mapping with synthetic aperture radar, Sensors 8(11): 7012–7034. (doi:
10.3390/s8117012).

Zecchetto, S. & Cappa, C. (2001). The spatial structure of the Mediterranean Sea winds
revealed by ERS-1 scatterometer, Int. J. Remote Sensing 22(1): 45–70.

Zecchetto, S. & De Biasio, F. (2002). On shape, orientation and structure of atmospheric
cells inside wind rolls in SAR images, IEEE Trans. of Geoscience and Remote Sensing
40(10): 2257 – 2262.

Zecchetto, S. & De Biasio, F. (2007). Sea surface winds over the Mediterranean Basin from
satellite data (2000-04): meso- and local-scale features on annual and seasonal time
scales, J. Applied Meteor. and Climatology 46: 814–827.

Zecchetto, S. & De Biasio, F. (2008). A wavelet based technique for sea wind extraction
from SAR images, IEEE Trans. of Geoscience and Remote Sensing 46(10): 2983–2989.
(doi:10.1109/TGRS.2008.920967).

Zecchetto, S., Trivero, P., Fiscella, B. & Pavese, P. (1998). Wind stress structure in the unstable
marine surface layer detected by SAR, Boundary Layer Meteorol. 86: 1–28.

Ziv, B., Saaroni, H. & Alpert, P. (2004). The factors governing the summer regime of the eastern
Mediterranean, Int. J. of Climatology 24: 1859–1971.



Geoscience	and	Remote	Sensing,	New	Achievements284



Optical	and	Infrared	Modeling 285

Optical	and	Infrared	Modeling

Abdelaziz	Kallel

0

Optical and Infrared Modeling

Abdelaziz Kallel
Tartu Observatory

Estonia

1. Introduction

In order to understand the relationships between the vegetation features (namely amount and
structure) and the amount of sunlight reflected in the visible and near- to middle-infrared
spectral domains many empirical methods based on various vegetation indices (e.g., NDVI,
EVI) (Kallel et al., 2007), and physical approach namely based on radiative transfer (RT) the-
ory have been developed. In RT, two model types can be distinguished: (i) one-Dimensional
(1-D) models providing a (semi)analytical expression of the Bidirectional Reflectance Distri-
bution Function (BRDF) of canopy architecture, its scattering parameters, and scene geometry
(Gobron et al., 1997; Verhoef, 1984; 1998); (ii) 3-D models based on Monte Carlo simulations
of a large number of photons randomly propagating through a canopy (Gastellu-Etchegorry
et al., 1996; Lewis, 1999; North, 1996). Compared to 1-D models, such 3-D methods allow to
take into account canopy heterogeneity with high accuracy. However, they suffer from long
running times making their inversion difficult.
The RT theory was first proposed by Chandrasekhar (1950) to study radiation scattering in
conventional (i.e. rotationally invariant) media. Such an assumption could be sufficient to
model, for example, light scattering in the atmosphere, but appears rudimentary for mod-
eling the reflectance of leaves, or shoots, in a vegetation canopy. To extend the formulation
to such a case, many models are proposed. Among the 1-D model, one can cite SAIL (Ver-
hoef, 1984) that is among the most widely used in case of turbid (null size components) crops
canopies. The SAIL model allows to derive a non-isotropic BRDF considering two diffuse
fluxes (upward/downward flux) to model the multiple scattering of the radiant flux by the
vegetation elements. These fluxes are assumed to be semi-isotropic, which is only an approx-
imation that lead to reflectance underestimation (Pinty et al., 2004). As a solution, Verhoef
(1998) developed SAIL++ which is a 1-D model providing accurate reflectance estimation in
the turbid case. Indeed, this model divides the diffuses fluxes into 72-subfluxes, and turns
the SAIL equation system into a matrix-vector equation. Compared to 3-D models of RAMI 2
database in the turbid case (Pinty et al., 2004), SAIL++ gives accurate results.
Another solution to overcome the semi-isotropy assumption in the turbid case will be pre-
sented in this chapter, it is based on the coupling between SAIL and Adding method (Cooper
et al., 1982; Van de Hulst, 1980). For such a method, optical characteristics of canopy layers
such that reflectance and transmittance are directly defined and handled at the scale of the
vegetation layer (as operators). Their physical interpretation is hence easier. However, the
vegetation description is rather simplistic and the canopy internal geometry is represented
with low accuracy. Indeed, in order to retrieve the adding operators for each layer, Cooper
et al. (1982) did not take into account the high order interactions between light and vegetation
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which are very important as shown in (Pinty et al., 2004). In order to adapt the Adding method
to such a configuration, we need a more accurate estimation of the Adding scattering param-
eters. Since the Adding method operators are derived from the bidirectional reflectance and
transmittance of the considered layer, in this study we propose to introduce the SAIL canopy
description into the Adding formulation. The developed model is called AddingS.
Now, since the size of vegetation elements cannot be assumed null. Among others, Kuusk
(1985) proposed a correction allowing the extension of the RT models like SAIL and SAIL++
to the discrete case (non-null-size components) (Verhoef, 1998). This approach allows to take
into account the hot spot effect representing the bright area in the direction opposite to the di-
rection of a pointlike the light source. This effect is caused by the high probability of backscat-
tering which is proportional to the mean size of medium elements. Such an approach suffers
from a severe shortcoming: compared to the turbid case, it increases only the reflectance cre-
ated by the first collision of the radiation by leaves. As this increasing is not followed by
the decreasing of other fluxes, it leads to a violation of the energy conservation law (Kallel,
2007). Therefore, based on the Kuusk (1985) approach, we propose the adaptation of AddingS
to the discrete case. The extended model is called AddingSD. This model allows both to
conserve the energy and to take into account the hot spot effect between diffuse fluxes. As
AddingS/AddingSD are based on adding method then they need a long running time for
that in this study, we benefit from both the rapidity of the SAIL++ as well as the hot spot
modeling in the AddingSD and we propose a new other approach. This approach is based on
the traking of the flux created by the first photons collison by leaves. The analysis of this flux
will be done using AddingSD and the RT problem resolution will be based on SAIL++.
The chapter is divided up as follows. First, we present the theoretical background of our
models (Section 2). Then, we show model implementation (Section 3), and some validation
results (Section 4). Finally, we present our main conclusions and perspectives (Section 5).

2. Theoretical background

In this section, we will first present the models AddingS/AddingSD then we expose our
model based on flux decomposition.

2.1 AddingS/AddinSD modeling
The Adding method is based on the assumption that a vegetation layer receiving a radiation
flux from bottom or top, partially absorbs it and partially scatters it upward or downward,
independently of the other layers (Cooper et al., 1982; Van de Hulst, 1980). Thus, the rela-
tionships between fluxes are given by operators which allow the calculation of the output
flux density distribution as a function of the input flux density distribution. As the Adding
method vegetation layer operators depend on the bidirectional reflectance and transmittance,
we propose to derive them both in the turbid and the discrete case based on respectively SAIL
and the Kuusk definition of the Hot Spot.
In this section, we first present the Adding operator definition, and secondly the derivation of
the bidirectional reflectance and transmittance of a vegetation layer in both turbid and discrete
cases corresponding respectively to the operators of the models AddingS and AddingSD.

2.1.1 Adding operators reformulation in the continuous case
In this paragraph, we present a generalization of the Adding operators presented in (Cooper
et al., 1982) in the continuous case, dealing with radiance hemispherical distribution.

For a given medium having two parallel sides (top and bottom) receiving a source radiation
flux dEi(Ωi = (θi, ϕi)) (θi the zenithal angle and ϕi the azimuthal angle) provided within a
cone of solid angle dΩi = sin(θi)dθidϕi, produces elementary radiances at the top and the
bottom of the medium called respectively dLe(Ωi,Ωe) and dL′

e(Ωi,Ω′
e) in the directions Ωe =

(θe, ϕe) and Ω′
e = (θe′ , ϕe′ ), respectively.

So the BRDF, r, and the bidirectional transmittance distribution function (BTDF), t, are defined
respectively as follows:

r(Ωi → Ωe) =
πdLe(Ωi,Ωe)

dEi(Ωe)
=

πdLe(Ωi,Ωe)
Li(Ωi)cos(θi)dΩi

,

t(Ωi → Ωe′ ) =
πdL′

e(Ωi,Ωe′ )
dEi(Ωi)

=
πdL′

e(Ωi,Ω′
e)

Li(Ωi)cos(θi)dΩi
.

(1)

where Li is the radiance provided by the source.
So, we define the two scattering operators R and T , that give the outward radiance Le from
an incident radiance defined over the whole hemisphere Li:

R[Li](.) =
1
π

Over hemisphere︷︸︸︷∫

Π
r(Ωi → .)Li(Ωi)cos(θi)dΩi, (2)

T [Li](.) =
1
π

∫

Π
t(Ωi → .)Li(Ωi)cos(θi)dΩi. (3)

For two medium 1 and 2 such that the second one is above the first one, the top reflectance
operator for the canopy is given by (Verhoef, 1985):

Rt = Rt,2 + Tu,2 ◦ (I −Rt,1 ◦ Rb,2)
−1 ◦ Rt,1 ◦ Td,2. (4)

where Tu,2, Td,2 are respectively the upward and downward transmittances of the layer 2, Rt,1
and Rb,1 are the reflectances of respectively the top of layer 1 and the bottom of layer 2, and I
is the identity operator.
Finally, to be implemented such operators have to discretized. Thus, Kallel et al. (2008) pro-
pose a regular discretization of the zenithal angle θ and azimuthal angle ϕ into 20 and 10
intervals respectively. In this case, the reflectance and transmittance operators become matri-
ces and the ‘◦’ operator becomes matrix multiplication.

2.1.2 Turbid case: AddingS
For one vegetation layer, the top and bottom reflectance operators and the downward and
upward transmittance operators require the estimation of top and bottom bidirectional re-
flectances, the downward and upward bidirectional transmittance respectively, rt, rb, td and
tu. Now, assuming that the vegetation layer is formed by small and flat leaves with uniform
azimuthal distribution, the layer has the same response when observed from the top or the
bottom. rb = rt and tu = td. Moreover, two kinds of transmittances can be distinguished:
those provided from the extinction of the incident flux, and those provided by the scattering
of the incident flux by the vegetation components. So, we called them respectively t.,s and t.,d,
where . equals d (downward) or u (upward).
The SAIL model allows the BRDF (rt) and the BTDF by scattering (td,d) derivation of a vege-
tation layer. Moreover, Kallel et al. (2008) showed that

td,s(Ωi → Ωe′ ) =
τssδ(θ′e = θi)δ(ϕ′

e = ϕi)
cos(θi)sin(θi)

, (5)
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which are very important as shown in (Pinty et al., 2004). In order to adapt the Adding method
to such a configuration, we need a more accurate estimation of the Adding scattering param-
eters. Since the Adding method operators are derived from the bidirectional reflectance and
transmittance of the considered layer, in this study we propose to introduce the SAIL canopy
description into the Adding formulation. The developed model is called AddingS.
Now, since the size of vegetation elements cannot be assumed null. Among others, Kuusk
(1985) proposed a correction allowing the extension of the RT models like SAIL and SAIL++
to the discrete case (non-null-size components) (Verhoef, 1998). This approach allows to take
into account the hot spot effect representing the bright area in the direction opposite to the di-
rection of a pointlike the light source. This effect is caused by the high probability of backscat-
tering which is proportional to the mean size of medium elements. Such an approach suffers
from a severe shortcoming: compared to the turbid case, it increases only the reflectance cre-
ated by the first collision of the radiation by leaves. As this increasing is not followed by
the decreasing of other fluxes, it leads to a violation of the energy conservation law (Kallel,
2007). Therefore, based on the Kuusk (1985) approach, we propose the adaptation of AddingS
to the discrete case. The extended model is called AddingSD. This model allows both to
conserve the energy and to take into account the hot spot effect between diffuse fluxes. As
AddingS/AddingSD are based on adding method then they need a long running time for
that in this study, we benefit from both the rapidity of the SAIL++ as well as the hot spot
modeling in the AddingSD and we propose a new other approach. This approach is based on
the traking of the flux created by the first photons collison by leaves. The analysis of this flux
will be done using AddingSD and the RT problem resolution will be based on SAIL++.
The chapter is divided up as follows. First, we present the theoretical background of our
models (Section 2). Then, we show model implementation (Section 3), and some validation
results (Section 4). Finally, we present our main conclusions and perspectives (Section 5).

2. Theoretical background

In this section, we will first present the models AddingS/AddingSD then we expose our
model based on flux decomposition.

2.1 AddingS/AddinSD modeling
The Adding method is based on the assumption that a vegetation layer receiving a radiation
flux from bottom or top, partially absorbs it and partially scatters it upward or downward,
independently of the other layers (Cooper et al., 1982; Van de Hulst, 1980). Thus, the rela-
tionships between fluxes are given by operators which allow the calculation of the output
flux density distribution as a function of the input flux density distribution. As the Adding
method vegetation layer operators depend on the bidirectional reflectance and transmittance,
we propose to derive them both in the turbid and the discrete case based on respectively SAIL
and the Kuusk definition of the Hot Spot.
In this section, we first present the Adding operator definition, and secondly the derivation of
the bidirectional reflectance and transmittance of a vegetation layer in both turbid and discrete
cases corresponding respectively to the operators of the models AddingS and AddingSD.

2.1.1 Adding operators reformulation in the continuous case
In this paragraph, we present a generalization of the Adding operators presented in (Cooper
et al., 1982) in the continuous case, dealing with radiance hemispherical distribution.

For a given medium having two parallel sides (top and bottom) receiving a source radiation
flux dEi(Ωi = (θi, ϕi)) (θi the zenithal angle and ϕi the azimuthal angle) provided within a
cone of solid angle dΩi = sin(θi)dθidϕi, produces elementary radiances at the top and the
bottom of the medium called respectively dLe(Ωi,Ωe) and dL′

e(Ωi,Ω′
e) in the directions Ωe =

(θe, ϕe) and Ω′
e = (θe′ , ϕe′ ), respectively.

So the BRDF, r, and the bidirectional transmittance distribution function (BTDF), t, are defined
respectively as follows:

r(Ωi → Ωe) =
πdLe(Ωi,Ωe)

dEi(Ωe)
=

πdLe(Ωi,Ωe)
Li(Ωi)cos(θi)dΩi

,

t(Ωi → Ωe′ ) =
πdL′

e(Ωi,Ωe′ )
dEi(Ωi)

=
πdL′

e(Ωi,Ω′
e)

Li(Ωi)cos(θi)dΩi
.

(1)

where Li is the radiance provided by the source.
So, we define the two scattering operators R and T , that give the outward radiance Le from
an incident radiance defined over the whole hemisphere Li:

R[Li](.) =
1
π

Over hemisphere︷︸︸︷∫

Π
r(Ωi → .)Li(Ωi)cos(θi)dΩi, (2)

T [Li](.) =
1
π

∫

Π
t(Ωi → .)Li(Ωi)cos(θi)dΩi. (3)

For two medium 1 and 2 such that the second one is above the first one, the top reflectance
operator for the canopy is given by (Verhoef, 1985):

Rt = Rt,2 + Tu,2 ◦ (I −Rt,1 ◦ Rb,2)
−1 ◦ Rt,1 ◦ Td,2. (4)

where Tu,2, Td,2 are respectively the upward and downward transmittances of the layer 2, Rt,1
and Rb,1 are the reflectances of respectively the top of layer 1 and the bottom of layer 2, and I
is the identity operator.
Finally, to be implemented such operators have to discretized. Thus, Kallel et al. (2008) pro-
pose a regular discretization of the zenithal angle θ and azimuthal angle ϕ into 20 and 10
intervals respectively. In this case, the reflectance and transmittance operators become matri-
ces and the ‘◦’ operator becomes matrix multiplication.

2.1.2 Turbid case: AddingS
For one vegetation layer, the top and bottom reflectance operators and the downward and
upward transmittance operators require the estimation of top and bottom bidirectional re-
flectances, the downward and upward bidirectional transmittance respectively, rt, rb, td and
tu. Now, assuming that the vegetation layer is formed by small and flat leaves with uniform
azimuthal distribution, the layer has the same response when observed from the top or the
bottom. rb = rt and tu = td. Moreover, two kinds of transmittances can be distinguished:
those provided from the extinction of the incident flux, and those provided by the scattering
of the incident flux by the vegetation components. So, we called them respectively t.,s and t.,d,
where . equals d (downward) or u (upward).
The SAIL model allows the BRDF (rt) and the BTDF by scattering (td,d) derivation of a vege-
tation layer. Moreover, Kallel et al. (2008) showed that

td,s(Ωi → Ωe′ ) =
τssδ(θ′e = θi)δ(ϕ′

e = ϕi)
cos(θi)sin(θi)

, (5)
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with τss the direct transmittance given by SAIL.
As such a model is based on SAIL which assumes that the diffuse fluxes are semi-isotropic,
then it is only correct for thin layers (LAI < 10−2) where the diffuse fluxes contribution to the
BRDF/BTDF are small. Therefore, to estimate the reflectance of a thick layer and overcome the
semi-isotropy assumption, we propose to divide the thick layer into thin sublayers with LAI
value, Lmin = 10−3. The whole layer reflectance operator is then derived with good accuracy
using the adding method Eq. (4) as it allows to model the diffuse flux anisotropy.

2.1.3 Discrete case: AddingSD
In the discrete case, the size of the leaves is no longer assumed null and there is a non-
negligible correlation between the incident flux path and the diffused flux: the hot spot effect
Kuusk (1985); Suits (1972). Until now, such an effect was taken into account in 1-D model
only for the single scattering contribution from soil and foliage that is increased. Now, as the
diffuse fluxes are not decreased consequently, the radiative budget is not checked. Now, the
hot spot effect occurs also for diffuse fluxes (whose contribution increases with the vegetation
depth). We call such a phenomena the multi hot spot effect. In this section, having recall
Kuusk’ model Kuusk (1985), we present our approach.

2.1.3.1 Kuusk’ model
For a layer located at in altitude between -1 and 0, the single scattering reflectance (ρ(1)

HS) by a
leaf M at depth z, for the source and observation directions being respectively Ωs and Ωo, is
(Verhoef (1998), pp 150-159):

ρ
(1)
HS(z) = Pso(Ωs,Ωo,z)

w(Ωs,Ωo)
π

, (6)

where w is the bidirectional scattering parameter under the vegetation (Verhoef, 1984) and
Pso(Ωs,Ωo,z) is the conjoint probability that the incident flux reaches M without any collision
with other canopy components and that, after scattering by M, it also reaches the top of the
canopy without collisions Kuusk (1985):

Po(Ωs,Ωo,z) = exp
[
−

∫ 0

z
{k + K −

√
Kk exp[(z − x)b]}dx

]
,

= exp[(K + k)z]CHS(Ωs,Ωo,z),
(7)

with k, K the extinction respectively in source and observation directions and CHS the correc-
tion factor:

CHS(Ωs,Ωo,z) = exp

[√
kK
b

[1 − exp(bz)]

]
, (8)

where b is a function of the vegetation features, the different solid angles and the hot spot
factor dl defined as the ratio between the leaf radius and the layer height Kuusk (1985); Pinty
et al. (2004).

2.1.3.2 Multi hot spot model
Firstly recall that the energy conservation is insured by adding model whatever be the foliage
area volume density (FAVD), ul (cf. Appendix B) or the probability of finding foliage Pχ. In
this subsection, we first show that the first order hot spot corresponds to the use of a fictive
equivalent Pχ, called Pχ,HS.

For a vegetation layer composed of two layers: a thin layer 2 above a layer 1, located re-
spectively in [z0,0] and [−1,z0], let Pso(Ωs,Ωo,z0,z) denotes the joint probability that the two
fluxes do not collide with leaves for z′ ∈ [z0,0] (only in the layer 2). Its expression is obtained
from Eq. (7) by changing the integral endpoints [z,0] by [z0,0]:

Pso(Ωs,Ωo,z0,z) = exp[(K + k)z0]CHS(Ωs,Ωo,z0,z),

with CHS the generalized correction factor:

CHS(Ωs,Ωo,z0,z) = exp

[√
kK
b

(
exp[b(z − z0)] − exp[bz]

)]
.

The conditional probability definition that the flux in the direction Ωo does not collide leaves
given the same property for the incident flux is:

Po(Ωo|Ωs,z0,z) =
Pso(Ωs,Ωo,z0,z)

Ps(Ωs,z0)
,

where Ps(Ωs,z0) represents the prior probability of gap in the direction Ωs. Since Ps(Ωs,z0) =
exp[kz0], then:

Po(Ωo|Ωs,z0,z) = exp[Kz0]CHS(Ωs,Ωo,z0,z).

In the case of the direct flux, the first order contribution of a leaf M(z) in the layer 1 to the
BRDF is:

ρ
(1)
HS(z) = exp[kz0]︸ ︷︷ ︸

Ps(Ωs ,z0)

ρ
(1)
HS(z − z0)︸ ︷︷ ︸

layer 1

exp{

KHS(Ωo |Ωs ,z0,z)z0︷ ︸︸ ︷
Kz0 + log[CHS(Ωs,Ωo,z0,z)]}︸ ︷︷ ︸

Po(Ωo |Ωs ,z0,z)

. (9)

In Eq. (9), ρ
(1)
HS(z) can be interpreted as follows: reaching the top of the canopy the direct flux

is partially extinguished in the layer 2 by the factor Ps(Ωs,z0). Then, reaching the interface be-

tween the two layers, its amplitude will be determined according to ρ
(1)
HS(z − z0) that depends

on the layer 1 features. Finally, KHS(Ωo|Ωs,z0,z) can be viewed as the ‘effective’ extinction
related to the conditional probability of gap Po(Ωo|Ωs,z0,z) of the layer 2. Indeed, KHS < K
means that the probability of collision with leaves (or probability of finding leaves, Pχ) for the

exiting flux that it will be noted L(1)
o,HS, is decreased. Since the extinction depends linearly on

Pχ, one can deem that Pχ is locally decreased by the factor γ = KHS
K :

Pχ,HS(Ωo|Ωs,z0,z) =
KHS(Ωo|Ωs,z0,z)

K
Pχ. (10)

The physical interpretation of Pχ,HS is as follows. Assume that the probability of gap (for a
given flux) is increased in the layer 2. For this flux, the ‘effective’ probability of being collided
by vegetation when crossing the layer is reduced accordingly. Obviously, the fist collision
between the flux and the vegetation is reduced according to the same probabilty of finding
vegetation or similarly the same density of vegetation. Now, since the layer 2 is thin, its corre-
sponding reflectance and diffuse transmittance depend mainly on the first interaction. So, just
an approximation of the multiple scattered fluxes is sufficient to derive the layer 2 scattering
terms with good accuracy. For that, the derivation of all diffuse fluxes can be done using this
‘effective’ probability of finding foliage (Pχ,HS in our case). Moreover, for such a modeling, the
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with τss the direct transmittance given by SAIL.
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factor dl defined as the ratio between the leaf radius and the layer height Kuusk (1985); Pinty
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area volume density (FAVD), ul (cf. Appendix B) or the probability of finding foliage Pχ. In
this subsection, we first show that the first order hot spot corresponds to the use of a fictive
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spectively in [z0,0] and [−1,z0], let Pso(Ωs,Ωo,z0,z) denotes the joint probability that the two
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tween the two layers, its amplitude will be determined according to ρ
(1)
HS(z − z0) that depends

on the layer 1 features. Finally, KHS(Ωo|Ωs,z0,z) can be viewed as the ‘effective’ extinction
related to the conditional probability of gap Po(Ωo|Ωs,z0,z) of the layer 2. Indeed, KHS < K
means that the probability of collision with leaves (or probability of finding leaves, Pχ) for the

exiting flux that it will be noted L(1)
o,HS, is decreased. Since the extinction depends linearly on

Pχ, one can deem that Pχ is locally decreased by the factor γ = KHS
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The physical interpretation of Pχ,HS is as follows. Assume that the probability of gap (for a
given flux) is increased in the layer 2. For this flux, the ‘effective’ probability of being collided
by vegetation when crossing the layer is reduced accordingly. Obviously, the fist collision
between the flux and the vegetation is reduced according to the same probabilty of finding
vegetation or similarly the same density of vegetation. Now, since the layer 2 is thin, its corre-
sponding reflectance and diffuse transmittance depend mainly on the first interaction. So, just
an approximation of the multiple scattered fluxes is sufficient to derive the layer 2 scattering
terms with good accuracy. For that, the derivation of all diffuse fluxes can be done using this
‘effective’ probability of finding foliage (Pχ,HS in our case). Moreover, for such a modeling, the
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interactions of the considered flux and the layer 2 components (transmittance by extinction,
reflectance and diffuse transmittance) are derived using exactly the same probability value
(Pχ,HS), which is physically consistent and thus leads to the conservation of the energy of this
flux. Furthermore, by doing the same processing for all fluxes exiting the layer 1 in direction
of the layer 2, the energy of all fluxes is conserved and so the energy is conserved in the system
composed by the two vegetation layers.

The layer 2 reflectance and diffuse transmittance of the flux L(1)
o,HS, respectively called

rb,2,HS(z,Ωo → .) and td,2,HS(z,Ωo → .), have therefore to be estimated using Pχ,HS rather
than the initial Pχ. The first order hot spot effect can then be viewed as a local reduction of
the layer 2 probability of finding leaves. The layer 2 operators are derived accordingly, and
the two layer reflectance operator is obtained using Eq. (4). In summary, given a vegetation
layer, its corresponding reflectance is computed dividing it into NHS thin sublayers with a
value of LAI, LHS = 3 × 10−2 (LHS is higher than the elementary sublayer LAI corresponding
to AddingS model concatenation, Lmin = 10−3) and iteratively adding a new sublayer to the
current ‘stack’ of sublayers (from 1 to NHS).
More precisely, beginning from a thin layer, where the neglecting of the hot spot effect appears
reasonable, thin layers are added, one after one, to build up a ‘system’ taking into account
the whole hot spot effect (as well as conserving the energy). The contribution of each new
sublayer 2 to the high order hot spot effect is computed as follows. The flux reaching the top
of the layer 2 is scattered many times before reaching the interface between the two layers
where it is considered again as a direct flux (according to the adding method). In layer 1,
the first order (direct flux case) hot spot computation is therefore valid. Adding iteratively
the thin layers and the contribution of their diffuse fluxes, the hot spot effect between all the
diffuse fluxes is taken into account.
Finally, for more information about the implementation of the models AddingS/AddingSD,
readers are invited to read the article (Kallel et al., 2008).

2.2 Virtual flux decomposition
In this section, we propose an alternative to AddingSD that is simpler, conserves the energy
and based on effective vegetation density too but does not take into account the high order hot
spot effect. Moreover, the proposed approach is an extension to the discrete case of SAIL++,
that we provide an overview in Appendix A. To do the extension, we study the collision of
direct fluxes with vegetation in the discrete homogeneous medium case. The energy will be
conserved by increasing the flux created by first collision and decreasing the flux created by
this flux scattering.

2.2.1 Derivation of L1,n
+

Figure 1 shows two points M(x,y,z) and N(x′,y′, t) in a vegetation layer assumed be a homo-
geneous discrete medium such that t < z. The elementary volume at M is viewed from N at an
elementary solid angle dΩ with Ω = (θ, ϕ). A direct flux (Es(0)) present above the vegetation
layer having direction Ωs = (θs,0) passes through the vegetation from the top to N without a
collision. By assuming a constant extinction k along the path, Es at altitude t is

Es(t) = Es(0)exp(kt). (11)

Then the light is scattered in an elementary volume at N with an elementary thickness dt.
Thus scattered radiance in the direction dΩ called (dL1

+(N,Ω)) is

dL1
+(N,Ω) = Es(t)π−1w(Ωs → Ω)dt. (12)
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Fig. 1. A vegetation layer located from altitude 0 to −H and assumed a discrete medium. Two
point M(x,y,z) and N(x′,y′,z) are located in the layer. The elementary volume at M is viewed
from N under an elementary solid angle (dΩ) with a polar angle θ. A direct flux with zenith
angle θs collides with vegetation in an elementary volume at point N, is then reflected in the
solid angle dΩ and reaches point M without collision. The downward and upward paths are
correlated from altitude z to t as shown by the gray triangle linking the two paths.

dL1
+(N,Ω) travels from N to M without collision. Therefore, by assuming a constant extinc-

tion κ along the path and without taking into account the dependency between paths, the
radiance reaching M called dL1∗

+ (N → M,Ω) is

dL1∗
+ (N → M,Ω) = dL1

+(N,Ω)exp[κ(t − z)],
= Es(0)exp[(k + κ)(t − z)]exp(kz)π−1w(Ωs → Ω)dt.

(13)

Since the medium is assumed discrete, the hot spot effect representing the dependency be-
tween downward direct fluxes and diffuse fluxes at N has to be taken into account from depth
t to z. Using Kuusk’s model [1985], the radiance reaching M called dL1

+(N → M,Ω) is

dL1
+(N → M,Ω) = dL1∗

+ (N → M,Ω)exp

[√
kκ

b
(
1 − exp[−b(z − t)]

)]
,

= Es(0)exp[(k + κ)(t − z)]exp

[√
kκ

b
(
1 − exp[−b(z − t)]

)]

×exp(kz)π−1w(Ωs → Ω)dt.

(14)

Eq. (14) is the foundation of our model. However, since it has a complex expression, in
particular in the exponential term corresponding to the hot spot correction, there is no linearity
versus z and t enabling a simple solution based on differentiel equations as those of SAIL++
[cf. Eqs. 85]. For that, we propose to apply the Taylor series decomposition to this term

exp

[√
kκ

b
(
1 − exp[−b(z − t)]

)
]

= exp

[√
kκ

b

]
∞

∑
n=0

(−1)n(kκ)n/2

n!bn exp[nb(t − z)]. (15)
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interactions of the considered flux and the layer 2 components (transmittance by extinction,
reflectance and diffuse transmittance) are derived using exactly the same probability value
(Pχ,HS), which is physically consistent and thus leads to the conservation of the energy of this
flux. Furthermore, by doing the same processing for all fluxes exiting the layer 1 in direction
of the layer 2, the energy of all fluxes is conserved and so the energy is conserved in the system
composed by the two vegetation layers.

The layer 2 reflectance and diffuse transmittance of the flux L(1)
o,HS, respectively called

rb,2,HS(z,Ωo → .) and td,2,HS(z,Ωo → .), have therefore to be estimated using Pχ,HS rather
than the initial Pχ. The first order hot spot effect can then be viewed as a local reduction of
the layer 2 probability of finding leaves. The layer 2 operators are derived accordingly, and
the two layer reflectance operator is obtained using Eq. (4). In summary, given a vegetation
layer, its corresponding reflectance is computed dividing it into NHS thin sublayers with a
value of LAI, LHS = 3 × 10−2 (LHS is higher than the elementary sublayer LAI corresponding
to AddingS model concatenation, Lmin = 10−3) and iteratively adding a new sublayer to the
current ‘stack’ of sublayers (from 1 to NHS).
More precisely, beginning from a thin layer, where the neglecting of the hot spot effect appears
reasonable, thin layers are added, one after one, to build up a ‘system’ taking into account
the whole hot spot effect (as well as conserving the energy). The contribution of each new
sublayer 2 to the high order hot spot effect is computed as follows. The flux reaching the top
of the layer 2 is scattered many times before reaching the interface between the two layers
where it is considered again as a direct flux (according to the adding method). In layer 1,
the first order (direct flux case) hot spot computation is therefore valid. Adding iteratively
the thin layers and the contribution of their diffuse fluxes, the hot spot effect between all the
diffuse fluxes is taken into account.
Finally, for more information about the implementation of the models AddingS/AddingSD,
readers are invited to read the article (Kallel et al., 2008).

2.2 Virtual flux decomposition
In this section, we propose an alternative to AddingSD that is simpler, conserves the energy
and based on effective vegetation density too but does not take into account the high order hot
spot effect. Moreover, the proposed approach is an extension to the discrete case of SAIL++,
that we provide an overview in Appendix A. To do the extension, we study the collision of
direct fluxes with vegetation in the discrete homogeneous medium case. The energy will be
conserved by increasing the flux created by first collision and decreasing the flux created by
this flux scattering.

2.2.1 Derivation of L1,n
+

Figure 1 shows two points M(x,y,z) and N(x′,y′, t) in a vegetation layer assumed be a homo-
geneous discrete medium such that t < z. The elementary volume at M is viewed from N at an
elementary solid angle dΩ with Ω = (θ, ϕ). A direct flux (Es(0)) present above the vegetation
layer having direction Ωs = (θs,0) passes through the vegetation from the top to N without a
collision. By assuming a constant extinction k along the path, Es at altitude t is

Es(t) = Es(0)exp(kt). (11)

Then the light is scattered in an elementary volume at N with an elementary thickness dt.
Thus scattered radiance in the direction dΩ called (dL1

+(N,Ω)) is

dL1
+(N,Ω) = Es(t)π−1w(Ωs → Ω)dt. (12)
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Fig. 1. A vegetation layer located from altitude 0 to −H and assumed a discrete medium. Two
point M(x,y,z) and N(x′,y′,z) are located in the layer. The elementary volume at M is viewed
from N under an elementary solid angle (dΩ) with a polar angle θ. A direct flux with zenith
angle θs collides with vegetation in an elementary volume at point N, is then reflected in the
solid angle dΩ and reaches point M without collision. The downward and upward paths are
correlated from altitude z to t as shown by the gray triangle linking the two paths.
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tion κ along the path and without taking into account the dependency between paths, the
radiance reaching M called dL1∗
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+ (N → M,Ω) = dL1
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Since the medium is assumed discrete, the hot spot effect representing the dependency be-
tween downward direct fluxes and diffuse fluxes at N has to be taken into account from depth
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Eq. (14) is the foundation of our model. However, since it has a complex expression, in
particular in the exponential term corresponding to the hot spot correction, there is no linearity
versus z and t enabling a simple solution based on differentiel equations as those of SAIL++
[cf. Eqs. 85]. For that, we propose to apply the Taylor series decomposition to this term
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Therefore, Eq. (14) can be written as follows,

dL1
+(N → M,Ω) =

∞

∑
n=0

(−1)n AndL1,n
+ (N → M,Ω), (16)

where

dL1,n
+ (N → M,Ω) = Es(0)exp[(k + κn)(t − z)] × exp(kz)π−1w(Ωs → Ω)dt,

An =
(kκ)n/2

n!bn exp

[√
kκ

b

]
,

κn = κ + nb.

(17)

As the vegetation is homogeneous, then dL1
+(N → M,Ω) can be written simply as dL1

+(t →
z,Ω). Thus, L1

+(z,Ω) is obtained by integration of dL1
+ over the depth [−H,z]

L1
+(z,Ω) =

∫ z

t=−H
dL1

+(t → z,Ω). (18)

Based on (16), L1
+ can be written as

L1
+(z,Ω) =

+∞

∑
n=0

(−1)n AnL1,n
+ (z,Ω), (19)

where

L1,n
+ (z,Ω) =

∫ z

−H
Es(0)exp[(k + κ + nb)(t − z)]exp(kz)π−1w(Ωs → Ω)dt,

= Es(0)
1 − exp[−(k + κ + nb)(H + z)]

k + κ + nb
exp(kz)π−1w(Ωs → Ω).

(20)

2.2.2 Application of the effective vegetation density approach
Here, we will try to extend the reformulated SAIL++ equation (cf. Appendix A.3) to the dis-
crete case. Thus, as shown in Section 2.1.3, the hot spot effect will be treated as an increased
posterior probability of gap which, in turn, results from a reduction in vegetation density.
Then, it was suggested the use of the concept ‘effective vegetation density’ to describe the
phenomenon. In this subsection, we propose to derive this density for L1,n

+ , ∀n ∈ N, and to
use it further to derive the equations of fluxes created by L1,n

+ scattering. Moreover, the same
effective density using leads to conserve energy (as explained in Section 2.1.3).
In Eqs. (13) (17), the difference between dL1∗

+ and dL1,n
+ is the value of the extinction in the

direction Ω (κ and κn respectively). Note that ∀n > 0, κn > κ, then dL1,n
+ decreases faster than

dL1
+.

According to our approach described in Section A, the variation in the extinction factor is
linked to the variation of the collision probability locally around M. In other words, a decrease
in the probability of finding foliage at M decreases Pχ, accordingly (cf. Appendix B). Now,
according to (77) and (99)

κ = dLPχ(M)κo
κn = dLPχ,n(M)κo

}
⇒ Pχ,n(M) =

κn

κ
Pχ(M), (21)

with Pχ,n(M) the a posteriori probability of finding vegetation at M for the virtual radiance
dL1,n

+ , and κ0 the normalized extinction factor [as explained in Eq. (77), it is independent on
vegetation density]. We will use this notation in the following for SAIL++ scattering param-
eters. For each scattering parameter X, one can define the corresponding normalized one X0
according to Eq. (77).
As we can see in Eqs. (21), Pχ,n(M) does not depend on M. Thus, it will be simply called Pχ,n.
Then, based on L1

+ differential equation derivation [cf. Eq. (89)] and replacing κ by κn, we
obtain,

dL1,n
+ (z,Ω)

dz
= [s ◦ Es(z,Ωs)](Ω) − κnL1,n

+ (z,Ω) = [s ◦ Es(z,Ωs)](Ω) − dLPχ,nκ0L1,n
+ (z,Ω),

= [s ◦ Es(z,Ωs)](Ω) − dLPχ,n[k0 ◦ L1,n
+ (z)](Ω),

(22)
where k0 is the normalized scattering term corresponding to k [cf. Eq. (80)].
It leads to the following important result linking the differentiation of L1

+ to (L1,n
+ )n∈N:

dL1
+(z,Ω)
dz

=

d

{
+∞

∑
n=0

(−1)n AnL1,n
+ (z,Ω)

}

dz
,

=
+∞

∑
n=0

(−1)n An
{
[s ◦ Es(z,Ωs)](Ω) − dLPχ,n[k0 ◦ L1,n

+ (z)](Ω)
}

,

= [s ◦ Es(z,Ωs)](Ω)

=1︷ ︸︸ ︷
+∞

∑
n=0

(−1)n An −dL

+∞

∑
n=0

(−1)n AnPχ,n[k0 ◦ L1,n
+ (z)](Ω),

= [s ◦ Es(z,Ωs)](Ω) − dL

+∞

∑
n=0

(−1)n AnPχ,n[k0 ◦ L1,n
+ (z)](Ω).

(23)

Thus, the radiance distributions created by dL1,n
+ scattering depend on Pχ,n rather than Pχ. As

explained in Appendix A.3, these radiances are the downward diffuse radiance distribution
(L−), upward higher order diffuse radiance distribution (L∞

+), upward radiance in observation
direction (E+

o ) and downward radiance in observation direction (E−
o ). Note that, the mathe-

matical validation, in term of global flux estimation, is explained in Subsection 2.2.3 and then
shown in Appendix C.
Note that, similar to L1

+, the differentiation of E+
o that depends only on Es is

dE+
o (z,Ωo)

dz
= wEs(z,Ωs) − dL

+∞

∑
n=0

(−1)n AnPχ,nK0E+,n
0 (z,Ωo), (24)

with Ωo the Es direction, K the extinction factor in the direction Ωo and

E+,n
o (z,Ωo) = Es(0)

1 − exp[−(k + K + nb)(H + z)]
k + K + nb

exp(kz)w(Ωs → Ωo). (25)

As in classical models, there is no need to use Eq. (24). We merely assume, as in the turbid
case, that

dE+
0 (z,Ωo)

dz
= wEs(z,Ωs) − KE+

0 (z,Ωo), (26)
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Therefore, Eq. (14) can be written as follows,

dL1
+(N → M,Ω) =

∞

∑
n=0

(−1)n AndL1,n
+ (N → M,Ω), (16)

where

dL1,n
+ (N → M,Ω) = Es(0)exp[(k + κn)(t − z)] × exp(kz)π−1w(Ωs → Ω)dt,

An =
(kκ)n/2

n!bn exp

[√
kκ

b

]
,

κn = κ + nb.

(17)

As the vegetation is homogeneous, then dL1
+(N → M,Ω) can be written simply as dL1

+(t →
z,Ω). Thus, L1

+(z,Ω) is obtained by integration of dL1
+ over the depth [−H,z]

L1
+(z,Ω) =

∫ z

t=−H
dL1

+(t → z,Ω). (18)

Based on (16), L1
+ can be written as

L1
+(z,Ω) =

+∞

∑
n=0

(−1)n AnL1,n
+ (z,Ω), (19)

where

L1,n
+ (z,Ω) =

∫ z

−H
Es(0)exp[(k + κ + nb)(t − z)]exp(kz)π−1w(Ωs → Ω)dt,

= Es(0)
1 − exp[−(k + κ + nb)(H + z)]

k + κ + nb
exp(kz)π−1w(Ωs → Ω).

(20)

2.2.2 Application of the effective vegetation density approach
Here, we will try to extend the reformulated SAIL++ equation (cf. Appendix A.3) to the dis-
crete case. Thus, as shown in Section 2.1.3, the hot spot effect will be treated as an increased
posterior probability of gap which, in turn, results from a reduction in vegetation density.
Then, it was suggested the use of the concept ‘effective vegetation density’ to describe the
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+ , ∀n ∈ N, and to
use it further to derive the equations of fluxes created by L1,n

+ scattering. Moreover, the same
effective density using leads to conserve energy (as explained in Section 2.1.3).
In Eqs. (13) (17), the difference between dL1∗

+ and dL1,n
+ is the value of the extinction in the

direction Ω (κ and κn respectively). Note that ∀n > 0, κn > κ, then dL1,n
+ decreases faster than

dL1
+.

According to our approach described in Section A, the variation in the extinction factor is
linked to the variation of the collision probability locally around M. In other words, a decrease
in the probability of finding foliage at M decreases Pχ, accordingly (cf. Appendix B). Now,
according to (77) and (99)

κ = dLPχ(M)κo
κn = dLPχ,n(M)κo

}
⇒ Pχ,n(M) =

κn

κ
Pχ(M), (21)

with Pχ,n(M) the a posteriori probability of finding vegetation at M for the virtual radiance
dL1,n

+ , and κ0 the normalized extinction factor [as explained in Eq. (77), it is independent on
vegetation density]. We will use this notation in the following for SAIL++ scattering param-
eters. For each scattering parameter X, one can define the corresponding normalized one X0
according to Eq. (77).
As we can see in Eqs. (21), Pχ,n(M) does not depend on M. Thus, it will be simply called Pχ,n.
Then, based on L1

+ differential equation derivation [cf. Eq. (89)] and replacing κ by κn, we
obtain,

dL1,n
+ (z,Ω)

dz
= [s ◦ Es(z,Ωs)](Ω) − κnL1,n

+ (z,Ω) = [s ◦ Es(z,Ωs)](Ω) − dLPχ,nκ0L1,n
+ (z,Ω),

= [s ◦ Es(z,Ωs)](Ω) − dLPχ,n[k0 ◦ L1,n
+ (z)](Ω),

(22)
where k0 is the normalized scattering term corresponding to k [cf. Eq. (80)].
It leads to the following important result linking the differentiation of L1

+ to (L1,n
+ )n∈N:
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d

{
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(−1)n AnL1,n
+ (z,Ω)

}
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,

=
+∞

∑
n=0

(−1)n An
{
[s ◦ Es(z,Ωs)](Ω) − dLPχ,n[k0 ◦ L1,n

+ (z)](Ω)
}

,

= [s ◦ Es(z,Ωs)](Ω)

=1︷ ︸︸ ︷
+∞

∑
n=0

(−1)n An −dL

+∞

∑
n=0

(−1)n AnPχ,n[k0 ◦ L1,n
+ (z)](Ω),

= [s ◦ Es(z,Ωs)](Ω) − dL

+∞

∑
n=0

(−1)n AnPχ,n[k0 ◦ L1,n
+ (z)](Ω).

(23)

Thus, the radiance distributions created by dL1,n
+ scattering depend on Pχ,n rather than Pχ. As

explained in Appendix A.3, these radiances are the downward diffuse radiance distribution
(L−), upward higher order diffuse radiance distribution (L∞

+), upward radiance in observation
direction (E+

o ) and downward radiance in observation direction (E−
o ). Note that, the mathe-

matical validation, in term of global flux estimation, is explained in Subsection 2.2.3 and then
shown in Appendix C.
Note that, similar to L1

+, the differentiation of E+
o that depends only on Es is

dE+
o (z,Ωo)

dz
= wEs(z,Ωs) − dL

+∞

∑
n=0

(−1)n AnPχ,nK0E+,n
0 (z,Ωo), (24)

with Ωo the Es direction, K the extinction factor in the direction Ωo and

E+,n
o (z,Ωo) = Es(0)

1 − exp[−(k + K + nb)(H + z)]
k + K + nb

exp(kz)w(Ωs → Ωo). (25)

As in classical models, there is no need to use Eq. (24). We merely assume, as in the turbid
case, that

dE+
0 (z,Ωo)

dz
= wEs(z,Ωs) − KE+

0 (z,Ωo), (26)
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and the reflectance provided from the first order collision (ρ(0),HS
so ) will be corrected using the

tradional formula (Kuusk, 1985)

ρ
(0),HS
so = w

∫ 0

−H
exp

[
(k + K)z +

√
kK
b

[1 − exp(bz)]

]
dz. (27)

2.2.3 Dependency on L1,n
+

In this subsection, we propose a modification to the reformulated SAIL++ equation set, pre-
sented in Appendix A.3, in order to take into account the effective vegetation density values
in the expressions of L−, L∞

+ , E+
o and E−

o that depend on L1,n
+ scattering.

First, let us derive the angular differentiation of E+
o (d2E+

o (z,Ω → Ωo)) that depends only on
L1,n

+ . Compared to the dependency on L+ in classical SAIL++ equations, Pχ has to be replaced
by Pχ,n. Thus,

d[d2E+
o (z,Ω → Ωo)]

dz
= w′

n(Ω → Ωo)L1,n
+ (z,Ω)cos(θ)dΩ, (28)

where
w′

n(Ω → Ωo) = dLPχ,nw′
0(Ω → Ωo), (29)

with w′
0 the normalized scattering parameter corresponding to w′ [cf. Eq. (76)].

Then, the angular differentiation of E+
o (d2E+

o (z,Ω → Ωo)) which depends only on L1
+ is ob-

tained by summing the contribution of the set (L1,n
+ )n∈N

d[d2E+
o (z,Ω → Ωo)]

dz
=

+∞

∑
n=0

(−1)n Anw′
n(Ω → Ωo)L1,n

+ (z,Ω)cos(θ)dΩ. (30)

Note that, based on AddingSD formalism, the validity of our decomposition in this derivation
of Pχ,n is shown in Appendix C.
By integration of Ω over the upper-hemisphere [cf. Eqs. (75) (84)], Eq. (30) becomes

dE+
o (z,Ωo)

dz
= dL

+∞

∑
n=0

(−1)n AnPχ,n

∫

Π
w′

0(Ω → Ωo)L1,n
+ (z,Ω)cos(θ)dΩ,

= dL

+∞

∑
n=0

(−1)n AnPχ,n[v′0 ◦ L1,n
+ (z)],

(31)

with v′0 the normalized scattering parameter corresponding to v′ [cf. Eq. (74)].
Next, by integrating the dependency on Es, L− and L∞

+ , the original reformulated SAIL++ Eq.
(92) becomes

dE+
o

dz
= wEs + v ◦ L− + v′ ◦ L∞

+ + dL

+∞

∑
n=0

(−1)n AnPχ,n[v′0 ◦ L1,n
+ (z)] − KE+

o . (32)

Similarly, Eqs. (91), (90) and (93) become respectively

dL−
dz

= −s′ ◦ Es+ A ◦ L− −B ◦ L∞
+ − dL

+∞

∑
n=0

(−1)n AnPχ,n[B0 ◦ L1,n
+ (z)],

dL∞
+

dz
= 0 ◦ Es+ B ◦ L− −A ◦ L∞

+ + dL

+∞

∑
n=0

(−1)n AnPχ,n[B′
0 ◦ L1,n

+ (z)],

dE−
o

dz
= −w′Es− v′ ◦ L− − v ◦ L∞

+ − dL

+∞

∑
n=0

(−1)n AnPχ,n[v0 ◦ L1,n
+ (z)] + KE−

o ,

(33)

with 0 the vacuum operator, B0, B′
0 and v0 the normalized scattering parameters correspond-

ing to B, B′ and v [cf. Eqs. (73) (74) (75)], respectively.

3. Virtual flux decomposition implementation

As in SAIL++ (cf. Appendix A.2), the implementation needs the discretization of the dif-
fuses fluxes over the hemispheres. These diffuse fluxes correspond to the diffuse radiances
(L1,n

+ )n∈N, L∞
+ and L− when only a vegetation layer is considered (cf. Subsection 2.2). The cor-

responding discrete fluxes will be called (E1,n
+ )n∈N, E∞

+ and E−, respectively. The reflectances
created by scattering of (E1,n

+ )n∈N and (E0,n
+ )n∈N will be separated to the one created by Es.

The separation enables the solution of the RT problem based on SAIL++ formalism.
First, we present the processing of the vegetation layer. Second, we show the soil vegetation
coupling.

3.1 Vegetation layer
3.1.1 E1,n

+ estimation
As reformulated in Appendix A.3, the difference between SAIL ++ and our model occurs
in the calculation of L1

+. In our model it is decomposed into the sequence (L1,n
+ )n∈N thus

modifying the expressions of L−, L∞
+ , E+

o and E−
o . Therefore, in this section, we propose the

derivation of a new expression for the discrete fluxes E− and E∞
+ as well as the radiances E+

o
and E−

o versus (E1,n
+ )n∈N.

Now, ∀n ∈N, L1,n
+ is given by Eq. (20). Let us consider the Verhoef (1998) sphere tessellation

into N segments, then the irradiance E1,n
+,i of each segment i is

E1,n
+,i(z) =

∫

∆Ωi

L1,n
+ (z,Ω)cos(θ)dΩ,

≈ Es(0)
1 − exp[−(k + 〈κ〉∆Ωi + n〈b〉∆Ωi )(H + z)]

k + 〈κ〉∆Ωi + n〈b〉∆Ωi

exp(kz)

×
∫

∆Ωi

π−1w(Ωs → Ω)cos(θ)dΩ,

(34)

where 〈.〉∆Ωi is the mean value operator defined for a given function f as follows

〈 f (Ω)〉∆Ωi =

∫
Ω∈∆Ωi

f (Ω)cos(Ω)dΩ∫
Ω∈∆Ωi

cos(Ω)dΩ
. (35)

Following Verhoef (1998) terminology,

〈κ〉∆Ωi = κκκ(i),∫

∆Ωi

π−1w(Ωs → Ω)cos(θ)dΩ = s(i), (36)

similarly, we adopt the following notation

〈b〉∆Ωi = bbb(i), (37)

thus κn [cf. Eq. (17)] will be extended in the discrete case as follows

κκκn(i) = κκκ(i) + nbbb(i). (38)
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and the reflectance provided from the first order collision (ρ(0),HS
so ) will be corrected using the

tradional formula (Kuusk, 1985)

ρ
(0),HS
so = w

∫ 0

−H
exp

[
(k + K)z +

√
kK
b

[1 − exp(bz)]

]
dz. (27)

2.2.3 Dependency on L1,n
+

In this subsection, we propose a modification to the reformulated SAIL++ equation set, pre-
sented in Appendix A.3, in order to take into account the effective vegetation density values
in the expressions of L−, L∞

+ , E+
o and E−

o that depend on L1,n
+ scattering.

First, let us derive the angular differentiation of E+
o (d2E+

o (z,Ω → Ωo)) that depends only on
L1,n

+ . Compared to the dependency on L+ in classical SAIL++ equations, Pχ has to be replaced
by Pχ,n. Thus,

d[d2E+
o (z,Ω → Ωo)]

dz
= w′

n(Ω → Ωo)L1,n
+ (z,Ω)cos(θ)dΩ, (28)

where
w′

n(Ω → Ωo) = dLPχ,nw′
0(Ω → Ωo), (29)

with w′
0 the normalized scattering parameter corresponding to w′ [cf. Eq. (76)].

Then, the angular differentiation of E+
o (d2E+

o (z,Ω → Ωo)) which depends only on L1
+ is ob-

tained by summing the contribution of the set (L1,n
+ )n∈N

d[d2E+
o (z,Ω → Ωo)]

dz
=

+∞

∑
n=0

(−1)n Anw′
n(Ω → Ωo)L1,n

+ (z,Ω)cos(θ)dΩ. (30)

Note that, based on AddingSD formalism, the validity of our decomposition in this derivation
of Pχ,n is shown in Appendix C.
By integration of Ω over the upper-hemisphere [cf. Eqs. (75) (84)], Eq. (30) becomes

dE+
o (z,Ωo)

dz
= dL

+∞

∑
n=0

(−1)n AnPχ,n

∫

Π
w′

0(Ω → Ωo)L1,n
+ (z,Ω)cos(θ)dΩ,

= dL

+∞

∑
n=0

(−1)n AnPχ,n[v′0 ◦ L1,n
+ (z)],

(31)

with v′0 the normalized scattering parameter corresponding to v′ [cf. Eq. (74)].
Next, by integrating the dependency on Es, L− and L∞

+ , the original reformulated SAIL++ Eq.
(92) becomes

dE+
o

dz
= wEs + v ◦ L− + v′ ◦ L∞

+ + dL

+∞

∑
n=0

(−1)n AnPχ,n[v′0 ◦ L1,n
+ (z)] − KE+

o . (32)

Similarly, Eqs. (91), (90) and (93) become respectively

dL−
dz

= −s′ ◦ Es+ A ◦ L− −B ◦ L∞
+ − dL

+∞

∑
n=0

(−1)n AnPχ,n[B0 ◦ L1,n
+ (z)],

dL∞
+

dz
= 0 ◦ Es+ B ◦ L− −A ◦ L∞

+ + dL

+∞

∑
n=0

(−1)n AnPχ,n[B′
0 ◦ L1,n

+ (z)],

dE−
o

dz
= −w′Es− v′ ◦ L− − v ◦ L∞

+ − dL

+∞

∑
n=0

(−1)n AnPχ,n[v0 ◦ L1,n
+ (z)] + KE−

o ,

(33)

with 0 the vacuum operator, B0, B′
0 and v0 the normalized scattering parameters correspond-

ing to B, B′ and v [cf. Eqs. (73) (74) (75)], respectively.

3. Virtual flux decomposition implementation

As in SAIL++ (cf. Appendix A.2), the implementation needs the discretization of the dif-
fuses fluxes over the hemispheres. These diffuse fluxes correspond to the diffuse radiances
(L1,n

+ )n∈N, L∞
+ and L− when only a vegetation layer is considered (cf. Subsection 2.2). The cor-

responding discrete fluxes will be called (E1,n
+ )n∈N, E∞

+ and E−, respectively. The reflectances
created by scattering of (E1,n

+ )n∈N and (E0,n
+ )n∈N will be separated to the one created by Es.

The separation enables the solution of the RT problem based on SAIL++ formalism.
First, we present the processing of the vegetation layer. Second, we show the soil vegetation
coupling.

3.1 Vegetation layer
3.1.1 E1,n

+ estimation
As reformulated in Appendix A.3, the difference between SAIL ++ and our model occurs
in the calculation of L1

+. In our model it is decomposed into the sequence (L1,n
+ )n∈N thus

modifying the expressions of L−, L∞
+ , E+

o and E−
o . Therefore, in this section, we propose the

derivation of a new expression for the discrete fluxes E− and E∞
+ as well as the radiances E+

o
and E−

o versus (E1,n
+ )n∈N.

Now, ∀n ∈N, L1,n
+ is given by Eq. (20). Let us consider the Verhoef (1998) sphere tessellation

into N segments, then the irradiance E1,n
+,i of each segment i is

E1,n
+,i(z) =

∫

∆Ωi

L1,n
+ (z,Ω)cos(θ)dΩ,

≈ Es(0)
1 − exp[−(k + 〈κ〉∆Ωi + n〈b〉∆Ωi )(H + z)]

k + 〈κ〉∆Ωi + n〈b〉∆Ωi

exp(kz)

×
∫

∆Ωi

π−1w(Ωs → Ω)cos(θ)dΩ,

(34)

where 〈.〉∆Ωi is the mean value operator defined for a given function f as follows

〈 f (Ω)〉∆Ωi =

∫
Ω∈∆Ωi

f (Ω)cos(Ω)dΩ∫
Ω∈∆Ωi

cos(Ω)dΩ
. (35)

Following Verhoef (1998) terminology,

〈κ〉∆Ωi = κκκ(i),∫

∆Ωi

π−1w(Ωs → Ω)cos(θ)dΩ = s(i), (36)

similarly, we adopt the following notation

〈b〉∆Ωi = bbb(i), (37)

thus κn [cf. Eq. (17)] will be extended in the discrete case as follows

κκκn(i) = κκκ(i) + nbbb(i). (38)
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3.1.2 E1,n
+,i dependency

Being scattered, E1,n
+,i can create both diffuse fluxes E∞

+ and E− as well as radiances E+
o and E−

o .
The scattering parameters will be called respectively si,n, s′i,n, w′

i,n and wi,n. Now,

w′
i,n(Ωo) = dLPχ,n〈w′

0(Ω → Ωo)〉Ω∈∆Ωi = Pχ,nv′
0(i), (39)

where v′
0 is the normalized SAIL++ scattering parameter corresponding to v′ [cf. Eq. (85)].

Similarly, one can define wi,n the analogue of w′
i,n when ∆Ωi and Ωo are in the same hemi-

sphere
wi,n(Ωo) = dLPχ,n〈w0(Ω → Ωo)〉Ω∈∆Ωi = Pχ,nv0(i), (40)

where v0 is the normalized scattering parameter corresponding to v [cf. Eq. (85)].
As in the SAIL++ model (Verhoef, 1998), si,n and s′i,n are integrated values of wi,n and w′

i,n over
the output solid angle. So, for m ∈ {1, . . . , N} a given discrete solid angle index

si,n(m) =
∫

∆Ωm

wi,n(Ωm)dΩm = dLPχ,nπ−1〈〈w0(Ω → Ω+)〉〉(Ω,Ω+)∈(∆Ωi ,∆Ωm)
2π

N
,

= dLPχ,nB′
0(i → m),

(41)

where B′
0 is the normalized SAIL++ scattering matrix corresponding to B′ [cf. Eq. (86)]. Simi-

larly,
si,n(m) = dLPχ,nB0(i → m), (42)

where B0 is the normalized scattering matrix corresponding to B [cf. Eq. (85)].

3.1.3 E1,n
+,i decomposition

From Eq. (34), one has

E1,n
+,i(z) = Es(0)

1 − exp[−(k + κκκn(i))(H + z)]
k + κκκn(i)

exp(kz)s(i),

= Xn
i E1,n

+,i,1(z) + Yn
i E1,n

+,i,2(z).
(43)

with

Xn
i =

s(i)
k + κκκn(i)

,

Yn
i = − s(i)exp(−kH)

k + κκκn(i)
,

E1,n
+,i,1(z) = Es(0)exp(kz) = Es(z),

E1,n
+,i,2(z) = Es(0)exp[−κκκn(i)(H + z)].

(44)

Therefore, E1,n
+,i,1 and E1,n

+,i,2 can be viewed as the direct downward and upward fluxes with an
extinction factor under the vegetation equal to k and κκκn(i), respectively.

Thus, the corresponding RT discrete equation set to the continuous Eqs. (32) (33) presented in
the last section is




E1,n
+,i,1(0) = E1,n

+,i,2(−H) = Es(0), ∀{i,n} ∈ {1, . . . , N} ×N,
dEs

dz
= kEs,

dE1,n
+,i,1

dz
= kE1,n

+,i,1, ∀{i,n} ∈ {1, . . . , N} ×N,

dE1,n
+,i,2

dz
= −κκκn(i)E1,n

+,i,2, ∀{i,n} ∈ {1, . . . , N} ×N,

dE−
dz

= −s′Es + AE− − BE+ −
∞

∑
n=0

(−1)n
N

∑
i=1

An
i (Xn

i si,nE1,n
+,i,1 + Yn

i si,nE1,n
+,i,2),

dE∞
+

dz
= BE− − AE+ +

∞

∑
n=0

(−1)n
N

∑
i=1

An
i (Xn

i s′i,nE1,n
+,i,1 + Yn

i s′i,nE1,n
+,i,2),

dE+
o

dz
= wEs + vE− + v′E+ +

∞

∑
n=0

(−1)n
N

∑
i=1

An
i (Xn

i w′
i,nE1,n

+,i,1 + Yn
i w′

i,nE1,n
+,i,2) − KE+

o ,

dE−
o

dz
= −w′Es − v′E− − vE+ −

∞

∑
n=0

(−1)n
N

∑
i=1

An
i (Xn

i wi,nE1,n
+,i,1 + Yn

i wi,nE1,n
+,i,2) + KE−

o ,

(45)
with An

i the extension of An to the discrete case Eq. (17)

An
i =

(kκκκ(i))n/2

n!bbb(i)n exp

[√
kκκκ(i)

bbb(i)

]
. (46)

From a mathematical perspective, System 45 could be viewed as follows. The unknowns are
E−, E∞

+ , E+
o and E−

o . They have to be solved using three differential equations linking them
(three last Equations in Set 45). In addition to the unknown functions, the differential equa-
tions contain additive terms composed of linear combinations of known functions which are
Es and E1,n

+,i,j,∀{i, j,n} ∈ {1, . . . , N} × {1,2} ×N. Therefore, solutions to the global differential
equation set (E−, E∞

+ , E+
o and E−

o ) can be written as linear combinations (the same as the com-
bination of the additive terms in the initial set) of the same differential equation set solutions
with only one additive term among the set Es, E1,n

+,i,j,∀{i, j,n} ∈ {1, . . . , N} × {1,2} ×N.
Therefore, we propose the following solution. E−, E∞

+ , E+
o and E−

o have to be derived for
different sources: Es(0), E1,n

+,i,1(0) and E1,n
+,i,2(−H), ∀{i,n} ∈ {1, . . . , N} ×N. For that, one can

define the corresponding sub-solutions which are Es
−, E∞,s

+ , E+,s
o , E−,s

o , ∀{i, j,n} ∈ {1, . . . , N} ×
{1,2} ×N, En

−,i,j, E∞,n
+,i,j, E+,n

o,i,j and E−,n
o,i,j , respectively.

According to Eqs. (45), the global solution for E ∈ {E−, E∞
+ , E+

o , E−
o } is written as follows

E = Es +
∞

∑
n=0

(−1)n
N

∑
i=1

An
i (Xn

i En
i,1 + Yn

i En
i,2), (47)

Now, compared to SAIL++ in terms of boundary conditions (cf. Appendix A.2), each term x
of the boundary condition matrix [cf. Eq. (87)] that depends on the direct source flux [cf. Eq.
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3.1.2 E1,n
+,i dependency

Being scattered, E1,n
+,i can create both diffuse fluxes E∞

+ and E− as well as radiances E+
o and E−

o .
The scattering parameters will be called respectively si,n, s′i,n, w′

i,n and wi,n. Now,

w′
i,n(Ωo) = dLPχ,n〈w′

0(Ω → Ωo)〉Ω∈∆Ωi = Pχ,nv′
0(i), (39)

where v′
0 is the normalized SAIL++ scattering parameter corresponding to v′ [cf. Eq. (85)].

Similarly, one can define wi,n the analogue of w′
i,n when ∆Ωi and Ωo are in the same hemi-

sphere
wi,n(Ωo) = dLPχ,n〈w0(Ω → Ωo)〉Ω∈∆Ωi = Pχ,nv0(i), (40)

where v0 is the normalized scattering parameter corresponding to v [cf. Eq. (85)].
As in the SAIL++ model (Verhoef, 1998), si,n and s′i,n are integrated values of wi,n and w′

i,n over
the output solid angle. So, for m ∈ {1, . . . , N} a given discrete solid angle index

si,n(m) =
∫

∆Ωm

wi,n(Ωm)dΩm = dLPχ,nπ−1〈〈w0(Ω → Ω+)〉〉(Ω,Ω+)∈(∆Ωi ,∆Ωm)
2π

N
,

= dLPχ,nB′
0(i → m),

(41)

where B′
0 is the normalized SAIL++ scattering matrix corresponding to B′ [cf. Eq. (86)]. Simi-

larly,
si,n(m) = dLPχ,nB0(i → m), (42)

where B0 is the normalized scattering matrix corresponding to B [cf. Eq. (85)].

3.1.3 E1,n
+,i decomposition

From Eq. (34), one has

E1,n
+,i(z) = Es(0)

1 − exp[−(k + κκκn(i))(H + z)]
k + κκκn(i)

exp(kz)s(i),

= Xn
i E1,n

+,i,1(z) + Yn
i E1,n

+,i,2(z).
(43)

with

Xn
i =

s(i)
k + κκκn(i)

,

Yn
i = − s(i)exp(−kH)

k + κκκn(i)
,

E1,n
+,i,1(z) = Es(0)exp(kz) = Es(z),

E1,n
+,i,2(z) = Es(0)exp[−κκκn(i)(H + z)].

(44)

Therefore, E1,n
+,i,1 and E1,n

+,i,2 can be viewed as the direct downward and upward fluxes with an
extinction factor under the vegetation equal to k and κκκn(i), respectively.

Thus, the corresponding RT discrete equation set to the continuous Eqs. (32) (33) presented in
the last section is




E1,n
+,i,1(0) = E1,n

+,i,2(−H) = Es(0), ∀{i,n} ∈ {1, . . . , N} ×N,
dEs

dz
= kEs,

dE1,n
+,i,1

dz
= kE1,n

+,i,1, ∀{i,n} ∈ {1, . . . , N} ×N,

dE1,n
+,i,2

dz
= −κκκn(i)E1,n

+,i,2, ∀{i,n} ∈ {1, . . . , N} ×N,

dE−
dz

= −s′Es + AE− − BE+ −
∞

∑
n=0

(−1)n
N

∑
i=1

An
i (Xn

i si,nE1,n
+,i,1 + Yn

i si,nE1,n
+,i,2),

dE∞
+

dz
= BE− − AE+ +

∞

∑
n=0

(−1)n
N

∑
i=1

An
i (Xn

i s′i,nE1,n
+,i,1 + Yn

i s′i,nE1,n
+,i,2),

dE+
o

dz
= wEs + vE− + v′E+ +

∞

∑
n=0

(−1)n
N

∑
i=1

An
i (Xn

i w′
i,nE1,n

+,i,1 + Yn
i w′

i,nE1,n
+,i,2) − KE+

o ,

dE−
o

dz
= −w′Es − v′E− − vE+ −

∞

∑
n=0

(−1)n
N

∑
i=1

An
i (Xn

i wi,nE1,n
+,i,1 + Yn

i wi,nE1,n
+,i,2) + KE−

o ,

(45)
with An

i the extension of An to the discrete case Eq. (17)

An
i =

(kκκκ(i))n/2

n!bbb(i)n exp

[√
kκκκ(i)

bbb(i)

]
. (46)

From a mathematical perspective, System 45 could be viewed as follows. The unknowns are
E−, E∞

+ , E+
o and E−

o . They have to be solved using three differential equations linking them
(three last Equations in Set 45). In addition to the unknown functions, the differential equa-
tions contain additive terms composed of linear combinations of known functions which are
Es and E1,n

+,i,j,∀{i, j,n} ∈ {1, . . . , N} × {1,2} ×N. Therefore, solutions to the global differential
equation set (E−, E∞

+ , E+
o and E−

o ) can be written as linear combinations (the same as the com-
bination of the additive terms in the initial set) of the same differential equation set solutions
with only one additive term among the set Es, E1,n

+,i,j,∀{i, j,n} ∈ {1, . . . , N} × {1,2} ×N.
Therefore, we propose the following solution. E−, E∞

+ , E+
o and E−

o have to be derived for
different sources: Es(0), E1,n

+,i,1(0) and E1,n
+,i,2(−H), ∀{i,n} ∈ {1, . . . , N} ×N. For that, one can

define the corresponding sub-solutions which are Es
−, E∞,s

+ , E+,s
o , E−,s

o , ∀{i, j,n} ∈ {1, . . . , N} ×
{1,2} ×N, En

−,i,j, E∞,n
+,i,j, E+,n

o,i,j and E−,n
o,i,j , respectively.

According to Eqs. (45), the global solution for E ∈ {E−, E∞
+ , E+

o , E−
o } is written as follows

E = Es +
∞

∑
n=0

(−1)n
N

∑
i=1

An
i (Xn

i En
i,1 + Yn

i En
i,2), (47)

Now, compared to SAIL++ in terms of boundary conditions (cf. Appendix A.2), each term x
of the boundary condition matrix [cf. Eq. (87)] that depends on the direct source flux [cf. Eq.
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(88)], i.e.

x ∈
{

τss =
Es(−H)

Es(0)
,τττsd =

E−(−H)
Es(0)

,ρρρsd =
E0

+(0) + E∞
+(0)

Es(0)
,ρso =

E+
o (0)

Es(0)
,τso =

E−
o (0)

Es(0)

}
(48)

has to be modified. The other boundary matrix terms (T, R, τττdo, ρρρdo and τoo) remain equivalent
to SAIL++.
Moreover, ρρρsd is divided into two terms

ρρρsd = ρρρ1
sd + ρρρ∞

sd,

ρρρ1
sd =

E0
+(0)

Es(0)
,

ρρρ∞
sd =

E∞
+(0)

Es(0)
.

(49)

In the case of x ∈ {τss,τττsd,ρρρ∞
sd,ρso,τso} and according to Eqs. (47)

x = xs +
∞

∑
n=0

(−1)n
N

∑
i=1

An
i (Xn

i xn
i,1 + Yn

i xn
i,2), (50)

with xs the value corresponding to the source Es, and ∀{i, j,n} ∈ {1, . . . , N} × {1,2} ×N, xn
i,j

the value corresponding to the source En,1
+,i,j. Based on Eqs. (43) (44)

∀i ∈ {1, . . . , N}, ρρρ1
sd(i) =

∞

∑
n=0

(−1)n An
i
(
Xn

i + Yn
i exp[−κκκn(i)H]

)
. (51)

Note that τss, the direct transmittance, does not change, it is equal to exp(−kH). Therefore,
we have to derive only τττsd, ρρρ∞

sd, ρso and τso.

3.1.4 Sub-solution derivation
Here, we try to find the sub-solution scattering term expressions (τττsd, ρρρ∞

sd, ρso and τso) based on
SAIL++ formalism and versus SAIL++ boundary matrix terms. To achieve it, the irradiance
E∞

+ , E− and radiances Eo have to be estimated. The latter terms have first to be estimated
for each source among Es and ∀{i, j,n} ∈ {1, . . . , N} × {1,2} ×N, En

−,i,j and second combined
using Eq. (47).

3.1.4.1 Source Es
Es
−, E∞,s

+ , E+,s
o and E−,s

o verify

d
dz




Es
Es
−

E∞,s
+

E+,s
o

E−,s
o




=




k 0 0 0 0
−s′ A −B 0 0

0 B −A 0 0
w v v′ −K 0

−w′ −v′ −v 0 K







Es
Es
−

E∞,s
+

E+,s
o

E−,s
o




, (52)

Thus based on Eq. (88) notation, it follows

τττs
sd = τττ++

sd (k,s′,0),
ρρρs,∞

sd = ρρρ++
sd (k,s′,0),

ρs
so = ρHS,++

so (k,s′,0,w),
τs

so = τ++
so (k,s′,0,w).

(53)

3.1.4.2 Source E1,n
+,i,1

As for Es [cf. Eq. (53)], it is straightforward to show that

τττn
sd,i,1 = τττ++

sd (k,si,n,s′i,n),
ρρρn,∞

sd,i,1 = ρρρ++
sd (k,si,n,s′i,n),

ρn
so,i,1 = ρ++

so (k,si,n,s′i,n,w′
i,n),

τn
so,i,1 = τ++

so (k,si,n,s′i,n,w′
i,n).

(54)

3.1.4.3 Source E1,n
+,i,2

As for Es [cf. Eq. (53)], it is straightforward to show that

τττn
sd,i,2 = ρρρ++

sd (κκκn(i),s′i,n,si,n),
ρρρn,∞

sd,i,2 = τττ++
sd (κκκn(i),s′i,n,si,n),

ρn
so,i,2 = τ++

so (κκκn(i),s′i,n,si,n,w′
i,n),

τn
so,i,2 = ρ++

so (κκκn(i),s′i,n,si,n,w′
i,n).

(55)

Finally, according to Eqs. (50) (53) (54) (55)

τττsd = τττ++
sd (k,s′,0) +

∞

∑
n=0

(−1)n
N

∑
i=1

An
i
(
Xn

i τττ++
sd (k,si,n,s′i,n) + Yn

i ρρρ++
sd (κκκn(i),s′i,n,si,n)

)
,

ρρρ∞
sd = ρρρ++

sd (k,s′,0) +
∞

∑
n=0

(−1)n
N

∑
i=1

An
i
(
Xn

i ρρρ++
sd (k,si,n,s′i,n) + Yn

i τττ++
sd (κκκn(i),s′i,n,si,n)

)
,

(56)

xso = ρHS,++
so (k,s′,0,w) +

∞

∑
n=0

(−1)n
N

∑
i=1

An
i
(
Xn

i ρ++
so (k,si,n,s′i,n,w′

i,n)+

Yn
i τ++

so (κκκn(i),s′i,n,si,n,wi,n)
)
,

τso = τ++
so (k,s′,0,w) +

∞

∑
n=0

(−1)n
N

∑
i=1

An
i
(
Xn

i τ++
so (k,si,n,s′i,n,w′

i,n)+

Yn
i ρ++

so (κκκn(i),s′i,n,si,n,wi,n)
)
.

(57)

3.2 Concatenation vegetation layer and soil background
Similarly to vegetation, one can define the directional-hemispherical reflectance (rrrsd),
hemispherical-directional reflectance (rrrdo) and hemispherical-hemispherical reflectance (RRRdd)
fore soil which are two vectors and a matrix, respectively.
Based on Adding principle (Van de Hulst, 1980), Verhoef (1998) defines the bidirectional re-
flectance of the couple soil+vegetation (ρt

so) as

ρt
so = ρso + τoorsoτss + (τoorrrT

do + τττT
doRRRdd)(1−RRRRdd)

−1τττsd + (τττT
do + τoorrrT

doR)(I − RRRddR)−1rrrsdτss,
(58)

with I the identity matrix.
Inspired from AddingSD (e.g. Kallel et al., 2008, p. 3647), we propose the following transfor-
mation of Eq. (58)

ρt
so = ρso +

rsso︷ ︸︸ ︷
τoorsoτss +

rsdo︷ ︸︸ ︷
τττT

dorrrsdτss +(τττT
doRRRdd + τoorrrT

do)(I − RRRRdd)
−1(

τττsdd︷ ︸︸ ︷
Rrrrsdτss +τττsd). (59)
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(88)], i.e.

x ∈
{

τss =
Es(−H)

Es(0)
,τττsd =

E−(−H)
Es(0)

,ρρρsd =
E0

+(0) + E∞
+(0)

Es(0)
,ρso =

E+
o (0)

Es(0)
,τso =

E−
o (0)

Es(0)

}
(48)

has to be modified. The other boundary matrix terms (T, R, τττdo, ρρρdo and τoo) remain equivalent
to SAIL++.
Moreover, ρρρsd is divided into two terms

ρρρsd = ρρρ1
sd + ρρρ∞

sd,

ρρρ1
sd =

E0
+(0)

Es(0)
,

ρρρ∞
sd =

E∞
+(0)

Es(0)
.

(49)

In the case of x ∈ {τss,τττsd,ρρρ∞
sd,ρso,τso} and according to Eqs. (47)

x = xs +
∞

∑
n=0

(−1)n
N

∑
i=1

An
i (Xn

i xn
i,1 + Yn

i xn
i,2), (50)

with xs the value corresponding to the source Es, and ∀{i, j,n} ∈ {1, . . . , N} × {1,2} ×N, xn
i,j

the value corresponding to the source En,1
+,i,j. Based on Eqs. (43) (44)

∀i ∈ {1, . . . , N}, ρρρ1
sd(i) =

∞

∑
n=0

(−1)n An
i
(
Xn

i + Yn
i exp[−κκκn(i)H]

)
. (51)

Note that τss, the direct transmittance, does not change, it is equal to exp(−kH). Therefore,
we have to derive only τττsd, ρρρ∞

sd, ρso and τso.

3.1.4 Sub-solution derivation
Here, we try to find the sub-solution scattering term expressions (τττsd, ρρρ∞

sd, ρso and τso) based on
SAIL++ formalism and versus SAIL++ boundary matrix terms. To achieve it, the irradiance
E∞

+ , E− and radiances Eo have to be estimated. The latter terms have first to be estimated
for each source among Es and ∀{i, j,n} ∈ {1, . . . , N} × {1,2} ×N, En

−,i,j and second combined
using Eq. (47).

3.1.4.1 Source Es
Es
−, E∞,s

+ , E+,s
o and E−,s

o verify

d
dz




Es
Es
−

E∞,s
+

E+,s
o

E−,s
o




=




k 0 0 0 0
−s′ A −B 0 0

0 B −A 0 0
w v v′ −K 0

−w′ −v′ −v 0 K







Es
Es
−

E∞,s
+

E+,s
o

E−,s
o




, (52)

Thus based on Eq. (88) notation, it follows

τττs
sd = τττ++

sd (k,s′,0),
ρρρs,∞

sd = ρρρ++
sd (k,s′,0),

ρs
so = ρHS,++

so (k,s′,0,w),
τs

so = τ++
so (k,s′,0,w).

(53)

3.1.4.2 Source E1,n
+,i,1

As for Es [cf. Eq. (53)], it is straightforward to show that

τττn
sd,i,1 = τττ++

sd (k,si,n,s′i,n),
ρρρn,∞

sd,i,1 = ρρρ++
sd (k,si,n,s′i,n),

ρn
so,i,1 = ρ++

so (k,si,n,s′i,n,w′
i,n),

τn
so,i,1 = τ++

so (k,si,n,s′i,n,w′
i,n).

(54)

3.1.4.3 Source E1,n
+,i,2

As for Es [cf. Eq. (53)], it is straightforward to show that

τττn
sd,i,2 = ρρρ++

sd (κκκn(i),s′i,n,si,n),
ρρρn,∞

sd,i,2 = τττ++
sd (κκκn(i),s′i,n,si,n),

ρn
so,i,2 = τ++

so (κκκn(i),s′i,n,si,n,w′
i,n),

τn
so,i,2 = ρ++

so (κκκn(i),s′i,n,si,n,w′
i,n).

(55)

Finally, according to Eqs. (50) (53) (54) (55)

τττsd = τττ++
sd (k,s′,0) +

∞

∑
n=0

(−1)n
N

∑
i=1

An
i
(
Xn

i τττ++
sd (k,si,n,s′i,n) + Yn

i ρρρ++
sd (κκκn(i),s′i,n,si,n)

)
,

ρρρ∞
sd = ρρρ++

sd (k,s′,0) +
∞

∑
n=0

(−1)n
N

∑
i=1

An
i
(
Xn

i ρρρ++
sd (k,si,n,s′i,n) + Yn

i τττ++
sd (κκκn(i),s′i,n,si,n)

)
,

(56)

xso = ρHS,++
so (k,s′,0,w) +

∞

∑
n=0

(−1)n
N

∑
i=1

An
i
(
Xn

i ρ++
so (k,si,n,s′i,n,w′

i,n)+

Yn
i τ++

so (κκκn(i),s′i,n,si,n,wi,n)
)
,

τso = τ++
so (k,s′,0,w) +

∞

∑
n=0

(−1)n
N

∑
i=1

An
i
(
Xn

i τ++
so (k,si,n,s′i,n,w′

i,n)+

Yn
i ρ++

so (κκκn(i),s′i,n,si,n,wi,n)
)
.

(57)

3.2 Concatenation vegetation layer and soil background
Similarly to vegetation, one can define the directional-hemispherical reflectance (rrrsd),
hemispherical-directional reflectance (rrrdo) and hemispherical-hemispherical reflectance (RRRdd)
fore soil which are two vectors and a matrix, respectively.
Based on Adding principle (Van de Hulst, 1980), Verhoef (1998) defines the bidirectional re-
flectance of the couple soil+vegetation (ρt

so) as

ρt
so = ρso + τoorsoτss + (τoorrrT

do + τττT
doRRRdd)(1−RRRRdd)

−1τττsd + (τττT
do + τoorrrT

doR)(I − RRRddR)−1rrrsdτss,
(58)

with I the identity matrix.
Inspired from AddingSD (e.g. Kallel et al., 2008, p. 3647), we propose the following transfor-
mation of Eq. (58)

ρt
so = ρso +

rsso︷ ︸︸ ︷
τoorsoτss +

rsdo︷ ︸︸ ︷
τττT

dorrrsdτss +(τττT
doRRRdd + τoorrrT

do)(I − RRRRdd)
−1(

τττsdd︷ ︸︸ ︷
Rrrrsdτss +τττsd). (59)
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As rigourously explained in (Kallel et al., 2008), to pass from a turbid to a discrete case and
take into account the hot spot effect as well as maintain energy conservation, we have to
modify the expression of rsso, rsdo and τττsdd by considering the actual local vegetation density:

• rsso corresponds to the flux passing through the vegetation layer from top to bottom
without collision, scattered by the soil and reaching the top of the vegetation without
other collisions. For this flux, the classical hot spot effect should be computed as

rsso = rso exp

[
−(k + K)H +

√
kK
b

[1 − exp(−bH)]

]
; (60)

• τττsdd corresponds to the flux passing through the vegetation layer from top to bottom
without collisions, scattered by the soil, colliding with the vegetation and reaching the
soil again.

• rsdo corresponds to the flux passing through the vegetation layer from top to bottom
without collisions, scattered by the soil and reaching the top of the vegetation after
multiple collisions.

Using the same principle that for E1
+ scattering derivation, it is straightforward to show that
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4. Virtual flux decomposition validation

This section is dedicated to the validation of our virtual flux decomposition. The correspond-
ing will be called the Flux Decomposition Model (FDM). First, model convergence and run-
ning time are presented. Second, energy conservation is shown. Third, a comparison between
our approach and SAIL/SAIL++ models is presented. Finally, our model is compared to the
3-D models of the RAMI 2 database assumed ‘most credible’.
Among the most commonly used models to describe the distribution of leaf zenithal angles
is the method assuming an elliptic leaf distribution where the distribution is parameterized
by the mean leaf inclination angle, ALA, ranging between 0 and 90◦ (Campbell, 1990). We
will use this distribution in our model simulations. Note that small ALA values correspond
to planophile distributions, high values to erectophile distributions, and medium values to
extremophile distributions. Moreover, to be compatible with RAMI database simulations,
Bunnik’s [1978] parametrization will be used in the fourth subsection.
Since FDM is equivalent to SAIL++ in the turbid case. In this paper, we will deal only with
the discrete case.

4.1 Running time
Among the strengths of our model is its low running time. The decomposition of L1

+ into
virtual sub-fluxes allowed the use of SAIL++ formalism to solve the RT problem.
Although, according to Eqs. (56) (57) (61), an infinite number of SAIL++ simulations is needed
to derive the reflectance, only few first ranked terms are used to achieve accurate results. The
sum is provided by Taylor series decomposition. Next, we will present a study on the accuracy
of the approximation.

Here, we opt to use fluxes (E∞
+ in our case) and the corresponding hemispherical scattering
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sd) term rather than radiances E+
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where E∞,n
+,i is the high order diffuse flux created by E1,n

+,i. Now, according to Eq. (22), E1,n
+,i is

created by ES scattering. Then, due to the energy conservation law

∀(z, i) ∈ [−H,0] × {1, . . . , N}, ||E∞,n
+,i (z)|| ≤ Es(0), (63)

where ||.|| of a given discrete flux over a hemisphere is the sum of the sub-fluxes’ values in
each segment. It corresponds to the integrate radiance distribution over the hemisphere.
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As rigourously explained in (Kallel et al., 2008), to pass from a turbid to a discrete case and
take into account the hot spot effect as well as maintain energy conservation, we have to
modify the expression of rsso, rsdo and τττsdd by considering the actual local vegetation density:

• rsso corresponds to the flux passing through the vegetation layer from top to bottom
without collision, scattered by the soil and reaching the top of the vegetation without
other collisions. For this flux, the classical hot spot effect should be computed as

rsso = rso exp

[
−(k + K)H +
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[1 − exp(−bH)]

]
; (60)

• τττsdd corresponds to the flux passing through the vegetation layer from top to bottom
without collisions, scattered by the soil, colliding with the vegetation and reaching the
soil again.

• rsdo corresponds to the flux passing through the vegetation layer from top to bottom
without collisions, scattered by the soil and reaching the top of the vegetation after
multiple collisions.

Using the same principle that for E1
+ scattering derivation, it is straightforward to show that
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4. Virtual flux decomposition validation

This section is dedicated to the validation of our virtual flux decomposition. The correspond-
ing will be called the Flux Decomposition Model (FDM). First, model convergence and run-
ning time are presented. Second, energy conservation is shown. Third, a comparison between
our approach and SAIL/SAIL++ models is presented. Finally, our model is compared to the
3-D models of the RAMI 2 database assumed ‘most credible’.
Among the most commonly used models to describe the distribution of leaf zenithal angles
is the method assuming an elliptic leaf distribution where the distribution is parameterized
by the mean leaf inclination angle, ALA, ranging between 0 and 90◦ (Campbell, 1990). We
will use this distribution in our model simulations. Note that small ALA values correspond
to planophile distributions, high values to erectophile distributions, and medium values to
extremophile distributions. Moreover, to be compatible with RAMI database simulations,
Bunnik’s [1978] parametrization will be used in the fourth subsection.
Since FDM is equivalent to SAIL++ in the turbid case. In this paper, we will deal only with
the discrete case.

4.1 Running time
Among the strengths of our model is its low running time. The decomposition of L1

+ into
virtual sub-fluxes allowed the use of SAIL++ formalism to solve the RT problem.
Although, according to Eqs. (56) (57) (61), an infinite number of SAIL++ simulations is needed
to derive the reflectance, only few first ranked terms are used to achieve accurate results. The
sum is provided by Taylor series decomposition. Next, we will present a study on the accuracy
of the approximation.

Here, we opt to use fluxes (E∞
+ in our case) and the corresponding hemispherical scattering
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where E∞,n
+,i is the high order diffuse flux created by E1,n
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It is clear that, limui→+∞ Bui+1
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Moreover, let us define ρρρ∞,uuu
sd by

ρρρ∞,uuu
sd =
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then according to Eq. (66),
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sd || ≤ ε with ε ∈R∗
+ such that ε � 1, it is sufficient to choose

uuu as follows,
∀i ∈ {1, . . . , N}, ui = argminn∈NBn+1

i ≤ ε

N
. (70)
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Fig. 2. Variation of a) the mean uuu value and b) the corresponding model running time vas a
function of LAI and the hot spot parameter d for a source zenith angle θs = 25◦, ALA = 63◦,
ρ = 0.5, τ = 0.5 and a model error threshold ε = 10−4.

Figure 2 shows the variation of the average uuu value (〈uuu〉) as well as the corresponding model
running time, T, versus the Leaf Area Index value, LAI, and the hot spot parameter (ratio be-
tween the leaf mean radius and the vegetation layer thickness), d, for ε = 10−4. As expected,
〈uuu〉 and the corresponding T value increases as a function of LAI and d. 〈uuu〉 ranges between 1
and 10 which is a relatively high speed convergence. For medium LAI and d values (respec-
tively equal 3 and 0.05), 〈uuu〉 is about 4.2. This speed convergence explains the small running
time for such a complex model: it ranges between 2 and 22 milliseconds (ms). In particular,
for LAI=3 and d = 0.05, it is about 10ms.

4.2 Energy conservation
Compared to SAIL++, the advantage of our model is energy conservation in the discrete case.
To check conservation, we propose to use the same procedure as Kallel et al. (2008). In the
purist corner case (ρ + τ = 1), the energy conservation law is

B(Ωs) = τss +
∫

Π
{ρso(Ωo) + τso(Ωo)}cos(θo)dΩ0 = 1. (71)

Figure 3 shows the variation of B versus LAI, for extremophile and erectophile vegetation
(ALA equals respectively 45◦ and 63◦) and for different hot spot parameters. In both cases,

(a) ALA = 45 value

(a) ALA = 45◦ value

(b) ALA = 63 value

(b) ALA = 63◦ value

Fig. 3. Variation of energy conservation (B) versus LAI for different values of the hot spot
parameter (d), θs = 25◦, ρ = 0.5 and τ = 0.5.

for small LAI values, the energy is well conserved by both models with an error lower than
0.1%. However, for values of LAI ranging from 0.5 to 1, B decreases to around 0.99 for both
cases. The decrease of accuracy is due to the sampling of the hemisphere in only 36 segments
and assuming a constant radiance distribution over each segment. The decrease is more pro-
nounced for erectophile leaf distributions since the validity of the diffuse flux isotropy as-
sumption weakens as ALA increases (Kallel et al., 2008). An increase in the segment number
extends the running time. According to Verhoef (1998), 36 segments is a trade-off between
accuracy and running time. Reaching its minimum values, B increases versus LAI in differ-
ent ways for different models. First, for d = 0.01, the increase is relatively small and energy
is accurately conserved by both models. Second, for d = 0.05 and d = 0.1, Figure 3 shows
large differences between models. SAIL++ conserves energy less. For example for LAI=7
and ALA = 45◦, the variation in energy conservation (B) was 1.04 whereas for our model it
was less then 1.015. This proves our main objective for the new model: energy conservation.
Moreover, comparing extremophile and erectophile cases, Figure 3 shows that energy is batter
conserved in the erectophile case. Indeed, mutual shadowing between leaves decreases as a
function of ALA, and thus it is higher in the extremophile case.

4.3 Model comparison: SAIL/SAIL++
In this subsection, BRDF and BTDF produced by our model are compared to ones produced
by the SAIL and SAIL++ models in the discrete case.
Figure 4 shows the case of a hot spot parameter (d = 0.02) for extremophile (ALA = 45◦) and
erectophile vegetation (ALA = 63◦) in the principle plane. First, figures show the hot spot
peaks for θo = θs and ϕ = 0◦. Second, when a soil background is added, the model reflectances
increase but the curve dynamics decrease due to soil lambertianity. Third, since SAIL under-
estimates the reflectance due to the diffuse flux semi-isotropy assumption (Kallel, 2007), its
BRDF curves are always below SAIL++ curves. Fourth, compared to SAIL++, our model’s
BRDF and BTDF curves are always lower: our model decreases SAIL++ diffuse fluxes E∞

+ and
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Fig. 2. Variation of a) the mean uuu value and b) the corresponding model running time vas a
function of LAI and the hot spot parameter d for a source zenith angle θs = 25◦, ALA = 63◦,
ρ = 0.5, τ = 0.5 and a model error threshold ε = 10−4.

Figure 2 shows the variation of the average uuu value (〈uuu〉) as well as the corresponding model
running time, T, versus the Leaf Area Index value, LAI, and the hot spot parameter (ratio be-
tween the leaf mean radius and the vegetation layer thickness), d, for ε = 10−4. As expected,
〈uuu〉 and the corresponding T value increases as a function of LAI and d. 〈uuu〉 ranges between 1
and 10 which is a relatively high speed convergence. For medium LAI and d values (respec-
tively equal 3 and 0.05), 〈uuu〉 is about 4.2. This speed convergence explains the small running
time for such a complex model: it ranges between 2 and 22 milliseconds (ms). In particular,
for LAI=3 and d = 0.05, it is about 10ms.

4.2 Energy conservation
Compared to SAIL++, the advantage of our model is energy conservation in the discrete case.
To check conservation, we propose to use the same procedure as Kallel et al. (2008). In the
purist corner case (ρ + τ = 1), the energy conservation law is

B(Ωs) = τss +
∫

Π
{ρso(Ωo) + τso(Ωo)}cos(θo)dΩ0 = 1. (71)

Figure 3 shows the variation of B versus LAI, for extremophile and erectophile vegetation
(ALA equals respectively 45◦ and 63◦) and for different hot spot parameters. In both cases,
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Fig. 3. Variation of energy conservation (B) versus LAI for different values of the hot spot
parameter (d), θs = 25◦, ρ = 0.5 and τ = 0.5.

for small LAI values, the energy is well conserved by both models with an error lower than
0.1%. However, for values of LAI ranging from 0.5 to 1, B decreases to around 0.99 for both
cases. The decrease of accuracy is due to the sampling of the hemisphere in only 36 segments
and assuming a constant radiance distribution over each segment. The decrease is more pro-
nounced for erectophile leaf distributions since the validity of the diffuse flux isotropy as-
sumption weakens as ALA increases (Kallel et al., 2008). An increase in the segment number
extends the running time. According to Verhoef (1998), 36 segments is a trade-off between
accuracy and running time. Reaching its minimum values, B increases versus LAI in differ-
ent ways for different models. First, for d = 0.01, the increase is relatively small and energy
is accurately conserved by both models. Second, for d = 0.05 and d = 0.1, Figure 3 shows
large differences between models. SAIL++ conserves energy less. For example for LAI=7
and ALA = 45◦, the variation in energy conservation (B) was 1.04 whereas for our model it
was less then 1.015. This proves our main objective for the new model: energy conservation.
Moreover, comparing extremophile and erectophile cases, Figure 3 shows that energy is batter
conserved in the erectophile case. Indeed, mutual shadowing between leaves decreases as a
function of ALA, and thus it is higher in the extremophile case.

4.3 Model comparison: SAIL/SAIL++
In this subsection, BRDF and BTDF produced by our model are compared to ones produced
by the SAIL and SAIL++ models in the discrete case.
Figure 4 shows the case of a hot spot parameter (d = 0.02) for extremophile (ALA = 45◦) and
erectophile vegetation (ALA = 63◦) in the principle plane. First, figures show the hot spot
peaks for θo = θs and ϕ = 0◦. Second, when a soil background is added, the model reflectances
increase but the curve dynamics decrease due to soil lambertianity. Third, since SAIL under-
estimates the reflectance due to the diffuse flux semi-isotropy assumption (Kallel, 2007), its
BRDF curves are always below SAIL++ curves. Fourth, compared to SAIL++, our model’s
BRDF and BTDF curves are always lower: our model decreases SAIL++ diffuse fluxes E∞
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Fig. 4. A comparison between BRDF of SAIL, SAIL++ and FDM versus the observation
zenith angle for (i) only a vegetation layer (noted in the legend BRDF v); (ii) for a vegeta-
tion layer+lambertian soil (noted in the legend BRDF v/s), and BTDF of SAIL++ and FDM for
a vegetation layer. LAI=3, d = 0.1, θs = 25◦, ρ = 0.5, τ = 0.5 and rso = 0.2.

E− in order to conserve the energy. Now, let us compare the extremophile and erectophile
cases. (i) Extremophile vegetation has a higher reflectance (and a lower transmittance) than
the erectophile one. Indeed, interception is higher for more vertical vegetation; (ii) SAIL and
SAIL++ curves are closer to each other in the extremophile case because the semi-isotropic
diffuse flux assumption is more conserved in this case (Kallel et al., 2008); (iii) FDM curves
are closer to SAIL++ in the erectophile vegetation case then the extremophile case because the
mutual shadowing decreases as ALA increases. Thus, the hot spot effect is less pronounced
for erectophile vegetation. This was also seen in Subsection 4.2: for SAIL++ the energy is less
conserved in the extremophile case similarly to Figure 3 where the hot spot peak is more nar-
row in the erectophile case; (iv) Finally, although SAIL underestimates the reflectance, due to
the high hot spot effect, FDM curves are lower than SAIL curves in the extremophile case.

4.4 Model comparison: RAMI database
The RAdiation transfer Model Intercomparison (RAMI) exercise (Pinty et al., 2001; 2004) pro-
poses some protocols to benchmark radiative transfer models applied to plant canopies cov-
ering soil surfaces. The object of RAMI is to validate the reliability and accuracy of different
models in simulating RT in or near a vegetation canopy for the benefit of remote sensing data
interpretation.
The present study only deals with homogenous vegetation assumed a discrete medium. Also,
we only present the BRDF relative to the near-infrared domain, since, in this case, the leaf
albedo is higher than the other wavelength cases and, thus, the corresponding simulation
results have larger contrasts. In the RAMI exercise second phase (Pinty et al., 2004), the two
types of RT models were considered: 1-D models, namely SAIL, SAIL++, 1/2 Discrete (Gobron
et al., 1997), and 3-D models, namely Flight (North, 1996), DART (Gastellu-Etchegorry et al.,
1996), Sprint-2 (Thompson & Goel, 1998), Raytran (Govaerts & Verstraete, 1998), RGM (Qin &
Sig, 2000) and Drat (Lewis, 1999). In addition to these models, AddingSD and FDM will be
shown in this Section to be compared with the others. RAMI 2 recommended using simulation

results of 3-D models as a reference for homogeneous canopies when ground truth data is not
available. Moreover, simulation results of Flight, Raytran and Sprint-2 were assumed the
‘most credible models’. Therefore, only the ‘most credible’ 3-D models will be shown in the
figures.

(a) BRDF θs = 20. (b) BRDF θs = 50.

Fig. 5. Canopy BRDF simulations for a discrete medium, at the principal plane. The vegetation
features are LAI=3, H = 2, leaf radius = 0.05, erectophile leaf distribution, ρ = 0.4957 and
τ = 0.4409. The soil is assumed lambertian with reflectance equal to 0.159.

Figure 5 shows the BRDF simulations in the principal plane. In all cases, the FDM curves are
close to the 3-D model ones. This proves the validity of our approach. Moreover, SAIL++ gives
results close to FDM because the hot spot parameter is small (d = leaf radius/H = 0.25). FDM
and AddingSD perform similarly since both models overcome the isotropy assumption and
conserve energy. However, AddingSD curves are slightly higher than the FDM ones. This
can be explained by two phenomena: (i) AddingSD describes better the multiple scattering
under the vegetation since the hemispheres were decomposed into 400 segments, whereas in
our case they were decomposed into only 36 segments; (ii) AddingSD takes into account the
multi hot spot effect which increases the high order reflectances [cf. Fig 13, p. 3652 of (Kallel
et al., 2008)]. Finally, as already shown in the previous subsection, SAIL underestimates the
reflectance due to the semi-isotropy assumption.
Furthermore, for quantitative comparison with 3-D models, we already submitted our simu-
lations to RAMI administrator to participate to the forth phase.

5. Conclusion

The goal of this chapter was to derive new methods for computing canopy reflectance so
that it both conserves energy and surmounts the assumption that diffuse fluxes E+/E− are
isotropically distributed over hemispheres. To achieve this object, we first proposed the
AddingS/AddingSD models based on SAIL and Adding method and allowing to conserve en-
ergy based on the effective vegetation density approach. Second, due to the long running time
of such an approach we proposed to benefited from two models: (i) SAIL++ that overcomes
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Fig. 4. A comparison between BRDF of SAIL, SAIL++ and FDM versus the observation
zenith angle for (i) only a vegetation layer (noted in the legend BRDF v); (ii) for a vegeta-
tion layer+lambertian soil (noted in the legend BRDF v/s), and BTDF of SAIL++ and FDM for
a vegetation layer. LAI=3, d = 0.1, θs = 25◦, ρ = 0.5, τ = 0.5 and rso = 0.2.

E− in order to conserve the energy. Now, let us compare the extremophile and erectophile
cases. (i) Extremophile vegetation has a higher reflectance (and a lower transmittance) than
the erectophile one. Indeed, interception is higher for more vertical vegetation; (ii) SAIL and
SAIL++ curves are closer to each other in the extremophile case because the semi-isotropic
diffuse flux assumption is more conserved in this case (Kallel et al., 2008); (iii) FDM curves
are closer to SAIL++ in the erectophile vegetation case then the extremophile case because the
mutual shadowing decreases as ALA increases. Thus, the hot spot effect is less pronounced
for erectophile vegetation. This was also seen in Subsection 4.2: for SAIL++ the energy is less
conserved in the extremophile case similarly to Figure 3 where the hot spot peak is more nar-
row in the erectophile case; (iv) Finally, although SAIL underestimates the reflectance, due to
the high hot spot effect, FDM curves are lower than SAIL curves in the extremophile case.

4.4 Model comparison: RAMI database
The RAdiation transfer Model Intercomparison (RAMI) exercise (Pinty et al., 2001; 2004) pro-
poses some protocols to benchmark radiative transfer models applied to plant canopies cov-
ering soil surfaces. The object of RAMI is to validate the reliability and accuracy of different
models in simulating RT in or near a vegetation canopy for the benefit of remote sensing data
interpretation.
The present study only deals with homogenous vegetation assumed a discrete medium. Also,
we only present the BRDF relative to the near-infrared domain, since, in this case, the leaf
albedo is higher than the other wavelength cases and, thus, the corresponding simulation
results have larger contrasts. In the RAMI exercise second phase (Pinty et al., 2004), the two
types of RT models were considered: 1-D models, namely SAIL, SAIL++, 1/2 Discrete (Gobron
et al., 1997), and 3-D models, namely Flight (North, 1996), DART (Gastellu-Etchegorry et al.,
1996), Sprint-2 (Thompson & Goel, 1998), Raytran (Govaerts & Verstraete, 1998), RGM (Qin &
Sig, 2000) and Drat (Lewis, 1999). In addition to these models, AddingSD and FDM will be
shown in this Section to be compared with the others. RAMI 2 recommended using simulation

results of 3-D models as a reference for homogeneous canopies when ground truth data is not
available. Moreover, simulation results of Flight, Raytran and Sprint-2 were assumed the
‘most credible models’. Therefore, only the ‘most credible’ 3-D models will be shown in the
figures.

(a) BRDF θs = 20. (b) BRDF θs = 50.

Fig. 5. Canopy BRDF simulations for a discrete medium, at the principal plane. The vegetation
features are LAI=3, H = 2, leaf radius = 0.05, erectophile leaf distribution, ρ = 0.4957 and
τ = 0.4409. The soil is assumed lambertian with reflectance equal to 0.159.

Figure 5 shows the BRDF simulations in the principal plane. In all cases, the FDM curves are
close to the 3-D model ones. This proves the validity of our approach. Moreover, SAIL++ gives
results close to FDM because the hot spot parameter is small (d = leaf radius/H = 0.25). FDM
and AddingSD perform similarly since both models overcome the isotropy assumption and
conserve energy. However, AddingSD curves are slightly higher than the FDM ones. This
can be explained by two phenomena: (i) AddingSD describes better the multiple scattering
under the vegetation since the hemispheres were decomposed into 400 segments, whereas in
our case they were decomposed into only 36 segments; (ii) AddingSD takes into account the
multi hot spot effect which increases the high order reflectances [cf. Fig 13, p. 3652 of (Kallel
et al., 2008)]. Finally, as already shown in the previous subsection, SAIL underestimates the
reflectance due to the semi-isotropy assumption.
Furthermore, for quantitative comparison with 3-D models, we already submitted our simu-
lations to RAMI administrator to participate to the forth phase.

5. Conclusion

The goal of this chapter was to derive new methods for computing canopy reflectance so
that it both conserves energy and surmounts the assumption that diffuse fluxes E+/E− are
isotropically distributed over hemispheres. To achieve this object, we first proposed the
AddingS/AddingSD models based on SAIL and Adding method and allowing to conserve en-
ergy based on the effective vegetation density approach. Second, due to the long running time
of such an approach we proposed to benefited from two models: (i) SAIL++ that overcomes
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the isotropy assumption and is very fast since it is based on Discrete Cosine Transformation.
However, this model does not conserve energy in the hot spot; (ii) AddingSD which also over-
comes the isotropy assumption and allows to conserve energy. Our new model was based on
injecting the effective vegetation density approach in SAIL++, and therefore, benefited from
both energy conservation and a small running time. The procedure was as follows. First, the
flux created by direct solar light scattering upwards from vegetation, E1

+, was computed by
taking into account the hot spot effect. Second, according to the effective density approach,
the hot spot effect corresponded to a local vegetation density variation. Therefore, the diffuse
fluxes and radiances in the observation direction (created by E1

+) scattering have had to be
estimated using the same density achieving consequently energy conservation. Third, since
the computation in the latter step was too laborious, E1

+ was decomposed into virtual sub-
fluxes using Taylor series. Such subfluxes have a simpler expression, and were interpreted
each one as a virtual direct solar flux. The provided fluxes, radiances and BRDF/BTDF by the
virtual flux scattering were estimated using the SAIL++ formalism. Finally, the total model
BRDF/BTDF were estimated by summing the contributions of the subfluxes.
The convergence of the Taylor series decomposition was studied. We showed that only the
few first elements were needed to obtain accurate results and a small running time (ranging
from 2 to 20 milliseconds). In addition, energy conservation was checked; our model showed
good results with an error lower than 2%. Compared to SAIL++, our model’s BRDF/BTDF
curves were always lower since it decreases high order diffuse fluxes. Finally, compared to
3-D models of RAMI II database, our model gave close results.
Future research will deal with: (i) extending our model to the heterogenous medium case
using the Forest Reflectance and Transmittance (FRT) Model (Kuusk & Nilson, 2000); (ii)
then validating our model using the multiangular forest reflectance ground truth database
described by Kuusk et al. (2008).

A. SAIL++ model

A.1 Continuous case
The formalism shown in this appendix is not presented in the original SAIL++ reference (Ver-
hoef, 1998). However, it is needed in our study to derive the equations of our model.
The SAIL++ equations are written in the continuous case as

dEs(z,Ωs)
dz

= kEs(z,Ωs), (72)

dL−(z,Ω−)
dz

= −[s′ ◦ Es(z,Ωs)](Ω−) + [A ◦ L−(z)](Ω−) − [B ◦ L+(z)](Ω−), (73)

dL+(z,Ω+)
dz

= [s ◦ Es(z,Ωs)](Ω+) + [B ◦ L−(z)](Ω+) − [A ◦ L+(z)](Ω+), (74)

dE+
o (z,Ωo)

dz
= wEs(z,Ωs) + [v ◦ L−(z)] + [v′ ◦ L+(z)] − KE+

o (z,Ωo), (75)

dE−
o (z,Ωo)

dz
= −w′Es(z,Ωs) − [v′ ◦ L−(z)] − [v ◦ L+(z)] + KE−

o (z,Ωo), (76)

where Es is the solar incident flux, L−, L+ are the downward and upward hemispherical
distributions of diffuse radiance, E+

o , E−
o are the upward and downward radiances in the

source direction times k, s, s′, A, B, w, w′, v, v′ and K are the generalized Suits scattering
terms (Suits, 1972). These parameters are estimated for a given solar and sensor orientation,

leaf distribution and foliage density. The foliage area volume density (FAVD) will be called ūL
(cf. Appendix B) and each Suits parameter (X) is written as follows

X = ūLXo, (77)

with Xo a scattering parameter depending only on the leaf distribution and the solar and
sensor orientations, but not the foliage density. Xo will be called the normalized parameter
corresponding to X.
Applied to Es, s and s′ give respectively

[s ◦ Es(Ωs)](.) = π−1w(Ωs → .)Es,
[s′ ◦ Es(Ωs)](.) = π−1w′(Ωs → .)Es,

(78)

where w and w′ are respectively the bidirectional scattering terms when the input and the
output flux directions are in the same and opposite hemispheres.
Applied to a radiance distribution (L), the operator B gives

[B ◦ L](.) = π−1
∫

Π
w′(Ω → .)L(Ω)cos(Ω)dΩ. (79)

A can be divided into two terms
A = k−B′, (80)

where k and B′ are respectively the extinction and the scattering terms.
Since, the extinction of L− is given by

dL−(z,Ω−)
dz

= κL−(z,Ω−). (81)

Therefore, applied to a radiance distribution L, the operator k can be defined as

[k ◦ L](Ω′ = (θ′, ϕ′)) =
∫

Π

δ(θ′)δ(ϕ′)
cos(θ′)sin(θ′)

κ(Ω)L(Ω)cos(θ)dΩ. (82)

Applied to a radiance distribution (L), B′ gives

[B′ ◦ L](.) = π−1
∫

Π
w(Ω → .)L(Ω)cos(Ω)dΩ. (83)

Applied to a radiance distribution (L), v and v′ give respectively

v ◦ L =
∫

Π
w(Ω → Ωo)L(Ω)cos(Ω)dΩ,

v′ ◦ L =
∫

Π
w′(Ω → Ωo)L(Ω)cos(Ω)dΩ.

(84)
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the isotropy assumption and is very fast since it is based on Discrete Cosine Transformation.
However, this model does not conserve energy in the hot spot; (ii) AddingSD which also over-
comes the isotropy assumption and allows to conserve energy. Our new model was based on
injecting the effective vegetation density approach in SAIL++, and therefore, benefited from
both energy conservation and a small running time. The procedure was as follows. First, the
flux created by direct solar light scattering upwards from vegetation, E1

+, was computed by
taking into account the hot spot effect. Second, according to the effective density approach,
the hot spot effect corresponded to a local vegetation density variation. Therefore, the diffuse
fluxes and radiances in the observation direction (created by E1

+) scattering have had to be
estimated using the same density achieving consequently energy conservation. Third, since
the computation in the latter step was too laborious, E1

+ was decomposed into virtual sub-
fluxes using Taylor series. Such subfluxes have a simpler expression, and were interpreted
each one as a virtual direct solar flux. The provided fluxes, radiances and BRDF/BTDF by the
virtual flux scattering were estimated using the SAIL++ formalism. Finally, the total model
BRDF/BTDF were estimated by summing the contributions of the subfluxes.
The convergence of the Taylor series decomposition was studied. We showed that only the
few first elements were needed to obtain accurate results and a small running time (ranging
from 2 to 20 milliseconds). In addition, energy conservation was checked; our model showed
good results with an error lower than 2%. Compared to SAIL++, our model’s BRDF/BTDF
curves were always lower since it decreases high order diffuse fluxes. Finally, compared to
3-D models of RAMI II database, our model gave close results.
Future research will deal with: (i) extending our model to the heterogenous medium case
using the Forest Reflectance and Transmittance (FRT) Model (Kuusk & Nilson, 2000); (ii)
then validating our model using the multiangular forest reflectance ground truth database
described by Kuusk et al. (2008).

A. SAIL++ model

A.1 Continuous case
The formalism shown in this appendix is not presented in the original SAIL++ reference (Ver-
hoef, 1998). However, it is needed in our study to derive the equations of our model.
The SAIL++ equations are written in the continuous case as

dEs(z,Ωs)
dz

= kEs(z,Ωs), (72)

dL−(z,Ω−)
dz

= −[s′ ◦ Es(z,Ωs)](Ω−) + [A ◦ L−(z)](Ω−) − [B ◦ L+(z)](Ω−), (73)

dL+(z,Ω+)
dz

= [s ◦ Es(z,Ωs)](Ω+) + [B ◦ L−(z)](Ω+) − [A ◦ L+(z)](Ω+), (74)

dE+
o (z,Ωo)

dz
= wEs(z,Ωs) + [v ◦ L−(z)] + [v′ ◦ L+(z)] − KE+

o (z,Ωo), (75)

dE−
o (z,Ωo)

dz
= −w′Es(z,Ωs) − [v′ ◦ L−(z)] − [v ◦ L+(z)] + KE−

o (z,Ωo), (76)

where Es is the solar incident flux, L−, L+ are the downward and upward hemispherical
distributions of diffuse radiance, E+

o , E−
o are the upward and downward radiances in the

source direction times k, s, s′, A, B, w, w′, v, v′ and K are the generalized Suits scattering
terms (Suits, 1972). These parameters are estimated for a given solar and sensor orientation,

leaf distribution and foliage density. The foliage area volume density (FAVD) will be called ūL
(cf. Appendix B) and each Suits parameter (X) is written as follows

X = ūLXo, (77)

with Xo a scattering parameter depending only on the leaf distribution and the solar and
sensor orientations, but not the foliage density. Xo will be called the normalized parameter
corresponding to X.
Applied to Es, s and s′ give respectively

[s ◦ Es(Ωs)](.) = π−1w(Ωs → .)Es,
[s′ ◦ Es(Ωs)](.) = π−1w′(Ωs → .)Es,

(78)

where w and w′ are respectively the bidirectional scattering terms when the input and the
output flux directions are in the same and opposite hemispheres.
Applied to a radiance distribution (L), the operator B gives

[B ◦ L](.) = π−1
∫

Π
w′(Ω → .)L(Ω)cos(Ω)dΩ. (79)

A can be divided into two terms
A = k−B′, (80)

where k and B′ are respectively the extinction and the scattering terms.
Since, the extinction of L− is given by

dL−(z,Ω−)
dz

= κL−(z,Ω−). (81)

Therefore, applied to a radiance distribution L, the operator k can be defined as

[k ◦ L](Ω′ = (θ′, ϕ′)) =
∫

Π

δ(θ′)δ(ϕ′)
cos(θ′)sin(θ′)

κ(Ω)L(Ω)cos(θ)dΩ. (82)

Applied to a radiance distribution (L), B′ gives

[B′ ◦ L](.) = π−1
∫

Π
w(Ω → .)L(Ω)cos(Ω)dΩ. (83)

Applied to a radiance distribution (L), v and v′ give respectively

v ◦ L =
∫

Π
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A.2 Discretization
Next, concerning the implementation and in order to describe the upward and downward
diffuses radiance hemispherical distribution, Verhoef (1998) proposes a discretization of hemi-
spheres: zenithal and azimuthal angles into N segments. In this case, L− and L+ are replaced
by sub-fluxes defined over the hemisphere segments forming together vectors called E− and
E+, respectively. The operators of Eq. (72) are discretized accordingly, in particular, s, s′

become vectors called s and s′, respectively, A, B becomes square matrices called A and B,
respectively, and v and v′ become vectors called v and v′, respectively. Eqs. (72) (73) (74) (75)
(76) become (Verhoef, 1998):

d
dz




Es
E−
E+
E+

o
E−

o




=




k 0 0 0 0
−s′ A −B 0 0

s B −A 0 0
w v v′ −K 0

−w′ −v′ −v 0 K







Es
E−
E+
E+

o
E−

o




, (85)

Note that, as in the continuous case [cf. Eq. (80)], A could be written as

A = κκκ − B′. (86)

with κκκ and B′ the discrete scattering matrices corresponding to k and B′, respectively.
The final solution linking the layer output fluxes to the input ones is (Verhoef, 1998)




Es(L)
E−(L)
E+(t)
E+

o (t)
E−

o (L)




=




τss 0 0 0 0
τττsd T R 0 0
ρρρsd R T 0 0
ρso ρρρT

do τττT
do τoo 0

τso τττT
do ρρρT

do 0 τoo







Es(t)
E−(t)
E+(L)
E+

o (t)
E−

o (L)




, (87)

where (L) and (t) refer to the bottom and top of the layer, respectively.
Now, let us consider the case when the source changes. This change includes both the direc-
tion and the way that the direct flux is scattered under the vegetation. Since the scattering
properties depend only on the vegetation parameters and the source solid angle, the latter
possibility of change does not have a physical meaning. However, it is needed in our case
to define the scattering parameter when an effective vegetation density is considered. The
variation has an impact over the scattering parameters of Eq. (85) as follows. The terms k,
s′, s and w change and the other matrix terms remain constant. The consequences over the
boundary condition matrix concern elements that depend on the source, and are: τss, τττsd, ρρρsd,
ρso and τso. Thus, to allow their estimation, an explicit dependency of the boundary terms on
the scattering ones has to be accomplished:

{τss ⇒ τss(k),τττsd ⇒ τττsd(k,s′,s),ρρρsd ⇒ ρρρsd(k,s′,s),ρso ⇒ ρso(k,s′,s,w),τso ⇒ τso(k,s′,s,w′)}.
(88)

Moreover, in the discrete leaf case, the hot spot effect is taken into account in the computation
of ρso, in this case it will be noted as ρHS

so (Verhoef, 1998).
To distinguish SAIL++ boundary matrix terms from our model terms, ++ will be added to
SAIL++ terms as upperscript.

A.3 SAIL++ equation reformulation
In our study, we need to separate the upward diffuse fluxes created by the first collision with
leaves of direct flux from the upward fluxes created by multiple collisions, the corresponding
radiances are called L1

+ and L∞
+ , respectively. Indeed, a specific processing for L1

+ is proposed
in this paper in order to take into account the hot spot effect as well as to conserve energy.
As defined, L1

+ depends on Es and can be extended when traveling under the vegetation.
Compared to L+ [cf. Eq. (74)], L1

+ does not increases by L− and L1
+ itself scattering. Thus its

variation is governed by [cf. Eq. (80)]

dL1
+(z,Ω+)

dz
= [s ◦ Es(z,Ωs)](Ω+) − [k ◦ L1

+(z)](Ω+). (89)

Now, concerning L∞
+ , it does not depend any more on Es. However it increases by L1

+, L− and
L∞

+ itself scattering and decreases, as usual, by extinction. It is given by

dL∞
+(z,Ω+)

dz
= [B′ ◦ L1

+(z)](Ω+) + [B ◦ L−(z)](Ω+) − [A ◦ L∞
+(z)](Ω+), (90)

According to this decomposition, the reformulation of SAIL++ equation set is as follows. Eq.
(74) has to be replaced by Eqs. (89) and (90). In Eqs (73), (75) and (76), L+ has to be replaced
by L1

+ + L∞
+ . One obtains

dL−(z,Ω−)
dz

=−[s′ ◦Es(z,Ωs)](Ω−)+ [A◦ L−(z)](Ω−)− [B◦ L1
+(z)](Ω−)− [B◦ L∞

+(z)](Ω−),

(91)
dE+

o (z,Ωo)
dz

= wEs(z,Ωs) + [v ◦ L−(z)] + [v′ ◦ L1
+(z)] + [v′ ◦ L∞

+(z)] − KE+
o (z,Ωo), (92)

dE−
o (z,Ωo)

dz
= −w′Es(z,Ωs) − [v′ ◦ L−(z)] − [v ◦ L1

+(z)] − [v ◦ L∞
+(z)] + KE−

o (z,Ωo). (93)

The reformulated SAIL++ equation set is composed by Eqs. (72), (91), (89), (90) (92) and (93).

B. Vegetation local density

To define a realization of a vegetation distribution within the canopy in the discrete leaf case,
Knyazikhin et al. (1998) propose the definition of an indicator function:

χ(�r) =
{

1, if�r ∈ vegetation,
0, otherwise, (94)

where �r = (x,y,z) is a point within the canopy. Then, they define a fine spatial mesh by
dividing the layer into non-overlapping fine cells (e(�r)) with volume V[e(�r)]. Thus, the foliage
area volume density (FAVD) could be defined as follows:

uL(�r) =
1

V[e(�r)]

∫
�t∈e(�r)

χ(�t)d�t. (95)

By defining the average density of leaf area per unit volume, called dL (depends only on leaf
shape and orientation distribution), uL is written simply as follows

uL(�r) = dLχ(�r). (96)
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A.2 Discretization
Next, concerning the implementation and in order to describe the upward and downward
diffuses radiance hemispherical distribution, Verhoef (1998) proposes a discretization of hemi-
spheres: zenithal and azimuthal angles into N segments. In this case, L− and L+ are replaced
by sub-fluxes defined over the hemisphere segments forming together vectors called E− and
E+, respectively. The operators of Eq. (72) are discretized accordingly, in particular, s, s′

become vectors called s and s′, respectively, A, B becomes square matrices called A and B,
respectively, and v and v′ become vectors called v and v′, respectively. Eqs. (72) (73) (74) (75)
(76) become (Verhoef, 1998):
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Note that, as in the continuous case [cf. Eq. (80)], A could be written as

A = κκκ − B′. (86)

with κκκ and B′ the discrete scattering matrices corresponding to k and B′, respectively.
The final solution linking the layer output fluxes to the input ones is (Verhoef, 1998)




Es(L)
E−(L)
E+(t)
E+

o (t)
E−

o (L)




=




τss 0 0 0 0
τττsd T R 0 0
ρρρsd R T 0 0
ρso ρρρT

do τττT
do τoo 0

τso τττT
do ρρρT

do 0 τoo







Es(t)
E−(t)
E+(L)
E+

o (t)
E−

o (L)
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where (L) and (t) refer to the bottom and top of the layer, respectively.
Now, let us consider the case when the source changes. This change includes both the direc-
tion and the way that the direct flux is scattered under the vegetation. Since the scattering
properties depend only on the vegetation parameters and the source solid angle, the latter
possibility of change does not have a physical meaning. However, it is needed in our case
to define the scattering parameter when an effective vegetation density is considered. The
variation has an impact over the scattering parameters of Eq. (85) as follows. The terms k,
s′, s and w change and the other matrix terms remain constant. The consequences over the
boundary condition matrix concern elements that depend on the source, and are: τss, τττsd, ρρρsd,
ρso and τso. Thus, to allow their estimation, an explicit dependency of the boundary terms on
the scattering ones has to be accomplished:

{τss ⇒ τss(k),τττsd ⇒ τττsd(k,s′,s),ρρρsd ⇒ ρρρsd(k,s′,s),ρso ⇒ ρso(k,s′,s,w),τso ⇒ τso(k,s′,s,w′)}.
(88)

Moreover, in the discrete leaf case, the hot spot effect is taken into account in the computation
of ρso, in this case it will be noted as ρHS

so (Verhoef, 1998).
To distinguish SAIL++ boundary matrix terms from our model terms, ++ will be added to
SAIL++ terms as upperscript.

A.3 SAIL++ equation reformulation
In our study, we need to separate the upward diffuse fluxes created by the first collision with
leaves of direct flux from the upward fluxes created by multiple collisions, the corresponding
radiances are called L1

+ and L∞
+ , respectively. Indeed, a specific processing for L1

+ is proposed
in this paper in order to take into account the hot spot effect as well as to conserve energy.
As defined, L1

+ depends on Es and can be extended when traveling under the vegetation.
Compared to L+ [cf. Eq. (74)], L1

+ does not increases by L− and L1
+ itself scattering. Thus its

variation is governed by [cf. Eq. (80)]

dL1
+(z,Ω+)

dz
= [s ◦ Es(z,Ωs)](Ω+) − [k ◦ L1

+(z)](Ω+). (89)

Now, concerning L∞
+ , it does not depend any more on Es. However it increases by L1

+, L− and
L∞

+ itself scattering and decreases, as usual, by extinction. It is given by

dL∞
+(z,Ω+)

dz
= [B′ ◦ L1

+(z)](Ω+) + [B ◦ L−(z)](Ω+) − [A ◦ L∞
+(z)](Ω+), (90)

According to this decomposition, the reformulation of SAIL++ equation set is as follows. Eq.
(74) has to be replaced by Eqs. (89) and (90). In Eqs (73), (75) and (76), L+ has to be replaced
by L1

+ + L∞
+ . One obtains

dL−(z,Ω−)
dz

=−[s′ ◦Es(z,Ωs)](Ω−)+ [A◦ L−(z)](Ω−)− [B◦ L1
+(z)](Ω−)− [B◦ L∞

+(z)](Ω−),

(91)
dE+

o (z,Ωo)
dz

= wEs(z,Ωs) + [v ◦ L−(z)] + [v′ ◦ L1
+(z)] + [v′ ◦ L∞

+(z)] − KE+
o (z,Ωo), (92)

dE−
o (z,Ωo)

dz
= −w′Es(z,Ωs) − [v′ ◦ L−(z)] − [v ◦ L1

+(z)] − [v ◦ L∞
+(z)] + KE−

o (z,Ωo). (93)

The reformulated SAIL++ equation set is composed by Eqs. (72), (91), (89), (90) (92) and (93).

B. Vegetation local density

To define a realization of a vegetation distribution within the canopy in the discrete leaf case,
Knyazikhin et al. (1998) propose the definition of an indicator function:

χ(�r) =
{

1, if�r ∈ vegetation,
0, otherwise, (94)

where �r = (x,y,z) is a point within the canopy. Then, they define a fine spatial mesh by
dividing the layer into non-overlapping fine cells (e(�r)) with volume V[e(�r)]. Thus, the foliage
area volume density (FAVD) could be defined as follows:

uL(�r) =
1

V[e(�r)]

∫
�t∈e(�r)

χ(�t)d�t. (95)

By defining the average density of leaf area per unit volume, called dL (depends only on leaf
shape and orientation distribution), uL is written simply as follows

uL(�r) = dLχ(�r). (96)
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In a 1-D RT model, we always need an averaged value of uL, called ūL, rather than a unique
realization. Assuming that we have a number, Nc, of canopy realizations, then

ūL(�r) ≈

Nc

∑
n=1

u(n)
L (�r)

Nc
, (97)

with u(n)
L the value of FAVD for the realization number n. Similarly, we can define the proba-

bility of finding foliage in e(�r) called Pχ as follows

Pχ(�r) =

Nc

∑
n=1

χ(n)(�r)

Nc
, (98)

with χ(n) the indicator function for the realization n. Finally, we obtain

ūL(�r) = dLPχ(�r). (99)

C. Virtual flux decomposition validation

In this appendix, we will answer the following questions: why ∀n ∈N, Ln
1 [cf. Eq. (17)] can be

considered a radiance distribution and why the expression of Pχ,n [cf. Eq. (21)] is valid. The
validity can be proved if we can show that the derived radiance hemispherical distributions
L− and L∞

+ , and radiances in observation direction E+
o and E−

o , are correct. Since the proofs
are similar, we will show only the validity of E+

o expression. As validation reference, we will
adopt the AddingSD approach.
Recall that the upward elementary diffuse flux, d3E1

+, in an elementary solid angle dΩ, created
by the first collision with the vegetation in an elementary volume at point N with thickness
dt is given by [cf. Figure 1 and Eq. (14)]

d3E1
+(N → M,Ω) = dL1

+(N → M,Ω)cos(θ)dΩ,

= Es(0)exp[(k + K)(t − z)]exp

[√
kK
b

(
1 − exp[−b(z − t)]

)]

×exp(kz)π−1w(N,Ωs → Ω)dtcos(θ)dΩ.

(100)

As defined in Section 2.1.3, the a posteriori extinction, KHS, of a flux present on M collided
only one time at N and initially coming from a source solid angle Ωs is (cf. Figure 1)

KHS(Ω|Ωs,0, t − z) = K + limu→z
1
b

√
kK

(
exp[b(t − u)] − exp[b(t − z)]

)

u − z
,

= K −
√

kK exp[−b(z − t)].
(101)

This decrease of extinction value means a decrease in the collision probability locally around
M. Thus, in turn, means a decrease in the probability of finding foliage at M, Pχ (cf. Appendix
B). Now, according to Eq. (99)

K = dLPχK0
KHS = dLPχ,HS(Ω|Ωs,0, t − z)K0

}
⇒ Pχ,HS(Ω|Ωs,0, t − z) =

KHS
K

Pχ, (102)

were K0 is the normalized extinction parameter corresponding to K [cf. Eq. (77)],
Pχ,HS(Ω|Ωs,0, t − z) is the ‘a posteriori’ probability of finding vegetation at M. To be sim-
pler, it will be noted Pχ,HS(Ω|Ωs, t − z).
The angular differentiation of E+

o (d3E+
o (z,Ω → Ωo)) that depends only on d3E1

+ is

d[d3E+
o (t → z,Ω → Ωo)]

dz
= w′

HS(t → z,Ω → Ωo)d3E1
+(N → M,Ω),

= w′
HS(Ω|Ωs, t − z)L1

+(t → z,Ω)dtcos(θ)dΩ,
(103)

where
w′

HS(Ω|Ωs, t − z) = dLPχ,HS(Ω|Ωs, t − z)w′
0(Ω → Ωo). (104)

Now,

L1
+(z,Ω) = Es(0)exp(kz)π−1w(Ωs → Ω)

×
∫ z

−H
exp[(k + K)(t − z)]exp

[√
kK
b

(
1 − exp[−b(z − t)]

)]
dt.

(105)

Therefore,

d[d2E+
o (z,Ω → Ωo)]

dz
= Es(0)exp(kz)π−1w(Ωs → Ω)cos(θ)dΩdLw′

0(Ω → Ωo)

×
∫ z

−H
Pχ,HS(Ω|Ωs, t − z)exp[(k + K)(t − z)]

×exp

[√
kK
b

(
1 − exp[−b(z − t)]

)]
dt.

(106)

Now, it is straightforward to show that

Pχ,HS(Ω|Ωs, t − z)exp[(k + K)(t − z)]exp

[√
kK
b

(1 − exp[−b(z − t)])

]

=
+∞

∑
n=0

Pχ,n An(−1)n exp[(k + K + nb)(t − z)].
(107)

Then, Eq. (106) becomes

d[d2E+
o (z,Ω → Ωo)]

dz
= Es(0)exp(kz)π−1w(Ωs → Ω)cos(θ)dΩdLw′

0(Ω → Ωo)

×
∫ z

−H

+∞

∑
n=0

Pχ,n An(−1)n exp[(k + K + nb)(t − z)]dt,

=
+∞

∑
n=0

An(−1)nEs(0)exp(kz)π−1w(Ωs → Ω)cos(θ)dΩ

×
∫ z

−H
w′

n(Ω → Ωo)exp[(k + K + nb)(t − z)]dt,

=
+∞

∑
n=0

An(−1)nw′
n(Ω → Ωo)L1,n

+ (z,Ω)cos(θ)dΩ.

(108)

Equations (30) and (108) are the same which implies the validity of our approach.
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In a 1-D RT model, we always need an averaged value of uL, called ūL, rather than a unique
realization. Assuming that we have a number, Nc, of canopy realizations, then

ūL(�r) ≈

Nc

∑
n=1

u(n)
L (�r)

Nc
, (97)

with u(n)
L the value of FAVD for the realization number n. Similarly, we can define the proba-

bility of finding foliage in e(�r) called Pχ as follows

Pχ(�r) =

Nc

∑
n=1

χ(n)(�r)

Nc
, (98)

with χ(n) the indicator function for the realization n. Finally, we obtain

ūL(�r) = dLPχ(�r). (99)

C. Virtual flux decomposition validation

In this appendix, we will answer the following questions: why ∀n ∈N, Ln
1 [cf. Eq. (17)] can be

considered a radiance distribution and why the expression of Pχ,n [cf. Eq. (21)] is valid. The
validity can be proved if we can show that the derived radiance hemispherical distributions
L− and L∞

+ , and radiances in observation direction E+
o and E−

o , are correct. Since the proofs
are similar, we will show only the validity of E+

o expression. As validation reference, we will
adopt the AddingSD approach.
Recall that the upward elementary diffuse flux, d3E1

+, in an elementary solid angle dΩ, created
by the first collision with the vegetation in an elementary volume at point N with thickness
dt is given by [cf. Figure 1 and Eq. (14)]

d3E1
+(N → M,Ω) = dL1

+(N → M,Ω)cos(θ)dΩ,

= Es(0)exp[(k + K)(t − z)]exp

[√
kK
b

(
1 − exp[−b(z − t)]

)]

×exp(kz)π−1w(N,Ωs → Ω)dtcos(θ)dΩ.

(100)

As defined in Section 2.1.3, the a posteriori extinction, KHS, of a flux present on M collided
only one time at N and initially coming from a source solid angle Ωs is (cf. Figure 1)

KHS(Ω|Ωs,0, t − z) = K + limu→z
1
b

√
kK

(
exp[b(t − u)] − exp[b(t − z)]

)

u − z
,

= K −
√

kK exp[−b(z − t)].
(101)

This decrease of extinction value means a decrease in the collision probability locally around
M. Thus, in turn, means a decrease in the probability of finding foliage at M, Pχ (cf. Appendix
B). Now, according to Eq. (99)

K = dLPχK0
KHS = dLPχ,HS(Ω|Ωs,0, t − z)K0

}
⇒ Pχ,HS(Ω|Ωs,0, t − z) =

KHS
K

Pχ, (102)

were K0 is the normalized extinction parameter corresponding to K [cf. Eq. (77)],
Pχ,HS(Ω|Ωs,0, t − z) is the ‘a posteriori’ probability of finding vegetation at M. To be sim-
pler, it will be noted Pχ,HS(Ω|Ωs, t − z).
The angular differentiation of E+

o (d3E+
o (z,Ω → Ωo)) that depends only on d3E1

+ is

d[d3E+
o (t → z,Ω → Ωo)]

dz
= w′

HS(t → z,Ω → Ωo)d3E1
+(N → M,Ω),

= w′
HS(Ω|Ωs, t − z)L1

+(t → z,Ω)dtcos(θ)dΩ,
(103)

where
w′

HS(Ω|Ωs, t − z) = dLPχ,HS(Ω|Ωs, t − z)w′
0(Ω → Ωo). (104)

Now,

L1
+(z,Ω) = Es(0)exp(kz)π−1w(Ωs → Ω)

×
∫ z

−H
exp[(k + K)(t − z)]exp

[√
kK
b

(
1 − exp[−b(z − t)]

)]
dt.

(105)

Therefore,

d[d2E+
o (z,Ω → Ωo)]

dz
= Es(0)exp(kz)π−1w(Ωs → Ω)cos(θ)dΩdLw′

0(Ω → Ωo)

×
∫ z

−H
Pχ,HS(Ω|Ωs, t − z)exp[(k + K)(t − z)]

×exp

[√
kK
b

(
1 − exp[−b(z − t)]

)]
dt.

(106)

Now, it is straightforward to show that

Pχ,HS(Ω|Ωs, t − z)exp[(k + K)(t − z)]exp

[√
kK
b

(1 − exp[−b(z − t)])

]

=
+∞

∑
n=0

Pχ,n An(−1)n exp[(k + K + nb)(t − z)].
(107)

Then, Eq. (106) becomes

d[d2E+
o (z,Ω → Ωo)]

dz
= Es(0)exp(kz)π−1w(Ωs → Ω)cos(θ)dΩdLw′

0(Ω → Ωo)

×
∫ z

−H

+∞

∑
n=0

Pχ,n An(−1)n exp[(k + K + nb)(t − z)]dt,

=
+∞

∑
n=0

An(−1)nEs(0)exp(kz)π−1w(Ωs → Ω)cos(θ)dΩ

×
∫ z

−H
w′

n(Ω → Ωo)exp[(k + K + nb)(t − z)]dt,

=
+∞

∑
n=0

An(−1)nw′
n(Ω → Ωo)L1,n

+ (z,Ω)cos(θ)dΩ.

(108)

Equations (30) and (108) are the same which implies the validity of our approach.
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bidirectional reflectance calculation based on adding method and sail formalism:
Addings/addingsd, Rem. Sens. Env. 112(9): 3639–3655.

Knyazikhin, Y., Kranigk, J., Myneni, R. B., Panfyorov, O. & Gravenhorst, G. (1998). Influence of
small-scale structure on radiative transfer and photosynthesis in vegetation canopies,
Journal of Geophysical Research 103(D6): 6133–6144.

Kuusk, A. (1985). The hot spot effect of a uniform vegetative cover, Sovietic Jornal of Remote
Sensing 3(4): 645–658.

Kuusk, A., Kuusk, J. & Lang, M. (2008). A dataset for the validation of reflectance models, The
4S Symposium - Small Satellites Systems and Services, Rhodes, Greece, p. 10.

Kuusk, A. & Nilson, T. (2000). A directional multispectral forest reflectance model, Rem. Sens.
Env. 72(2): 244–252.

Lewis, P. (1999). Three-dimensional plant modelling for remote sensing simulation studies
using the botanical plant modelling system, Agronomie-Agriculture and Environment
19: 185–210.

North, P. (1996). Three-dimensional forest light interaction model using a monte carlo method,
IEEE Transactions on Geoscience and Remote Sensing 34(946–956).

Pinty, B., Gobron, N., Widlowski, J., Gerstl, S., Verstraete, M., Antunes, M., Bacour, C., Gascon,
F., Gastellu, J., Goel, N., Jacquemoud, S., North, P., Qin, W. & Richard, T. (2001). The
RAdiation transfer Model Intercomparison (RAMI) exercise, Journal of Geophysical Re-
search 106: 11937–11956.

Pinty, B., Widlowski, J., Taberner, M., Gobron, N., Verstraete, M., Disney, M., Gascon, F.,
Gastellu, J., Jiang, L., Kuusk, A., Lewis, P., Li, X., Ni-Meister, W., Nilson, T., North,
P., Qin, W., Su, L., Tang, R., Thompson, R., Verhoef, W., Wang, H., Wang, J., Yan, G.

& Zang, H. (2004). The RAdiation transfer Model Intercomparison (RAMI) exercise:
Results from the second phase, Journal of Geophysical Research 109.

Qin, W. & Sig, A. (2000). 3-d scene modeling of semi-desert vegetation cover and its radiation
regime, Rem. Sens. Env. 74: 145–162.

Suits, G. H. (1972). The calculation of the directional reflectance of a vegetative canopy, Rem.
Sens. Env. 2: 117–125.

Thompson, R. & Goel, N. S. (1998). Two models for rapidly calculating bidirectional re-
flectance: Photon spread (ps) model and statistical photon spread (sps) model, Re-
mote Sensing Reviews 16: 157–207.

Van de Hulst, H. C. (1980). Multiple Light Scattering: Tables, Formulas, and Applications, Aca-
demic press, Inc., New York.

Verhoef, W. (1984). Light scattering by leaf layers with application to canopy reflectance mod-
elling : the sail model, Rem. Sens. Env. 16: 125–141.

Verhoef, W. (1985). Earth observation modeling based on layer scattering matrices, Rem. Sens.
Env. 17: 165–178.

Verhoef, W. (1998). Theory of Radiative Transfer Models Applied to Optical Remote Sensing of Vege-
tation Canopies, PhD thesis, Agricultural University, Wageningen, The Netherlands.



Geoscience	and	Remote	Sensing,	New	Achievements314



Remote	sensing	of	aerosol	over	vegetation		
cover	based	on	pixel	level	multi-wavelength	polarized	measurements 315

Remote	sensing	of	aerosol	over	vegetation	cover	based	on	pixel	 level	
multi-wavelength	polarized	measurements

Xinli	Hu,	Xingfa	Gu	and	Tao	Yu

X 
 

Remote Sensing of Aerosol Over Vegetation 
Cover Based on Pixel Level Multi-Wavelength 

Polarized Measurements 
 

Xinli Hu*abc, Xingfa Guac and Tao Yuac 
aState Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of 

Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China;  
bGraduate University of Chinese Academy of Sciences, Beijing 100049, China; 

cThe Center for National Space-borne Demonstration, Beijing 100101,China  

 
Abstract 

Often the aerosol contribution is small compared to the surface covered vegetation. while, 
atmospheric scattering is much more polarized than the surface reflection. In essence, the 
polarized light is much more sensitive to atmospheric scattering than to reflection by 
vegetative cover surface. Using polarized information could solve the inverse problem of 
separating the surface and atmospheric scattering contributions. This paper presents 
retrieval of aerosols properties from multi-wavelength polarized measurements. The results 
suggest that it is feasible and possibility for discriminating the aerosol contribution from the 
surface in the aerosol retrieval procedure using multidirectional and multi-wavelength 
polarization measurements.  
Keywords: Aerosol, remote sensing, polarized measurements, short wave infrared 

 
1. Introduction 

Atmospheric aerosol forcing is one of the greatest uncertainties in our understanding of the 
climate system. To address this issue, many scientists are using Earth observations from 
satellites because the information provided is both timely and global in coverage [2], [4]. 
Aerosol properties over land have mainly been retrieved using passive optical satellite 
techniques, but it is well known that this is a very complex task [1]. Often the aerosol 
contribution is small compared to the surface scattering, particularly over bright surfaces 
[5]. On the other hand, atmospheric scattering is much more polarized than ground surface 
reflection [3]. This paper presents a set of spectral and directional signature of the polarized 
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reflectance acquired over various vegetative cover. We found that the polarization 
characteristics of the surface concerned with the physical and chemical properties, 
wavelength and the geometric structure factors. Moreover, we also found that under the 
same observation geometric conditions, the Change of polarization characteristics caused by 
the surface geometric structure could be effectively removed by computing the ratio 
between the short wave infrared bands (SWIR) polarized reflectance with those in the 
visible channels, especially over crop canopies surface. For this crop canopies studied, our 
results suggest that using this kind of the correlation between the SWIR polarized 
reflectance with those in the visible can precisely eliminate the effect of surface polarized 
characteristic which caused by the vegetative surface geometric structure. The algorithm of 
computing the ratio of polarization bands have been applied to satellite polarization 
datasets to solve the inverse problem of separating the surface and atmospheric scattering 
contributions over land surface covered vegetation. The results suggest that compared to 
using a typically based on theoretical modeling to represent complex ground surface, the 
method does not require the ground polarized reflectance and minimizes the effect of land 
surface. This makes it possible to accurately discriminating the aerosol contribution from the 
ground surface in the retrieval procedure. 

 
2. Theory and backgrand 

Polarization (Brit. polarisation) is a property of waves that describes the orientation of their 
oscillations. The polarization is described by specifying the direction of the wave's electric 
field. According to the Maxwell equations, the direction of the magnetic field is uniquely 
determined for a specific electric field distribution and polarization. The simplest 
manifestation of polarization to visualize is that of a plane wave, which is a good 
approximation of most light waves. For plane waves the transverse condition requires that 
the electric and magnetic field be perpendicular to the direction of propagation and to each 
other. Conventionally, when considering polarization, the electric field vector is described 
and the magnetic field is ignored since it is perpendicular to the electric field and 
proportional to it. The electric field vector of a plane wave may be arbitrarily divided into 
two perpendicular components labeled x (00) and y (900) (with z indicating the direction of 
travel). The two components have exactly the same frequency. However, these components 
have two other defining characteristics that can differ. First, the two components may not 
have the same amplitude. Second, the two components may not have the same phase. That 
is they may not reach their maxima and minima at the same time. 
 
Although direct, unscattered sunlight is unpolarized, sunlight reflected by the Earth’s 
atmosphere is generally polarized because of scattering by atmospheric gaseous molecules 
and aerosol particles. Linearly polarized light can be described by the Stokes parameters 
(The Stokes parameters are a set of values that describe the polarization state of 
electromagnetic radiation (including visible light). They were defined by George Gabriel 
Stokes in 1852) I, Q, and U, which are defined, relative to any reference plane, as follows:  
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Q=I0°-I90°                                    (2) 

U=I45°-135°                                                               (3) 

 
where I is the total intensity and Q and U fully represent the linear polarization. In Eqs.(1)–
(3) the angles denote the direction of the transmission axis of a linear polarizer relative to the 
reference plane. The degree of linear polarization P is given by 
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and the direction of polarization x relative to the reference plane is given by 
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For the unique definition of x , see Figure 1. 
 

 
Fig. 1. Geometry of scattering by an atmospheric volume element. The volume element is 
located in the origin 
 
In Figure 1 the local zenith and the incident and scattered light rays define three points on 
the unit circle. Applying the sine rule to this spherical triangle (thicker curves in the figure) 
yields.  
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Therefore polarization angle x , i.e., the angle between the polarization plane and the local 
meridian plane, is given by 
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3. Aerosol Polarization 

From Mie calculation of the light scattered by spherical particles with dimensions 
representative of terrestrial aerosols, one can guess that polarization should be very 
informative about the particle size distribution and refractive index. Inversely, because 
polarization is very sensitive to the particle properties, this information is nearly untractable 
without a priori knowledge of the particle shape (Mishchenko and Travis, 1994). Over the 
past decades, considerable effort has been devoted to the study of aerosol polarization 
properties. One uses appropriate radiative transfer calculations to evaluate the contribution 
of aerosol polarization scattering. The aerosol’s size distribution and refractive index are 
derived simultaneously from their scattering properties. 
The simulations are performed by a successive order of scattering (SOS) code. We assume a 
plane-parallel atmosphere on top of a Lambertian ground surface with uniform 

reflectance 0.3  and a bi-direction reflectance with BPDF model, a typical and bi-direction 
reflectance value of ground reflectance at the near-infrared wavelength considered. The 
aerosols are mixed uniformly with the molecules. The code accounts for multiple scattering 
by molecules and aerosols and reflection on the surface. Polarization ellipticity is neglected. 
The results are expressed in terms of polarized radiance Lp, defined by 
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3.1 Relationship between aerosol polarization phase function  
and particle physical properties 
Aerosol polarization phase function is known to be highly sensitive to aerosol optical 
properties, especially aerosol absorption properties, as was shown by Vermeulen et al [6] 
and Li et al [7]. Polarization phase function provided important information for aerosol 
scattering properties. Figure 2(a) [Li et al]shows the calculated polarization phase function 
in the principal plane as a function of the scattering angle. The calculations correspond to 
those for aerosol with four types of refractive index and the size distribution given by the 
bimodal log-normal model for sensitivity of polarization phase function to the aerosol real  
(scattering ) and imaginary (absorption) part of refractive index. It can be seen from  

Figure 2(a) that the aerosol refractive index (including real and imaginary part) is highly 
sensitive to polarized phase function. Typically, we consider that the difference among 
polarized phase function curves of various aerosol refractive index at the range of scattering 
angle 300--900 is quite significant, showing a characteristic of the sensitivity of aerosol 
polarized phase function to refractive index. Moreover, the maximum value at the scattering 
angle from 300 to 900 is more accessible in the principal-plane geometry. 
For the size distribution model of aerosol particle, Figure 2(b) is the curve of polarized phase 
function of three size distribution models with the same index of refractive. It can be seen 
from Figure 2(b) that the aerosol size distribution models is also highly sensitive to 
polarized phase function[7]. The aerosol size distribution models can significantly affect the 
polarization function. That is to say, the polarization phase function of aerosol can be used 
to be important information to retrieve the size distribution model of aerosol.  
 

 
Fig. 2(a)                                                                 Fig. 2(b) 

 
3.2 Polarization radiance response to aerosol optical thickness and wave lengths 
Aerosol polarization radiance is sensitive to aerosol optical thickness. For remote sensing of 
aerosol, polarization radiance is nearly additive with respect to the contributions of 
molecules, aerosols. Figure 2(c) shows the calculated aerosol polarization radiance in the 
principal plane as a function of the observation zenith angle. The curves of the aerosol 
polarized radiance are calculated at 865nm, for different aerosol optical thickness with the 
size distribution given by the bimodal log-normal model for the sensitivity of aerosol 
polarization radiance to the aerosol optical thickness. It can be seen from Figure 2(c) that the 
aerosol polarization radiance is highly sensitive to aerosol optical thickness. Aerosol optical 
thickness can be derived from aerosol polarization radiance measurements. Aerosol 
polarization measurements can be used to retrieve the aerosol optical properties. 
For the spectral wavelength, Figure 2(d) shows typical results for the sensitivity of aerosol 
polarized radiance to the spectral wavelength. The different curves correspond to different 
aerosol polarized radiance at 865nm, 670nm and 1640nm. It can be seen from Figure 2(d) 
and 3(d) that polarization will allow to retrieve aerosol key parameters concerning spectral 
wavelength. 
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Fig. 2(c)                                                                  Fig. 2(d) 

 
4. Vegetation Polarization model 

In the remote sensing of aerosol over land surface, a parameterization of the surface 
polarized reflectance is needed for the characterization of atmospheric aerosol over land 
surface. Because the aerosols properties are efficient at polarizing scattered light. Whereas 
the surface reflectance is little polarized, that is the reason why the polarization 
measurements can be used to estimate the atmospheric aerosol properties over land surface 
[2]. Although small, the surface contribution to the top of the atmosphere (TOA) polarized 
reflectance cannot be neglected and some parameterization is required. In addition, the 
parameter of the surface is used as a boundary condition for solving vector radiative 
transfer (VRT) in both direct and inverse problems. In general, the bidirectional polarization 
distribution functions (BPDF) is used to estimate the atmospheric contribution to the TOA 
signal. The function will be used as a boundary condition for the estimate of atmospheric 
aerosol from polarization remote sensing measurements over land surface. 
In most cases, measurements of linear polarization of solar radiation reflected by a plant 
canopy just provide a simple and relatively cheap way to obtain the characterization of a 
plant canopy polarized reflectance. Although it demonstrates the relationships between 
polarized light scattering properties and plant canopies properties, more research is needed 
if the complexity and diversity inherent in plant canopies is to be modeled, especially more 
practical BPDF model as a boundary condition for the estimate of atmospheric aerosol. 
For remote sensing of aerosol over land surface including polarization information, the 
vector radiative transfer equation accounting for radiation polarization provides the power 
simulation of a satellite signal in the solar spectrum in a mixed molecular-aerosol 
atmosphere and surface polarized reflectance. In order to present the characterization of the 
TOA polarized reflectance of vegetated surface, some simulation accounting for radiation 
polarization in atmosphere and surface were made. In what follows, we used the method of 
successive orders of scattering (SOS) approximations to compute photons scattered one, 
two, three times, and etc. Rondeaux’s , Breon’s and Nadal’s BPDF models were used to 
calculate the contribution of the land surface covered plant canopies polarized reflectance as 
a boundary condition to solve vector radiative transfer equation. It is noticed that: 

 

4.1 The TOA polarized reflectance of vegetation cover depends  
on zenith angle of sunlight.  
Upward polarization radiation at the top of the atmosphere was computed by the successive 
orders of scattering (SOS) approximations method for wavelengths (  ) of 443 m . 
Polarization radiation at the TOA varies according to the angle of incidence. As shows in 
Figure 3(a) and (b). 
 

 
Fig. 3(a)                                                                    Fig. 3(b) 

 
4.2 Surface BPDF with different land cover types or model 
Characterization of the polarizing properties of land surfaces raises probably a more 
complicated problem than for the atmosphere, on account of the large diversity of ground 
targets. Concerning the underlying polarizing mechanism, it is usually admitted that land 
surfaces are partly composed of elementary specular reflectors (water facets, leaves, small 
mineral surfaces) which, according to Fresnel’s law, reflect partially polarized light when 
illuminated by the direct sunbeam. There is convincing evidence that it is correct in the 
important case of vegetation cover [Vanderbilt and Grant, 1985; Vanderbilt et al., 1985; 
Rondeaux and herman, 1991]. By assuming this hypothesis and restricting to singly reflected 
light, we can anticipate that the main parameters governing the land surface bidirectional 
polarization distribution function (BPDF), apart from the Fresnel coefficients for reflection, 
should be the relative surface occupied by specular reflectors, the distribution function of 
the orientation of these reflectors, and the shadowing effects resulting from the medium 
structure [7]. Plant canopies structure is difficult to model with single BPDF. 
As example of land surface canopy BPDF predicted within this context, we consider the 
TOA polarized radiance contribution of the model for vegetative cover depends on canopy 
structure, cellular pigments and refractive indices of vegetation, as the Figure 3(c) and (d) 
shown. It can be seen in Figure 3(c) that the polarized radiance distribution in 2 space is 
controlled by directions of both incidence and reflection, and by the main parameters 
governing the vegetative structures. Comparison of Figure 3(c) and Figure 3(d) shows that 
according to difference of the refractive indices, the reflective distribution of the polarized 
radiance varies correspondingly.  
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Fig. 3(c)                                                            Fig. 3(d) 

 
4.3 Retrieval of TOA contribution of aerosol and land surface polarization 
The TOA measured polarized radiance is the sum of 3 contributions: aerosol scattering, 
Rayleigh scattering, and the reflection of sun light by the land surface, attenuated by the 
atmospheric transmission on the down-welling and upwelling paths. In order to find out the 
influence of aerosol and land surface polarization on the TOA polarized contribution, we 
choose different aerosol model and aerosol optical thickness at a certain land surface BPDF 
model condition as study parameters.  
In this study, the contribution of land surface was calculated by BPDF derived from ground-
based measurements for vegetative cover [Rondeaux and herman, 1991], for the 
atmospheric aerosol, an externally mixed model of these aerosol components is assumed 
[15]. The size distribution for each aerosol model is expressed by the log-normal function, 
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Where rm is the median radius and ln r is the standard deviation. The rm and r values are 
0.3 m and 2.51 m for the OC model [5], the refractive indices at 443 m  is 1.38±i8.01 for 
the OC model, and 1.53±i0.005 and 1.52±i0.012 for the WS model. The scattering matrices are 
computed by the Mie scattering theory for radii ranging from 0.001 to 10.0 m assuming the 
shape of aerosol particles to be spherical. We can see from the experiment result that the 
TOA polarized radiance in 2 space is obvious difference, varying according to the aerosol 
optical thickness Figure 3(e) and 3(f). Comparison of Figure 3(g) and 3(h) also shows that 
this difference in aerosol model implies influence on polarized radiance distribution in 
2 space. Clearly, different assumptions about the aerosol model have large difference in 
the TOA polarized radiance. 
 

 
Fig. 3(e) aerosol optical depth is 0.2                     Fig. 3(f)  aerosol optical depth is 0.5 

 

 
Fig. 3(g) Aerosol model is Jung model                        Fig. 3(h) aerosol model is WMO 

 
4. Based on short-wave infrared band polarized model 

Solar light reflected by natural surfaces is partly polarized. The degree of polarization, and 
the polarization direction, may yield some information about the surface such as its 
roughness, its water content, or the leaf inclination distribution. It is believed that polarized 
light is generated at the surface by specular reflection on the leaf surfaces. This hypothesis 
has been used to elaborate analytical models for the polarized reflectance of vegetation. 
Because of this fact and because the refractive index of natural targets (e.g. leaf of 
vegetation) varies little within the spectral domain of interest (visible and near IR), the 
surface polarized reflectance is spectrally neutral, in contrast with the total reflectance. 
Based on this polarization information and the requirement of the surface polarized 
reflectance, we can choose to study space-borne polarized reflectance with multi-
wavelengths and multi-direction measurements. 
The observations of the earth from space that have included polarization measurements are 
those in an exploratory project aboard the space Shuttle (Coulson et at. ,1986). By the nature 
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shape of aerosol particles to be spherical. We can see from the experiment result that the 
TOA polarized radiance in 2 space is obvious difference, varying according to the aerosol 
optical thickness Figure 3(e) and 3(f). Comparison of Figure 3(g) and 3(h) also shows that 
this difference in aerosol model implies influence on polarized radiance distribution in 
2 space. Clearly, different assumptions about the aerosol model have large difference in 
the TOA polarized radiance. 
 

 
Fig. 3(e) aerosol optical depth is 0.2                     Fig. 3(f)  aerosol optical depth is 0.5 

 

 
Fig. 3(g) Aerosol model is Jung model                        Fig. 3(h) aerosol model is WMO 

 
4. Based on short-wave infrared band polarized model 

Solar light reflected by natural surfaces is partly polarized. The degree of polarization, and 
the polarization direction, may yield some information about the surface such as its 
roughness, its water content, or the leaf inclination distribution. It is believed that polarized 
light is generated at the surface by specular reflection on the leaf surfaces. This hypothesis 
has been used to elaborate analytical models for the polarized reflectance of vegetation. 
Because of this fact and because the refractive index of natural targets (e.g. leaf of 
vegetation) varies little within the spectral domain of interest (visible and near IR), the 
surface polarized reflectance is spectrally neutral, in contrast with the total reflectance. 
Based on this polarization information and the requirement of the surface polarized 
reflectance, we can choose to study space-borne polarized reflectance with multi-
wavelengths and multi-direction measurements. 
The observations of the earth from space that have included polarization measurements are 
those in an exploratory project aboard the space Shuttle (Coulson et at. ,1986). By the nature 
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of the problem, however, solar radiation directed to space at the level of the Shuttle and 
other spacecraft contains a significant component due to scattering by the atmosphere, 
meanwhile that due to surface reflection. For atmospheric characterization and 
discrimination, however, such surface reflection contamination of the radiation field should 
be minimized or corrected for by use of radiative transfer models applicable to the 
conditions of observation. For maximum information content, of course, both intensity and 
state of polarization of the scattering by the atmosphere should be included.  

Light would consist of components E  and E , normal and parallel, respectively, to the 
principal plane. Fresnel’s laws of reflection give the reflected electric intensity components. 
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Since Fresnel’s laws of refraction, in which case Eq. (11) and Eq. (12) reduces to  
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Obviously, for unpolarized light 
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Eq.(13) and Eq. (14) as follows: 
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Here N is the index of refraction of the medium, and is the angle of incidence or 
reflection. The index of refraction N is related to the wavelength.  

This shows that the degree of polarization is related to the wavelength and the angle of 
incidence or reflection Figure 4(a). Furthermore, under the same observation geometric 
conditions, this important relationship also shows that the degree of polarization of the 
SWIR (short wave infrared band) is related to that of the visible rang Figure 4(b).  
 

 
Fig. 4(a)                                       Fig. 4(b) 

 
Figure 4(a) shows the relationship between degree of polarization and wavelengths and the 
angle of incidence or reflection and (b) between degree of polarization at long wavelengths 
1640nm and that at short wavelengths 
In Figure 4(b), we found that the SWIR is similar to the visible channels by polarized. That 
is, the polarized reflectance in SWIR could be used similarly to quantify that in the visible 
wavelength. This fact would find important applications in solving the inverse problem of 
separating the surface and atmospheric scattering contributions. 
With these and atmospheric conditions, we find, after some algebraic manipulation that  
 

( ) /

( ) /

1 2( ) /( , ) * ( , )

( , ) * ( , )
*

s swir s

s vi s

u

p swir p swirswir

u

vi p vi p vi

su
R e RL

L R e R
e

 



 



    

   





 
       (17) 

 

Where ( , )PR    is given by  
 

2 2

2 2 2 2 2

2 2 2 2 2

1
( , )

2

sin cos cos sin

sin cos cos sin

 
   

   


   

   

   
   
   

P
R

N N N

N N N

                  (18)  

 

Where swirL and viL are the polarized reflected radiance at long wavelengths and that at short 
wavelengths, respectively, is the scattering angle, and is atmospheric optical thickness. 
The principle of the algorithm can be seen in Eq. (17). The relationship of the degree of 
polarization between two wavelengths (the visible rang and short wave infrared band) from 
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of the problem, however, solar radiation directed to space at the level of the Shuttle and 
other spacecraft contains a significant component due to scattering by the atmosphere, 
meanwhile that due to surface reflection. For atmospheric characterization and 
discrimination, however, such surface reflection contamination of the radiation field should 
be minimized or corrected for by use of radiative transfer models applicable to the 
conditions of observation. For maximum information content, of course, both intensity and 
state of polarization of the scattering by the atmosphere should be included.  

Light would consist of components E  and E , normal and parallel, respectively, to the 
principal plane. Fresnel’s laws of reflection give the reflected electric intensity components. 
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Here N is the index of refraction of the medium, and is the angle of incidence or 
reflection. The index of refraction N is related to the wavelength.  

This shows that the degree of polarization is related to the wavelength and the angle of 
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Where swirL and viL are the polarized reflected radiance at long wavelengths and that at short 
wavelengths, respectively, is the scattering angle, and is atmospheric optical thickness. 
The principle of the algorithm can be seen in Eq. (17). The relationship of the degree of 
polarization between two wavelengths (the visible rang and short wave infrared band) from 
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the radiative transfer calculation is shown as a function of the aerosol optical thickness at the 
visible rang and the short wave infrared band. 

 
5. Based on pixel-level multi-angle remote sensing of aerosol 

The first space-based polarization measurements were undertaken by ADEOS/POLDER. 
The POLDER has supplied the observed data not only in the multi-wavelength bands but 
also at the multi-viewing angles. These directional measurements include significant 
information of atmospheric aerosols. This work is a feasibility study of multi-directional 
data for the retrieval of aerosols characteristics. The basic algorithm for aerosol retrieval is 
based on light scattering simulations of polarization field, where the heterogeneous aerosol 
model according to Maxwell-Garnett mixing rule is considered. It is shown that polarization 
data observed at multi-angles is a powerful tool to retrieve aerosol characteristics. 
The information provided polarization space-borne sensor permit the development of a new 
approach to retrieving the aerosol loading at a global scale. The main contribution to the 
TOA polarized radiance at short wavelengths is due to the aerosols and molecules of the 
atmosphere, while the contribution of the surface is generally smaller than that of the 
aerosols. The contribution of atmospheric molecules, although significant at short 
wavelengths, is nearly invariant and can be easily modeled. That of the surface is more 
variable but the Eq. (17) and Eq. (18) show that it can be modeled with the polarized 
reflectance in SWIR, since the contribution of atmospheric aerosol at long wavelengths is 
generally small and always possible to be negligible. The contribution of the surface at long 
wavelengths could be used similarly to quantify that at short wavelength. Thus, the aerosol 
contribution to the polarized radiance can in principle be extracted from the measurement 
with computing the ratio between the SWIR ground polarized reflectance and those in the 
visible channels. 

The measured polarized radiance polL  is modeled as 
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Rayleigh scattering, and surfL , due to the reflection of sun light by the surface, attenuated by 
the atmospheric transmission on the down-welling and upwelling paths. These terms are 
expressed as: 
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Where ( )a  and ( )m   are the optical thickness of the aerosols and of the molecules, 
respectively. sE  is the TOA solar irradiance. ( , )mQ   and ( , , )aQ n  are pre-calculated 
functions, which depend on the geometric angles s  , v ,   only through the scattering 
angle  . By performing some algebraic manipulation from Eq. (17)-(22), it is seen that the 
contribution of the surface at short wavelengths could be quantified with that at long 
wavelengths.  
Inversions were performed with this important relationship. The TOA Polarized reflectance 
measurements were screened for cloud contamination and corrected for gas absorption. 
Based on lookup tables composed of optical contributions from mono-modal lognormal 
aerosol size distributions with fixed standard deviations, but with several values of the 
modal radius and refractive index, we made use of one week of space-borne POLDER 
acquisition on from November 7 to 12 , 2007 Beijing China, (latitude 39058’37’’, longitude 
116022’51’’). The retrieval method described above for AOD from POLDER yields the AOD 
composite images of Figure 5a. 
 

      

 
In order to analyze the accuracy of aerosol inversion, we interpolated the AERONET AOD 
corresponding to time of the satellite overpass. We used the data provided by Beijing 
AERONET stations to analyze the accuracy of aerosol inversion from POLDER. Figure 5b 
shows the results. The validation shown in Figure 5b compares the AOD at 865nm derived 
from POLDER and AERONET instruments. As the result shows (Figure 5b), the retrieval 
method for the AOD from POLDER yields a nearly closer values compared with that from 
AERONET.  

 
6. Summary 

In this paper, the accuracy of AOD retrieved from the POLDER multi-wavelengths-based 
inversion scheme for the sample studied over Beijing remain relatively closer compared to 

Fig. 6a the composite images of aerosol 
optical thickness 

Fig. 6b compared AOD derived 
from POLDER and AERONET 
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ground-based sun-photometer measurements. The comparisons between the AERONET 
AOD and the POLDER-derived AOD using the relations between the polarized reflectance 
of the surface at long wavelengths and that at short wavelengths show an agreement in 
most cases. The agreement is much better than when using the physical functions which 
were derived for bare soils and vegetation. Some effect caused by the surface geometric 
structure can precisely eliminate for dense vegetation cover or for bare soils at least. 
The results suggest that the algorithm, the contribution of the surface at short wavelengths 
could be quantified with that at long wavelengths in pixel level, can be used as an 
alternative method in the aerosol retrieval procedure from Multi-wavelength polarization 
space-borne sensors.  
The POLDER results also provide convincing evidence that remote sensing of the terrestrial 
aerosols over land surfaces by way of polarization measurements is feasible and possibility 
for discriminating the aerosol contribution from the surface and show the potential of 
measurements of polarized light scattered by aerosols to retrieve optical depth. 
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1. Introduction

Thanks to the several space missions accomplished since ERS-1, the scientific community has
been provided with a huge amount of data suitable for interferometric processing. The in-
novation was the availability of multiple compatible images of the same areas. Such images,
achieved by looking from slightly different point of view different orbits, and/or by differ-
ent frequencies, and/or at different times, has largely extended the capabilities of InSAR with
respect to the traditional dual image case. The advantage granted by the possibility to form
multiple interferograms, instead than just one, is two folded. On the one hand, the estimation
of the parameters of interest, be them related to the DEM or the terrain deformations, is driven
by a larger data set, resulting in more accurate estimates. On the other hand, new parameters
may be added to the set of the unknowns, allowing to study complex phenomena, such as
the temporal evolution of the atmospheric and deformation fields. A major issue with multi-
image InSAR is that targets are, in general, affected by temporal and spatial decorrelation
phenomena, which hinders the exploitation of large spatial and/or temporal baselines. For
this reason, most of literature about multi-image InSAR has focused mainly on targets that stay
coherent in all the acquisitions, which has resulted in a substantial lack of a systemic approach
to deal with decorrelating targets in the field of InSAR.
The aim of this chapter is to propose a general approach to exploit all the available informa-
tion, that is the stack of interferometric SAR images, and that formally accounts for the impact
of target decorrelation. This approach is based on the optimal estimate of the data in a statis-
tical sense. The basic idea is to split the estimation process into two steps. In the first step,
a maximum likelihood (ML) estimator is used that jointly exploits all the N × (N − 1)/2 in-
terferograms available with N acquisitions, in order to yield the best estimates of the N − 1
phases that correspond to the optical path differences between the target and the sensors. Tar-
get decorrelation is accounted for by properly weighting each interferogram in dependence on
the target statistics. The estimated phases will be referred to as Linked Phases, to remind that
these terms are the result of the joint processing of all the N(N − 1)/2 interferograms. Once
the first estimation step has yielded the estimates of the interferometric phases, the second
step is required to separate the contributions of the APSs and the decorrelation noise from the
parameters of interest, such as the Line of Sight Deformation Field (LDF) and the topography.

18
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The same two-step approach can be followed to derive the performances of the Multi-Baseline
Interferometry, in the frame of the Hybrid Cramér Rao Bound (HCRB) that we will discuss in
this same chapter.

2. A brief review of multi-image InSAR techniques

2.1 Permanent Scatterers Interferometry (PSI)
This approach, developed by Ferretti et al.(1), represents the first attempt to give a formal
framework to the problem of multi-baseline InSAR. The analysis is based on the selection of
a number of highly coherent, temporally stable, point-like targets within the imaged scene,
which may be identified by analyzing the amplitude time series extracted from the whole set
of images in correspondence with every pixel (2), (3), (4). Such targets, named Permanent
Scatterers (PS), are typically represented by man made objects, but also isolated trees or stable
rocks may serve as PSs. However, the highest density of PSs is expected to be found within
urban areas. For every selected PS the time series of the phase differences of every image
with respect to a reference one is extracted. Since the selected targets are by definition the
ones which remain coherent in all of the images, it can be assumed that no decorrelation phe-
nomena occur. Therefore, the phase difference time series may be effectively represented by
a linear model plus noise. At this point, an effective separation of the various contributions,
such as topography, displacement rate, and APSs, may be carried out by exploiting the time-
space statistical properties of each. In this sense, this approach is similar to Wiener filtering,
and could be in principle solved by such technique. However, because of the high computa-
tional burden and the non linearity due to the 2π ambiguity, Ferretti et al. proposed instead an
iterative algorithm, involving 2D frequency estimation, phase unwrapping and linear filtering
(5). The main limitation within this approach lies in the sparsity of the grid for the selected
PS. To overcome this limitation, a second step is performed, consisting in resampling the APSs
estimates on the uniform image grid, remove these terms, and look for a more dense set of PSs
basing on phase stability, rather than amplitude. This process, however, is likely to fail in ar-
eas where the initial PS selection, based on amplitude stability, does not suffice to cover the
whole imaged scene, as it may be the case of non urban areas, especially for data set suffering
from amplitude calibration problems. A first solution to this problem has been proposed by
Hooper et al. (6), who defined an iterative point selection algorithm basing directly on a phase
stability criterion. The selected point are called Persistent Scatterers. This method has been
shown to yield a more dense point grid on rock areas than the amplitude based algorithms
exploited in PSI.

2.2 Techniques based on interferogram selection
Several approaches have been presented in literature to perform SAR interferometric analysis
over scenes where the PS assumption may not be retained. A number of these works share
the idea to minimize the effect of target decorrelation by forming the interferograms from
properly selected pairs, rather than with respect to a fixed reference image, as done in PS
processing. Despite the good results achieved in the applications, however, there’s no clear
and formal assessment of the criteria which should drive the selection of the image pairs
to be used. As a result, the processing is heuristically based on the exploitation of a set of
interferograms taken with the shortest temporal and/or spatial baselines possible (7), (8), (6).

2.3 The Small Baseline Subsets (SBAS) approach
A more sophisticated approach is the one by Berardino et al., exploiting the concept of Small
Baseline Subsets (SBAS) (9), (10). This approach may be somehow considered as the comple-
ment of the PS approach. While the latter looks for targets which remain coherent throughout
the whole data set, the SBAS algorithm tries to extract information basing on every single
interferogram available. The algorithm accounts for spatial decorrelation phenomena by par-
titioning the data set into a number of subsets, each of which is constituted by images acquired
from orbits close to each other. In this way, interferograms corresponding to large baselines
are discarded. After unwrapping the phases of the interferograms within the subsets, the esti-
mation of the physical quantities of interest, such as the topographic profile and the deforma-
tion field, is carried out through singular value decomposition. The choice of this inversion
technique accounts for the rank deficiency caused by partitioning the data set into subsets,
resulting in the solution being chosen on the basis of a minimum norm criterion. Further pro-
cessing, similar to that indicated in (5), carries out the removal of the atmospheric artifacts.

2.4 Maximum Likelihood Estimation Techniques
The application of Maximum Likelihood Estimation techniques for InSAR processing has been
considered by Fornaro et al (11), De Zan (12), Rocca (13), and in two works by Tebaldini and
Monti Guarnieri (14), of which this chapter represents an extension. The rationale of ML tech-
niques, as applied to InSAR, is to exploit target statistics, represented by the ensemble of the
coherences of every available interferogram, to design a statistically optimal estimator for the
parameters of interest. An advantage granted by these techniques is that the criteria which
determine the role of each interferogram in the estimation process are directly derived from
the coherences, through a rigorous mathematical approach. Furthermore, by virtue of the
properties of the ML estimator (MLE), the estimates of the parameters of interest are asymp-
totically (we.e. large signal to noise ratio, large data space) unbiased an minimum variance.
On the other hand, a common drawback of these techniques is the need for a reliable informa-
tion about target statistics, required to drive the estimation algorithm. The main differences
among the works by De Zan, Rocca, and the one to be depicted in this chapter are relative to the
initial parametrization of the data statistics. The ML approach proposed by De Zan consists in
estimating residual topography and LOS subsidence rate directly from the data. Conversely,
in the work by Rocca (13), similarly to the approach within this chapter, the estimation process
is split into two steps, in that first N(N − 1)/2 interferograms are formed out of N acquisi-
tions, and then the second order statistics of the interferograms are exploited to derive the
optimal linear estimator of the parameters of interest, under the small phase approximation.
After the Extended Invariance Principle (EXIP), it follows that the condition under which the
splitting of the MLE into two steps does not entail any loss of information about the original
parametrization of the problem, θ, is that the covariance of the estimate errors committed in
the first step actually approaches the CRB. Therefore, the estimation of topography and Line
Of Sight (LOS) subsidence rate directly from the data proposed by De Zan in (12), is intrinsi-
cally the most robust, since the estimation of the whole structure of the model is performed
in a single step. This approach, however, would result in an overwhelming computational
burden if applied to a large set of parameters. On the contrary, in the approach followed
by Rocca, (13), the first step may be interpreted as a totally unstructured estimation of the
model, since each of the N(N − 1)/2 phases of all the available interferograms is estimated
separately. It follows that the computational burden is kept very low, but the performance of
the one step ML estimator may be approached only under the condition that the N(N − 1)/2
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The same two-step approach can be followed to derive the performances of the Multi-Baseline
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this same chapter.
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coherences of every available interferogram, to design a statistically optimal estimator for the
parameters of interest. An advantage granted by these techniques is that the criteria which
determine the role of each interferogram in the estimation process are directly derived from
the coherences, through a rigorous mathematical approach. Furthermore, by virtue of the
properties of the ML estimator (MLE), the estimates of the parameters of interest are asymp-
totically (we.e. large signal to noise ratio, large data space) unbiased an minimum variance.
On the other hand, a common drawback of these techniques is the need for a reliable informa-
tion about target statistics, required to drive the estimation algorithm. The main differences
among the works by De Zan, Rocca, and the one to be depicted in this chapter are relative to the
initial parametrization of the data statistics. The ML approach proposed by De Zan consists in
estimating residual topography and LOS subsidence rate directly from the data. Conversely,
in the work by Rocca (13), similarly to the approach within this chapter, the estimation process
is split into two steps, in that first N(N − 1)/2 interferograms are formed out of N acquisi-
tions, and then the second order statistics of the interferograms are exploited to derive the
optimal linear estimator of the parameters of interest, under the small phase approximation.
After the Extended Invariance Principle (EXIP), it follows that the condition under which the
splitting of the MLE into two steps does not entail any loss of information about the original
parametrization of the problem, θ, is that the covariance of the estimate errors committed in
the first step actually approaches the CRB. Therefore, the estimation of topography and Line
Of Sight (LOS) subsidence rate directly from the data proposed by De Zan in (12), is intrinsi-
cally the most robust, since the estimation of the whole structure of the model is performed
in a single step. This approach, however, would result in an overwhelming computational
burden if applied to a large set of parameters. On the contrary, in the approach followed
by Rocca, (13), the first step may be interpreted as a totally unstructured estimation of the
model, since each of the N(N − 1)/2 phases of all the available interferograms is estimated
separately. It follows that the computational burden is kept very low, but the performance of
the one step ML estimator may be approached only under the condition that the N(N − 1)/2
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phases are estimated with sufficient accuracy, as it happens by exploiting a large estimation
window and/or at high SNR (Signal To Noise Ratio). Finally, the two step estimator to be de-
picted in this chapter may be placed in between the two solutions here exposed, the first step
being devoted to carrying out a joint estimation of N − 1 phases from the data. This solution
corresponds to the estimation of a weak structured model, based on the hypothesis of phase
triangularity herewith discussed.

3. Model for the multi-pass observations of a single target

Let us consider the multibaseline geometry in Fig. 1: this geometry is fairly conventional, and
the reader is referred to like (15–17) for a general view of SAR interferometry, or (18) for a
tutorial. The same target P is observed by a set on N sensors in different parallel tracks or,
identically, by N repeated acquisitions of the same sensor. Each observation is focused getting
an high resolution image of the whole scene. Two complex focused images can be combined
to compute the interferogram, that their Hermitian. The interferogram phase, shown in Fig.
1 on the right, is proportional to the resultant of the travel phase difference between the two
acquisitions and the difference between the Atmospheric Phase Screen (APS) of the two ac-
quisitions:

ϕnm = ϕn − ϕm (1)

=

(
4π

λ
Rn(P) + α(n)

)
−

(
4π

λ
Rm(P) + α(m)

)
,

Rn(P) and Rm(P) being respectively the slant range of the n-th and m-th antennas to the
target point P, and α(n), α(m) the phase errors due to the propagation in the atmosphere in
the two acquisitions(19). In turn, the slant range can be thought of a fixed contribution, due to
topography, and a time-varying LOS displacement. As an example, for a linear deformation:

Rn(P) = Rn0 + v(P) · tn

v(P) being the Linear Deformation Rate and tn the time of the n-th acquisition.
The interferogram phases keeps then information on both the geometry of the system, that
depends on the topography, hence the DEM, and the a possible Line Of Sight displacement of
the target in the time between the two acquisitions. In the following, we assume that all the
focused images are coregistered on the same range, azimuth reference of one image, that we
will define as the master image, so that the same target contributes in the same pixels of all
the N images in the stack (18).

3.1 Single target model
We assume that each pixel in the SAR images is described by a distributed target, i.e., the
contributions of many independent scatterers in the resolution cell. The result is a realization
of a stochastic process, whose pdf conditioned on the interferometric phases may be regarded
as being a zero-mean, multivariate circular normal distribution (15). Therefore, the ensemble
of the second order moments represents a sufficient statistics to infer information from the
data. With reference to a particular location in the slant range - azimuth plane, the expression
of the second order moment for the nm − th interferometric pair may be expressed, under the
assumption of phase triangularity, as:

E [yny∗m] = γnm exp (j (ϕn − ϕm)) (2)

where:

P
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P

Fig. 1. Interferometric SAR geometry: N sensors, at same azimuth position are shown on the
left. On the right, the interferogram’s phases obtained by combining two images are shown.

• yn represents a pixel in the n − th SLC SAR image at the considered slant range - az-
imuth location;

• γnm is the coherence of the nm − th interferometric pair; γnn = 1 for every n;

• ϕn is the interferometric phase for the n − th acquisition.

Note that the images are supposed to be normalized such that E
[
|yn|2

]
= 1 ∀ n.

Following (1), the interferometric phases will be expressed in vectors as:

ϕ = ψ (θ) + α (3)

where:

• ϕ =
[

ϕ0 ... ϕN−1
]T is the vector of the interferometric phases, with respect to an

arbitrary reference;

• θ is the vector of the unknown parameters which describe the LDF and residual topog-
raphy to be estimated;

• ψ (θ) =
[

ψ0 (θ) ... ψN−1 (θ)
]T is a vector of known functions of θ;

• α =
[

α0 ... αN−1
]T represent the atmospheric fields, or APS, affecting the N ac-

quisitions.

The APS may be modeled as a stochastic process, highly correlated over space and uncorre-
lated from one acquisition to the other, at least under the assumption that SAR images are
taken with a repeat interval longer than one day (19; 20). Furthermore, we will here force the
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phases are estimated with sufficient accuracy, as it happens by exploiting a large estimation
window and/or at high SNR (Signal To Noise Ratio). Finally, the two step estimator to be de-
picted in this chapter may be placed in between the two solutions here exposed, the first step
being devoted to carrying out a joint estimation of N − 1 phases from the data. This solution
corresponds to the estimation of a weak structured model, based on the hypothesis of phase
triangularity herewith discussed.

3. Model for the multi-pass observations of a single target

Let us consider the multibaseline geometry in Fig. 1: this geometry is fairly conventional, and
the reader is referred to like (15–17) for a general view of SAR interferometry, or (18) for a
tutorial. The same target P is observed by a set on N sensors in different parallel tracks or,
identically, by N repeated acquisitions of the same sensor. Each observation is focused getting
an high resolution image of the whole scene. Two complex focused images can be combined
to compute the interferogram, that their Hermitian. The interferogram phase, shown in Fig.
1 on the right, is proportional to the resultant of the travel phase difference between the two
acquisitions and the difference between the Atmospheric Phase Screen (APS) of the two ac-
quisitions:

ϕnm = ϕn − ϕm (1)

=
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Rn(P) + α(n)
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−
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Rm(P) + α(m)
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,

Rn(P) and Rm(P) being respectively the slant range of the n-th and m-th antennas to the
target point P, and α(n), α(m) the phase errors due to the propagation in the atmosphere in
the two acquisitions(19). In turn, the slant range can be thought of a fixed contribution, due to
topography, and a time-varying LOS displacement. As an example, for a linear deformation:

Rn(P) = Rn0 + v(P) · tn

v(P) being the Linear Deformation Rate and tn the time of the n-th acquisition.
The interferogram phases keeps then information on both the geometry of the system, that
depends on the topography, hence the DEM, and the a possible Line Of Sight displacement of
the target in the time between the two acquisitions. In the following, we assume that all the
focused images are coregistered on the same range, azimuth reference of one image, that we
will define as the master image, so that the same target contributes in the same pixels of all
the N images in the stack (18).

3.1 Single target model
We assume that each pixel in the SAR images is described by a distributed target, i.e., the
contributions of many independent scatterers in the resolution cell. The result is a realization
of a stochastic process, whose pdf conditioned on the interferometric phases may be regarded
as being a zero-mean, multivariate circular normal distribution (15). Therefore, the ensemble
of the second order moments represents a sufficient statistics to infer information from the
data. With reference to a particular location in the slant range - azimuth plane, the expression
of the second order moment for the nm − th interferometric pair may be expressed, under the
assumption of phase triangularity, as:

E [yny∗m] = γnm exp (j (ϕn − ϕm)) (2)

where:
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Fig. 1. Interferometric SAR geometry: N sensors, at same azimuth position are shown on the
left. On the right, the interferogram’s phases obtained by combining two images are shown.

• yn represents a pixel in the n − th SLC SAR image at the considered slant range - az-
imuth location;

• γnm is the coherence of the nm − th interferometric pair; γnn = 1 for every n;

• ϕn is the interferometric phase for the n − th acquisition.

Note that the images are supposed to be normalized such that E
[
|yn|2

]
= 1 ∀ n.

Following (1), the interferometric phases will be expressed in vectors as:

ϕ = ψ (θ) + α (3)

where:

• ϕ =
[

ϕ0 ... ϕN−1
]T is the vector of the interferometric phases, with respect to an

arbitrary reference;

• θ is the vector of the unknown parameters which describe the LDF and residual topog-
raphy to be estimated;

• ψ (θ) =
[

ψ0 (θ) ... ψN−1 (θ)
]T is a vector of known functions of θ;

• α =
[

α0 ... αN−1
]T represent the atmospheric fields, or APS, affecting the N ac-

quisitions.

The APS may be modeled as a stochastic process, highly correlated over space and uncorre-
lated from one acquisition to the other, at least under the assumption that SAR images are
taken with a repeat interval longer than one day (19; 20). Furthermore, we will here force the
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hypothesis that the ensemble of the APSs may be modeled as a normal, zero mean stochastic
process with variance σ2

α:

α ∼ N (0, Rα) (4)

Rα = σ2
αIN

where IN is the N × N identity matrix. The reason for this assumption is that it will allow to
reach a simple analytical form to lower bound the estimate accuracy. Otherwise, the estimate
accuracy would depend not only on the APS variance, but also on the shape of its distribu-
tion. As a first approximation, however, this assumption may be retained (21). Note that the
characterization of the APS as a zero mean process is clearly unphysical, since the propagation
through the atmosphere should result in an additional delay of the received echoes, therefore
giving rise to a bias. Such bias, however, is automatically canceled by evaluating the phase
differences, ϕn − ϕm, in such a way that model (4) can be retained in the framework of InSAR
analyses. As a further remark, note that the assumption that the APSs are uncorrelated from
an acquisition to another is not strictly necessary for the theoretical developments to follow.

The set of the coherences, γnm, of each interferometric pair accounts for decorrelation sources
like superficial, volumetric, temporal, etc, is the following product form, suggested in (22):

γnm = γ0γ
(sup)
nm γ

(vol)
nm γ

(temp)
nm (5)

Model (2) may be expressed in a conveniently compact form as:

R
de f
= E

[
yyH

]
= φΓφH (6)

where:

• R is the data covariance matrix.
• y =

[
y0 · · · · · · yN−1

]T is the stack of the SLC images at a given location, (r, x),
in the slant range, azimuth plane;

• Γ is an N × N symmetric matrix whose elements are given by the interferometric coher-
ences: {Γ}nm = γnm;

• φ is an N × N diagonal matrix whose elements are given by the interferometric phases:

φ = diag
{

exp (jϕ0) · · · · · · exp
(

jϕN−1
) }

Throughout this chapter we will assume that the estimation of the parameters of interest is
performed by exploiting a conveniently small estimation window, Ω. The pdf of the data
sample within the estimation window will be expressed as:

p (yΩ|ϕ) = const ·
L

∏
l=1

exp
(
−yH (rl , xl) φΓ−1φHy (rl , xl)

)
(7)

where (rl , xl) denote the location in the slant range, azimuth plane and L is the number of
pixels within the estimation window.
Expression (7) is conditioned to two hypothesis: the stationarity and the incorrelation of the
pixels in the window. The hypothesis of stationarity requires that the unknowns, θ, the APSs,
α, and the coherences, γnm, are constant inside Ω. Therefore, in practical applications this
hypothesis may be retained provided that Ω is small. The hypothesis that no correlation
exists among neighboring pixels requires that either one of these two conditions is met:

• all the pixels within the estimation window are referred to the same slant range location;
• the normal baselines are small, in such a way as not to give rise to correlation among

neighboring pixels.

Note that the latter represent the most suitable condition for estimating the LDF, which makes
it sensible to retain its validity, especially in light of the capabilities which will be provided
by the next generation of spaceborne SARs (13). As a first approximation, however, the effect
of a non null normal baseline set can be included by letting the correlation coefficients γnm
account for the contribution of spatial decorrelation.

4. Performances estimation in Multi Baseline Interferometry

This section is dedicated to multi-baseline SAR Interferometry (InSAR). We will associate In-
SAR with the hypothesis that a single target, either point-like or distributed, is present within
the SAR slant range, azimuth resolution cell.
The aim here is to derive a lower bounds of the performance achievable by spaceborne InSAR
as for the estimation of the LOS deformation field (LDF) from acquisitions over scenes charac-
terized by a distributed scattering mechanism, such as forests, agricultural fields, soil or rock
surfaces, and even ice shelves. Mainly two factors affect the accuracy of InSAR estimates.
One arises from decorrelation phenomena among SAR images, due to the spatial structure
and temporal behavior of the targets. The other is given by the presence of uncompensated
propagation disturbances. As long as spaceborne applications are considered, it is reasonable
to assume that uncompensated propagation disturbances are mainly caused by atmospheric
fluctuations, and hence in this chapter propagation disturbances will be identified with the
Atmospheric Phase Screens (APSs). The ensemble of target decorrelation and APS results in a
non Gaussian distribution of the data, which complicates the a-priori assessment of the LDF
estimator performance for any given scenario. In the existing literature the computation of
InSAR lower bounds is commonly approached as the problem of estimating a set of deter-
ministic parameters in presence of decorrelation noise (23), (24), whereas the role of the APS
is in general neglected. Within this chapter it will be shown that, under the hypothesis that a
single, distributed, target is present within the SAR resolution cell, the roles of target decorre-
lation and APSs may be jointly treated by exploiting the Hybrid Cramér-Rao Bound (HCRB),
where the unknowns are both deterministic parameters and stochastic variables. This ap-
proach results in a compact formulation of the problem, from which it is possible to achieve
some closed-form formulas that constitute a useful tool for system design and tuning (25).

4.1 The Hybrid Cramér-Rao bound for InSAR
The data formulation described in the previous section is suited for exploiting the Hybrid
Cramér-Rao Bound (HCRB) for lower bounding the accuracy on the estimate of θ. The HCRB
(26), (27), (28) applies in the case where some of the unknowns are deterministic and others
are random; it unifies the deterministic and Bayesian CRB in such a way as to simultaneously
bound the covariance matrix of the unbiased estimates of the deterministic parameters and
the mean square errors on the estimates of the random variables (26), (27).
Let θ̂ be an unbiased estimator of the deterministic parameters θ, and denote α̂ an estimator
of the random variables α. The HCRB assures that, for every estimator,

Ey,α




(
θ̂− θ

) (
θ̂− θ

)T (
θ̂− θ

)
(α̂ − α)T

(α̂ − α)
(

θ̂− θ
)T

(α̂ − α) (α̂ − α)T


 ≥ J−1 (8)
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hypothesis that the ensemble of the APSs may be modeled as a normal, zero mean stochastic
process with variance σ2

α:

α ∼ N (0, Rα) (4)

Rα = σ2
αIN

where IN is the N × N identity matrix. The reason for this assumption is that it will allow to
reach a simple analytical form to lower bound the estimate accuracy. Otherwise, the estimate
accuracy would depend not only on the APS variance, but also on the shape of its distribu-
tion. As a first approximation, however, this assumption may be retained (21). Note that the
characterization of the APS as a zero mean process is clearly unphysical, since the propagation
through the atmosphere should result in an additional delay of the received echoes, therefore
giving rise to a bias. Such bias, however, is automatically canceled by evaluating the phase
differences, ϕn − ϕm, in such a way that model (4) can be retained in the framework of InSAR
analyses. As a further remark, note that the assumption that the APSs are uncorrelated from
an acquisition to another is not strictly necessary for the theoretical developments to follow.

The set of the coherences, γnm, of each interferometric pair accounts for decorrelation sources
like superficial, volumetric, temporal, etc, is the following product form, suggested in (22):

γnm = γ0γ
(sup)
nm γ

(vol)
nm γ

(temp)
nm (5)

Model (2) may be expressed in a conveniently compact form as:
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= φΓφH (6)

where:

• R is the data covariance matrix.
• y =

[
y0 · · · · · · yN−1

]T is the stack of the SLC images at a given location, (r, x),
in the slant range, azimuth plane;

• Γ is an N × N symmetric matrix whose elements are given by the interferometric coher-
ences: {Γ}nm = γnm;

• φ is an N × N diagonal matrix whose elements are given by the interferometric phases:

φ = diag
{

exp (jϕ0) · · · · · · exp
(

jϕN−1
) }

Throughout this chapter we will assume that the estimation of the parameters of interest is
performed by exploiting a conveniently small estimation window, Ω. The pdf of the data
sample within the estimation window will be expressed as:

p (yΩ|ϕ) = const ·
L

∏
l=1

exp
(
−yH (rl , xl) φΓ−1φHy (rl , xl)

)
(7)

where (rl , xl) denote the location in the slant range, azimuth plane and L is the number of
pixels within the estimation window.
Expression (7) is conditioned to two hypothesis: the stationarity and the incorrelation of the
pixels in the window. The hypothesis of stationarity requires that the unknowns, θ, the APSs,
α, and the coherences, γnm, are constant inside Ω. Therefore, in practical applications this
hypothesis may be retained provided that Ω is small. The hypothesis that no correlation
exists among neighboring pixels requires that either one of these two conditions is met:

• all the pixels within the estimation window are referred to the same slant range location;
• the normal baselines are small, in such a way as not to give rise to correlation among

neighboring pixels.

Note that the latter represent the most suitable condition for estimating the LDF, which makes
it sensible to retain its validity, especially in light of the capabilities which will be provided
by the next generation of spaceborne SARs (13). As a first approximation, however, the effect
of a non null normal baseline set can be included by letting the correlation coefficients γnm
account for the contribution of spatial decorrelation.

4. Performances estimation in Multi Baseline Interferometry

This section is dedicated to multi-baseline SAR Interferometry (InSAR). We will associate In-
SAR with the hypothesis that a single target, either point-like or distributed, is present within
the SAR slant range, azimuth resolution cell.
The aim here is to derive a lower bounds of the performance achievable by spaceborne InSAR
as for the estimation of the LOS deformation field (LDF) from acquisitions over scenes charac-
terized by a distributed scattering mechanism, such as forests, agricultural fields, soil or rock
surfaces, and even ice shelves. Mainly two factors affect the accuracy of InSAR estimates.
One arises from decorrelation phenomena among SAR images, due to the spatial structure
and temporal behavior of the targets. The other is given by the presence of uncompensated
propagation disturbances. As long as spaceborne applications are considered, it is reasonable
to assume that uncompensated propagation disturbances are mainly caused by atmospheric
fluctuations, and hence in this chapter propagation disturbances will be identified with the
Atmospheric Phase Screens (APSs). The ensemble of target decorrelation and APS results in a
non Gaussian distribution of the data, which complicates the a-priori assessment of the LDF
estimator performance for any given scenario. In the existing literature the computation of
InSAR lower bounds is commonly approached as the problem of estimating a set of deter-
ministic parameters in presence of decorrelation noise (23), (24), whereas the role of the APS
is in general neglected. Within this chapter it will be shown that, under the hypothesis that a
single, distributed, target is present within the SAR resolution cell, the roles of target decorre-
lation and APSs may be jointly treated by exploiting the Hybrid Cramér-Rao Bound (HCRB),
where the unknowns are both deterministic parameters and stochastic variables. This ap-
proach results in a compact formulation of the problem, from which it is possible to achieve
some closed-form formulas that constitute a useful tool for system design and tuning (25).

4.1 The Hybrid Cramér-Rao bound for InSAR
The data formulation described in the previous section is suited for exploiting the Hybrid
Cramér-Rao Bound (HCRB) for lower bounding the accuracy on the estimate of θ. The HCRB
(26), (27), (28) applies in the case where some of the unknowns are deterministic and others
are random; it unifies the deterministic and Bayesian CRB in such a way as to simultaneously
bound the covariance matrix of the unbiased estimates of the deterministic parameters and
the mean square errors on the estimates of the random variables (26), (27).
Let θ̂ be an unbiased estimator of the deterministic parameters θ, and denote α̂ an estimator
of the random variables α. The HCRB assures that, for every estimator,
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(
θ̂− θ

) (
θ̂− θ

)T (
θ̂− θ

)
(α̂ − α)T

(α̂ − α)
(

θ̂− θ
)T

(α̂ − α) (α̂ − α)T


 ≥ J−1 (8)
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where Ey,α[. . .] denotes expectation with respect to the joint pdf of the data and the APS,
p (y, α|θ), and the inequality means that the difference between the left and the right sides
of (8) is a nonnegative definite matrix. The matrix J is called the Hybrid Information Matrix
(HIM). It may be obtained as the sum of the standard Fisher Information Matrix (FIM), F,
averaged with respect to α, and the prior information matrix Iα.

J = Eα [F] + Iα (9)

Define ∆y
x as a matrix of the second order partial derivatives with respect to two multi-

dimensional variables (x, y):
{

∆y
x
}

nm =
∂2

∂xn∂ym
(10)

Then, the matrices F and Iα are given by:

F = −Ey|α

{[
∆θ

θ log p (y|θ, α) ∆α
θ log p (y|θ, α)

∆θ
α log p (y|θ, α) ∆α

α log p (y|θ, α)

]}
(11)

Iα = −Eα

{[
0 0
0 ∆α

α log p (α)

]}
(12)

where Ey|α[. . .] denotes expectation with respect to p (y|α,θ), and Eα[. . .] denotes expectation
with respect to p (α).

4.1.1 Fisher Information Matrix
Under the assumption that the distribution of the data conditioned on the interferometric is
normal it is possible to express the FIM in (11) in a relatively simple form, by exploiting the
result:

Ex|τ

[
∂2 (log (p (x|τ)))

∂τn∂τm

]
= trace

{
∂R
∂τn

∂R−1

∂τm

}
(13)

that holds for any process distributed as x ∼ N (0, R (τ)), where τ is an arbitrary set of coef-
ficients that parameterize the covariance matrix of x.
From (11) and (13), a straightforward application of the chain rule leads to the following ex-
pression for the FIM:

F =

[
ΘTXΘ ΘTX

XΘ X

]
(14)

where Θ is the matrix of the first order partial derivatives of the set of functions {ψn (θ)}
N−1
n=0

with respect to θ,

{Θ}nm =
∂ψn (θ)

∂θm
, (15)

and X is an N × N matrix representing the FIM associated to the estimates of the interfero-
metric phases, ϕn. After (13), X is obtained as:

{X}nm = −trace

{
∂R
∂ϕn

∂R−1

∂ϕm

}
(16)

A straightforward, yet rather long and tedious, evaluation of (16) leads to express X as:

X = 2L ·
(

Γ ◦ Γ−1 − IN

)
(17)

where Γ is the coherence matrix in (6), ◦ indicates the Hadamard (i.e. entry-wise) product
between two matrices and L is the number of (independent) looks inside Ω. The role of X is
to account for the loss of information about the interferometric phases due to target decorre-
lation. A remarkable property of X is that its rank is strictly lower than the number of images
which constitute the data-set. This fact must not surprise, since the interferometric phases af-
fect the data covariance matrix only through their differences, ϕn − ϕm. Therefore, at least one
interferometric phase may be defined arbitrarily. Consider now the case where the data-set
may be partitioned into two statistically independent subsets, namely:

y =
[

yH
1 yH

2
]H (18){

E
[
y1yH

2

]}
nm

= 0 ∀ n, m

where y1 is the stack of N1 < N SAR images and y2 is the stack of the remaining N2 = N − N1
SAR images. By virtue of the statistical independence between the two subsets, no informa-
tion is available about the differences between any of the phases of the first and the second
subsets. This means that the estimation of the interferometric phases may be carried out sep-
arately for each subsets, which implies that at most N1 − 1 + N2 − 1 = N − 2 phases can be
retrieved. Extending this argument to the case of NS independent subsets, it turns out that at
most N − NS phases can be retrieved, corresponding to rank (X) ≤ N − NS. Conversely, if the
data cannot be partitioned into two subsets, then it means that there are at least N − 1 inter-
ferometric pairs with a non null coherence. As a consequence, at least N − 1 phase differences
can be measured. Since the data cannot be partitioned, each of the interferometric phases,
ϕn, has to appear in at least one of such N − 1 phase differences. Therefore, the ensemble of
the N − 1 phase difference forms a system of N − 1 independent equations, resulting in the
possibility to retrieve exactly N − 1 interferometric phases. Applying this argument to each
subset, one gets that:

rank (X) = N − NS (19)

where N is the number of images and NS is the maximum number of subsets in which the
data can be partitioned.

4.1.2 Prior Information Matrix
Under the hypothesis of normally distributed APSs, the computation of the lower right block
of the matrix Iα proceeds directly from (12). In this case, it is readily found that:

Iα =

[
0 0
0 R−1

α

]
(20)

where Rα is the covariance matrix of the APSs.

4.1.3 HCRB
From (17), X does not depend on α, and thus Eα [F] = F. Therefore, the hybrid information
matrix may be written as

J =
[

ΘTXΘ ΘTX
XΘ X + σ−2

α IN

]
. (21)
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where Ey,α[. . .] denotes expectation with respect to the joint pdf of the data and the APS,
p (y, α|θ), and the inequality means that the difference between the left and the right sides
of (8) is a nonnegative definite matrix. The matrix J is called the Hybrid Information Matrix
(HIM). It may be obtained as the sum of the standard Fisher Information Matrix (FIM), F,
averaged with respect to α, and the prior information matrix Iα.

J = Eα [F] + Iα (9)

Define ∆y
x as a matrix of the second order partial derivatives with respect to two multi-

dimensional variables (x, y):
{

∆y
x
}

nm =
∂2

∂xn∂ym
(10)

Then, the matrices F and Iα are given by:

F = −Ey|α

{[
∆θ

θ log p (y|θ, α) ∆α
θ log p (y|θ, α)

∆θ
α log p (y|θ, α) ∆α

α log p (y|θ, α)

]}
(11)

Iα = −Eα

{[
0 0
0 ∆α

α log p (α)

]}
(12)

where Ey|α[. . .] denotes expectation with respect to p (y|α,θ), and Eα[. . .] denotes expectation
with respect to p (α).

4.1.1 Fisher Information Matrix
Under the assumption that the distribution of the data conditioned on the interferometric is
normal it is possible to express the FIM in (11) in a relatively simple form, by exploiting the
result:

Ex|τ

[
∂2 (log (p (x|τ)))

∂τn∂τm

]
= trace

{
∂R
∂τn

∂R−1

∂τm

}
(13)

that holds for any process distributed as x ∼ N (0, R (τ)), where τ is an arbitrary set of coef-
ficients that parameterize the covariance matrix of x.
From (11) and (13), a straightforward application of the chain rule leads to the following ex-
pression for the FIM:

F =

[
ΘTXΘ ΘTX

XΘ X

]
(14)

where Θ is the matrix of the first order partial derivatives of the set of functions {ψn (θ)}
N−1
n=0

with respect to θ,

{Θ}nm =
∂ψn (θ)

∂θm
, (15)

and X is an N × N matrix representing the FIM associated to the estimates of the interfero-
metric phases, ϕn. After (13), X is obtained as:

{X}nm = −trace

{
∂R
∂ϕn

∂R−1

∂ϕm

}
(16)

A straightforward, yet rather long and tedious, evaluation of (16) leads to express X as:

X = 2L ·
(

Γ ◦ Γ−1 − IN

)
(17)

where Γ is the coherence matrix in (6), ◦ indicates the Hadamard (i.e. entry-wise) product
between two matrices and L is the number of (independent) looks inside Ω. The role of X is
to account for the loss of information about the interferometric phases due to target decorre-
lation. A remarkable property of X is that its rank is strictly lower than the number of images
which constitute the data-set. This fact must not surprise, since the interferometric phases af-
fect the data covariance matrix only through their differences, ϕn − ϕm. Therefore, at least one
interferometric phase may be defined arbitrarily. Consider now the case where the data-set
may be partitioned into two statistically independent subsets, namely:

y =
[

yH
1 yH

2
]H (18){

E
[
y1yH

2

]}
nm

= 0 ∀ n, m

where y1 is the stack of N1 < N SAR images and y2 is the stack of the remaining N2 = N − N1
SAR images. By virtue of the statistical independence between the two subsets, no informa-
tion is available about the differences between any of the phases of the first and the second
subsets. This means that the estimation of the interferometric phases may be carried out sep-
arately for each subsets, which implies that at most N1 − 1 + N2 − 1 = N − 2 phases can be
retrieved. Extending this argument to the case of NS independent subsets, it turns out that at
most N − NS phases can be retrieved, corresponding to rank (X) ≤ N − NS. Conversely, if the
data cannot be partitioned into two subsets, then it means that there are at least N − 1 inter-
ferometric pairs with a non null coherence. As a consequence, at least N − 1 phase differences
can be measured. Since the data cannot be partitioned, each of the interferometric phases,
ϕn, has to appear in at least one of such N − 1 phase differences. Therefore, the ensemble of
the N − 1 phase difference forms a system of N − 1 independent equations, resulting in the
possibility to retrieve exactly N − 1 interferometric phases. Applying this argument to each
subset, one gets that:

rank (X) = N − NS (19)

where N is the number of images and NS is the maximum number of subsets in which the
data can be partitioned.

4.1.2 Prior Information Matrix
Under the hypothesis of normally distributed APSs, the computation of the lower right block
of the matrix Iα proceeds directly from (12). In this case, it is readily found that:

Iα =

[
0 0
0 R−1

α

]
(20)

where Rα is the covariance matrix of the APSs.

4.1.3 HCRB
From (17), X does not depend on α, and thus Eα [F] = F. Therefore, the hybrid information
matrix may be written as

J =
[

ΘTXΘ ΘTX
XΘ X + σ−2

α IN

]
. (21)
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Now, computing the inverse of J and extracting the upper left block, the HCRB for the estimate
of θ results:

Ey,α

[(
θ̂− θ

) (
θ̂− θ

)T
]
≥ (22)

(
ΘTXΘ − ΘTX

(
X + R−1

α

)−1
XΘ

)−1

where it may be shown that the a necessary and sufficient condition for the bound to exist is
that the matrix ΘTXΘ is full rank.

4.2 A physical interpretation
In order to provide physically meaningful insights about the mechanisms which rule the es-
timate accuracy in SAR interferometry, we find it convenient to recast (22) in the following
form:

Ey,α

[(
θ̂− θ

) (
θ̂− θ

)T
]
≥ (23)

lim
ε→0

(
ΘT

(
X−1

ε + Rα

)−1
Θ

)−1

where Xε = X + εIN is a perturbation of X. After some matrix manipulations and under the
condition that ΘTXΘ is full rank, it may be proved that (22) and (23) provide the same, finite,
bound as ε → 0. By definition, the matrix X represents the information that is available about
the interferometric phases in dependence of target decorrelation. For this reason, it is natural
to associate the inverse of its perturbation, Xε, to the covariance matrix of the phase noise due
to target decorrelation. Notice that, although such matrix diverges as ε → 0, if the condition
that ΘTXΘ is full rank is fulfilled the bound in (23) exists finite, and thus the interpretation
of X−1

ε as a covariance matrix can be retained. After model (3), the presence of the APSs
results in a further phase noise, independent of target decorrelation, whose covariance matrix
is given by Rα. Hence, the kernel

(
X−1

ε + Rα
)

in (23) represents the covariance matrix of the
total phase noise, due to both target decorrelation and the APSs. It follows that the term(
X−1

ε + Rα
)−1 represent the global information about the interferometric phases, and hence

ΘT (
X−1

ε + Rα
)−1

Θ represents the total information about the parameters of interest θ. The
practical implications of this interpretation will be discussed in the next chapter.

4.3 On the validity of the HCRB for InSAR applications
To give an intuitive idea of the conditions that must be met for the HCRB to represent a realistic
bound, it is again useful to consider separately the roles of X−1

ε and Rα in (23). Assume that
the APS can be neglected with respect to the contribution coming from target decorrelation.
In this case, the bound for the variance of the LDF predicted by (23) defaults to the standard
CRB, since it ignores the statistical component represented by the APSs. In formula:

Ey

[(
θ̂− θ

) (
θ̂− θ

)T
]
≥

(
ΘTXΘ

)−1
(24)

This bound is quite closely approached by maximum-likelihood estimators at sufficiently
large signal-to-noise ratios, or when the number of available data is sufficiently large. In the

framework of InSAR, this means that either the correlation coefficients, the number of images,
or the estimation window must be large.
On the other hand, when the APS noise dominates with respect to the source decorrelation,
the term X̃−1 can be ignored, and from (4), the HCRB for θ is proportional to the variance of
the APS:

Ey,α

[(
θ̂− θ

) (
θ̂− θ

)T
]
≥

(
Θ̃TR̃−1

α Θ̃
)−1

(25)

Attention must be paid prior to retaining this result. The role of the variance of the APSs
in the estimation process may be described through a threshold like behavior. The fact that
this aspect is not handled by the HCRB is an intrinsic limitation of the method, whereas other
bounds have been proposed in literature that account properly for threshold effects (27). Prac-
tical conditions for retaining the validity of the results will be provided in the following.

4.4 Closed form solutions for InSAR
This last section provides a simple and practical example of an application of the proposed
bound (23). For simplicity’s sake, the LDF is modeled as a LOS subsidence with constant
velocity, v, even though an extension of this analysis to a larger set of unknowns is immediate.
In this case the set of the unknowns reduces to a single scalar, v, and the phase functions ψn (v)
are given by:

ψn (v) =
4π

λ
nδt · v (26)

δt being the time interval between two nearby acquisitions and λ the wavelength.
To properly characterize the source statistics, we assume that γnm is determined by an expo-
nential temporal decorrelation (22), plus a thermal noise, uncorrelated from one acquisition to
the other:

γnm = γ0ρ|n−m|δt + (1 − γ0) δn−m (27)

where ρ is a parameter describing temporal decorrelation and γ0 is related to the signal-to-
noise ratio via

γ0 =
SNR

1 + SNR
.

Finally, let N denote the number of available images and L the number of independent looks
within the estimation window.
From the decorrelation model (27), the HCRB for the estimate of the subsidence velocity is
easily computed through (17) and (23); see the left panel of Fig. (2). However, to achieve
deeper insight on how temporal decorrelation, thermal noise, and APSs impact the accuracy
of the estimate, it is convenient to analyze these phenomena separately.

4.4.1 Temporal decorrelation
Neglecting the contribution of thermal noise, the decorrelation model (27) reduces to γnm =

ρ|n−m|δt, for which the matrix Γ−1 is tridiagonal and computable in a closed form. Neglecting
also the contribution of the APSs, from (17) and (23), and after some matrix manipulations it
is possible to obtain:

σ2
v =

(
λ

4πδt

)2 1 − ρ2δt

2Lρ2δt
1

N − 1
de f
=

σ2
temp

N − 1
(28)

which shows that, in absence of thermal noise and APS, temporal decorrelation acts in such a
way as to pose the problem of the estimate of velocity as the estimate of the mean of a normal
white process with variance σ2

temp.
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Now, computing the inverse of J and extracting the upper left block, the HCRB for the estimate
of θ results:
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≥ (22)

(
ΘTXΘ − ΘTX
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XΘ
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where it may be shown that the a necessary and sufficient condition for the bound to exist is
that the matrix ΘTXΘ is full rank.

4.2 A physical interpretation
In order to provide physically meaningful insights about the mechanisms which rule the es-
timate accuracy in SAR interferometry, we find it convenient to recast (22) in the following
form:
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θ̂− θ
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lim
ε→0
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ΘT

(
X−1

ε + Rα

)−1
Θ

)−1

where Xε = X + εIN is a perturbation of X. After some matrix manipulations and under the
condition that ΘTXΘ is full rank, it may be proved that (22) and (23) provide the same, finite,
bound as ε → 0. By definition, the matrix X represents the information that is available about
the interferometric phases in dependence of target decorrelation. For this reason, it is natural
to associate the inverse of its perturbation, Xε, to the covariance matrix of the phase noise due
to target decorrelation. Notice that, although such matrix diverges as ε → 0, if the condition
that ΘTXΘ is full rank is fulfilled the bound in (23) exists finite, and thus the interpretation
of X−1

ε as a covariance matrix can be retained. After model (3), the presence of the APSs
results in a further phase noise, independent of target decorrelation, whose covariance matrix
is given by Rα. Hence, the kernel

(
X−1

ε + Rα
)

in (23) represents the covariance matrix of the
total phase noise, due to both target decorrelation and the APSs. It follows that the term(
X−1

ε + Rα
)−1 represent the global information about the interferometric phases, and hence

ΘT (
X−1

ε + Rα
)−1

Θ represents the total information about the parameters of interest θ. The
practical implications of this interpretation will be discussed in the next chapter.

4.3 On the validity of the HCRB for InSAR applications
To give an intuitive idea of the conditions that must be met for the HCRB to represent a realistic
bound, it is again useful to consider separately the roles of X−1

ε and Rα in (23). Assume that
the APS can be neglected with respect to the contribution coming from target decorrelation.
In this case, the bound for the variance of the LDF predicted by (23) defaults to the standard
CRB, since it ignores the statistical component represented by the APSs. In formula:
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(
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)−1
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This bound is quite closely approached by maximum-likelihood estimators at sufficiently
large signal-to-noise ratios, or when the number of available data is sufficiently large. In the

framework of InSAR, this means that either the correlation coefficients, the number of images,
or the estimation window must be large.
On the other hand, when the APS noise dominates with respect to the source decorrelation,
the term X̃−1 can be ignored, and from (4), the HCRB for θ is proportional to the variance of
the APS:
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) (
θ̂− θ

)T
]
≥

(
Θ̃TR̃−1
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)−1
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Attention must be paid prior to retaining this result. The role of the variance of the APSs
in the estimation process may be described through a threshold like behavior. The fact that
this aspect is not handled by the HCRB is an intrinsic limitation of the method, whereas other
bounds have been proposed in literature that account properly for threshold effects (27). Prac-
tical conditions for retaining the validity of the results will be provided in the following.

4.4 Closed form solutions for InSAR
This last section provides a simple and practical example of an application of the proposed
bound (23). For simplicity’s sake, the LDF is modeled as a LOS subsidence with constant
velocity, v, even though an extension of this analysis to a larger set of unknowns is immediate.
In this case the set of the unknowns reduces to a single scalar, v, and the phase functions ψn (v)
are given by:

ψn (v) =
4π

λ
nδt · v (26)

δt being the time interval between two nearby acquisitions and λ the wavelength.
To properly characterize the source statistics, we assume that γnm is determined by an expo-
nential temporal decorrelation (22), plus a thermal noise, uncorrelated from one acquisition to
the other:

γnm = γ0ρ|n−m|δt + (1 − γ0) δn−m (27)

where ρ is a parameter describing temporal decorrelation and γ0 is related to the signal-to-
noise ratio via

γ0 =
SNR

1 + SNR
.

Finally, let N denote the number of available images and L the number of independent looks
within the estimation window.
From the decorrelation model (27), the HCRB for the estimate of the subsidence velocity is
easily computed through (17) and (23); see the left panel of Fig. (2). However, to achieve
deeper insight on how temporal decorrelation, thermal noise, and APSs impact the accuracy
of the estimate, it is convenient to analyze these phenomena separately.

4.4.1 Temporal decorrelation
Neglecting the contribution of thermal noise, the decorrelation model (27) reduces to γnm =

ρ|n−m|δt, for which the matrix Γ−1 is tridiagonal and computable in a closed form. Neglecting
also the contribution of the APSs, from (17) and (23), and after some matrix manipulations it
is possible to obtain:

σ2
v =

(
λ

4πδt

)2 1 − ρ2δt

2Lρ2δt
1

N − 1
de f
=

σ2
temp

N − 1
(28)

which shows that, in absence of thermal noise and APS, temporal decorrelation acts in such a
way as to pose the problem of the estimate of velocity as the estimate of the mean of a normal
white process with variance σ2

temp.
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4.4.2 Thermal noise and APS
The thermal noise and APS corresponds to the case of the long-term coherent target, the same
assumption of the Persistent Scatterer (PS), however here we generalize to the case when the
scatterer is made by N pixels. By neglecting the temporal decorrelation is neglected, the model
(27) becomes γnm = γ0 + (1 − γ0) δn−m, for which the matrix Γ−1 is again achievable in a
closed form. The computation of X, through (17), leads to:

X =
2Lγ2

0
(1 − γ0) (1 + (N − 1) γ0)

(
N · IN − 1N1T

N

)
(29)

where 1N denotes the vector in RN for which all elements are equal to 1. It is easy to see
that the null space of X is the one dimensional subspace spanned by 1N , therefore rank (X) =
N − 1. It is then convenient to define an N − 1 × N phase transformation matrix D such that
the transformed phases are given by the differences of the interferometric phases with respect
to a common reference, in formula:

ϕ̃ = Dϕ such that (30)

ϕ̃n = ϕn − ϕ0 ∀ n = 1, 2...N − 1

The covariance matrix for the transformed phases, ϕ̃, may be readily obtained after (22), yield-
ing:

X̃−1 =
1 − γ0
2Lγ2

0

1 + (N − 1) γ0
N

(
IN−1 + 1N−11T

N−1

)
(31)

de f
= σ2

noise

(
IN−1 + 1N−11T

N−1

)

As for the covariance of the transformed APSs, α̃, by letting Rα = σ2
αIN it is immediate to see

that:
E
[
α̃α̃T

]
= R̃α = DRαDT = σ2

α

(
IN−1 + 1N−11T

N−1

)
(32)

Therefore R̃α has exactly the same structure as (31), from which it follows the important result
that, besides a scale factor, thermal noise and APSs affect the estimate accuracy in the same
way.
Finally, from (23), the accuracy on the estimate of the subsidence rate is given by:

σ2
v =

(
λ

4πδt

)2 12
N3 − N

(
σ2

α + σ2
noise

)
(33)

which is analogous to the CRB for a linear regression in presence of a normal white process
with variance σ2

α + σ2
noise.

4.4.3 Temporal decorrelation plus thermal noise and APSs
At this point, the behavior of the HCRB curve may be qualitatively explained as a mixture of
(33) and (28). When the number of images is large, the 1/ (N − 1) mechanism is dominant;
thus, the HCRB may be assumed to be given by (28). On the other hand, when N is small, the
dominant contribution is given by thermal noise and APSs, and thus we expect the curve to
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Fig. 2. HCRB for the standard deviation of the estimate of the subsidence velocity. The pa-
rameters of this scenario are: λ = 56 mm, γ0 = 0.7, ρ = 0.975, σα = 1 rad, and δt = 12 days.
The value of ρ was determined according to the work of (13). Left: standard deviation curves
obtained corresponding to a number of pixels L equal to 1, 5, 30, and 300. Right: comparison
between the HCRB (continuous line) and the approximations derived in (28) and (35) (dashed
lines) for L = 10 pixels.

be proportional to 1/
(

N3 − N
)
. To find the proportionality factor it suffices to compute the

variance for N = 2 images. In this case, X becomes a scalar, and the result is immediate:

σ2
v (2) =

(
λ

4πδt

)2
(

2σ2
α +

1 − γ2
0ρ2δt

2γ2
0ρ2δtL

)
(34)

and thus
σ2

v (N) = σ2
v (2)

6
N3 − N

f or N small (35)

The standard deviation of the LDF is plotted in Fig. 2 (left) as a function of the number of
images and for different number of pixels, L. The GMES-Sentinel-1 case was assumed, with a
repeat pass interval of 12 days, a temporal decorrelation constant of 40 days, a coherence γ0 =
0.7 and an APS standard deviation of 1 rad. The two asymptotic behaviors of the LDF standard
deviation, corresponding to the PS, σv ∝ N−3/2 and to the pure thermal decorrelation, N−1/2,
are shown on the right.
The value of N where the HCRB curve changes its behavior is determined by intersecting (28)
and (35), yielding

Ñ �

√√√√6
σ2

v (2)
σ2

temp
(36)

This value corresponds to the intersection of the dashed lines in Fig. 2.
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4.4.2 Thermal noise and APS
The thermal noise and APS corresponds to the case of the long-term coherent target, the same
assumption of the Persistent Scatterer (PS), however here we generalize to the case when the
scatterer is made by N pixels. By neglecting the temporal decorrelation is neglected, the model
(27) becomes γnm = γ0 + (1 − γ0) δn−m, for which the matrix Γ−1 is again achievable in a
closed form. The computation of X, through (17), leads to:

X =
2Lγ2

0
(1 − γ0) (1 + (N − 1) γ0)

(
N · IN − 1N1T

N

)
(29)

where 1N denotes the vector in RN for which all elements are equal to 1. It is easy to see
that the null space of X is the one dimensional subspace spanned by 1N , therefore rank (X) =
N − 1. It is then convenient to define an N − 1 × N phase transformation matrix D such that
the transformed phases are given by the differences of the interferometric phases with respect
to a common reference, in formula:

ϕ̃ = Dϕ such that (30)

ϕ̃n = ϕn − ϕ0 ∀ n = 1, 2...N − 1

The covariance matrix for the transformed phases, ϕ̃, may be readily obtained after (22), yield-
ing:

X̃−1 =
1 − γ0
2Lγ2

0

1 + (N − 1) γ0
N

(
IN−1 + 1N−11T

N−1

)
(31)

de f
= σ2

noise

(
IN−1 + 1N−11T

N−1

)

As for the covariance of the transformed APSs, α̃, by letting Rα = σ2
αIN it is immediate to see

that:
E
[
α̃α̃T

]
= R̃α = DRαDT = σ2

α

(
IN−1 + 1N−11T

N−1

)
(32)

Therefore R̃α has exactly the same structure as (31), from which it follows the important result
that, besides a scale factor, thermal noise and APSs affect the estimate accuracy in the same
way.
Finally, from (23), the accuracy on the estimate of the subsidence rate is given by:

σ2
v =

(
λ

4πδt

)2 12
N3 − N

(
σ2

α + σ2
noise

)
(33)

which is analogous to the CRB for a linear regression in presence of a normal white process
with variance σ2

α + σ2
noise.

4.4.3 Temporal decorrelation plus thermal noise and APSs
At this point, the behavior of the HCRB curve may be qualitatively explained as a mixture of
(33) and (28). When the number of images is large, the 1/ (N − 1) mechanism is dominant;
thus, the HCRB may be assumed to be given by (28). On the other hand, when N is small, the
dominant contribution is given by thermal noise and APSs, and thus we expect the curve to
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Fig. 2. HCRB for the standard deviation of the estimate of the subsidence velocity. The pa-
rameters of this scenario are: λ = 56 mm, γ0 = 0.7, ρ = 0.975, σα = 1 rad, and δt = 12 days.
The value of ρ was determined according to the work of (13). Left: standard deviation curves
obtained corresponding to a number of pixels L equal to 1, 5, 30, and 300. Right: comparison
between the HCRB (continuous line) and the approximations derived in (28) and (35) (dashed
lines) for L = 10 pixels.

be proportional to 1/
(

N3 − N
)
. To find the proportionality factor it suffices to compute the

variance for N = 2 images. In this case, X becomes a scalar, and the result is immediate:

σ2
v (2) =

(
λ

4πδt

)2
(

2σ2
α +

1 − γ2
0ρ2δt

2γ2
0ρ2δtL

)
(34)

and thus
σ2

v (N) = σ2
v (2)

6
N3 − N

f or N small (35)

The standard deviation of the LDF is plotted in Fig. 2 (left) as a function of the number of
images and for different number of pixels, L. The GMES-Sentinel-1 case was assumed, with a
repeat pass interval of 12 days, a temporal decorrelation constant of 40 days, a coherence γ0 =
0.7 and an APS standard deviation of 1 rad. The two asymptotic behaviors of the LDF standard
deviation, corresponding to the PS, σv ∝ N−3/2 and to the pure thermal decorrelation, N−1/2,
are shown on the right.
The value of N where the HCRB curve changes its behavior is determined by intersecting (28)
and (35), yielding

Ñ �

√√√√6
σ2

v (2)
σ2

temp
(36)

This value corresponds to the intersection of the dashed lines in Fig. 2.
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Fig. 3. Number of independent samples to be exploited for each target to get a standard
deviation of the estimate of the subsidence velocity of 5-7-9 mm/year. Frequencies from L to
X band have been exploited.

As a further example, the HCRB allowed us to compute the performances at different fre-
quencies. The number of independent samples to be used to get σv = 5, 7 and 9 mm/year is
plotted in Fig. (3).In computing the HCRB, the temporal decorrelation constant has been up-
dated with the square of the wavelength according to the Markov model in (13), and the APS
phase standard deviation has been updated inversely to the wavelength, the APS delay being
frequency-independent. As a result, the performances drops at the lower frequencies (the L
band), due to the scarce sensitivity of phase to displacements, hence the poor SNR. Likewise,
there is a drop at the high frequencies due to both the temporal and the APS noises. However,
the behavior is flat in the frequencies between S and C band.

4.4.4 Single baseline interferometry
In case of single baseline interferometry, N=2 and there is no way to distinguish between
temporal decorrelation and long term stability. Moreover the phase to be estimated is now a
scalar. Expression (29) leads to the well known CRB (15):

σ2
φ =

1 − γ2

2Lγ2

4.5 Conclusions
In this chapter a bound for the parametric estimation of the LDF through InSAR has been
discussed. This bound was derived by formulating the problem in such a way as to be han-
dled by the HCRB. This methodology allows for a unified treatment of source decorrelation
(target changes, thermal noise, volumetric effect, etc.) and APS under a consistent statistical
approach. By introducing some reasonable assumptions, we could obtain some closed form

solutions of practical use in InSAR applications. These solutions provide a quick performance
assessment of an InSAR system as a function of its configuration (wavelength, resolution,
SNR), the intrinsic scene decorrelation, and the APS variance. Although some limitations
may arise at higher wavelengths, due to phase wrapping, the result may still be useful for the
design and tuning of the overall system.

5. Phase Linking

The scope of this section is to introduce an algorithm to estimate the set of the interferometric
phases, ϕn, comprehensive of the APS contribution. As discussed in previous chapter, assum-
ing such model is equivalent to retaining phase triangularity, namely ϕnm = ϕn − ϕm. In other
words, we are forcing the problem to be structured in such a way as to explain the phases of
the data covariance matrix simply through N − 1 real numbers, instead than N(N − 1)/2.
For this reason, the estimated phases will be referred to as Linked Phases, meaning that these
terms are the result of the joint processing of all the N(N − 1)/2 interferograms. Accordingly,
the algorithm to be described in this section will be referred to as Phase Linking (PL).
An overview of the algorithm is given in the block diagram of Fig. 4. The algorithm is made
of two steps, the first is the phase linking, where the set of N linked phases are optimally
estimated by exploiting the N(N − 1)/2 interferograms. These phases corresponds to the
optical path, hence at a second step, the APS, the DEM (the target heights) and the deformation
parameters are retrieved.
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Fig. 4. Block diagram of the two step algorithm for estimating topography and subsidences.

Before going into details, it is important to note that phase triangularity is automatically sat-
isfied if the data covariance matrix is estimated through a single sample of the data, since
∠ (yny∗m) = ∠ (yn)−∠ (ym). It follows that a necessary condition for the PL algorithm to be
effective is that a suitable estimation window is exploited.

Since the interferometric phases affect the data covariance matrix only through their differ-
ences, one phase (say, n = 0) will be conventionally used as the reference, in such a way
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As a further example, the HCRB allowed us to compute the performances at different fre-
quencies. The number of independent samples to be used to get σv = 5, 7 and 9 mm/year is
plotted in Fig. (3).In computing the HCRB, the temporal decorrelation constant has been up-
dated with the square of the wavelength according to the Markov model in (13), and the APS
phase standard deviation has been updated inversely to the wavelength, the APS delay being
frequency-independent. As a result, the performances drops at the lower frequencies (the L
band), due to the scarce sensitivity of phase to displacements, hence the poor SNR. Likewise,
there is a drop at the high frequencies due to both the temporal and the APS noises. However,
the behavior is flat in the frequencies between S and C band.

4.4.4 Single baseline interferometry
In case of single baseline interferometry, N=2 and there is no way to distinguish between
temporal decorrelation and long term stability. Moreover the phase to be estimated is now a
scalar. Expression (29) leads to the well known CRB (15):

σ2
φ =

1 − γ2

2Lγ2

4.5 Conclusions
In this chapter a bound for the parametric estimation of the LDF through InSAR has been
discussed. This bound was derived by formulating the problem in such a way as to be han-
dled by the HCRB. This methodology allows for a unified treatment of source decorrelation
(target changes, thermal noise, volumetric effect, etc.) and APS under a consistent statistical
approach. By introducing some reasonable assumptions, we could obtain some closed form

solutions of practical use in InSAR applications. These solutions provide a quick performance
assessment of an InSAR system as a function of its configuration (wavelength, resolution,
SNR), the intrinsic scene decorrelation, and the APS variance. Although some limitations
may arise at higher wavelengths, due to phase wrapping, the result may still be useful for the
design and tuning of the overall system.

5. Phase Linking

The scope of this section is to introduce an algorithm to estimate the set of the interferometric
phases, ϕn, comprehensive of the APS contribution. As discussed in previous chapter, assum-
ing such model is equivalent to retaining phase triangularity, namely ϕnm = ϕn − ϕm. In other
words, we are forcing the problem to be structured in such a way as to explain the phases of
the data covariance matrix simply through N − 1 real numbers, instead than N(N − 1)/2.
For this reason, the estimated phases will be referred to as Linked Phases, meaning that these
terms are the result of the joint processing of all the N(N − 1)/2 interferograms. Accordingly,
the algorithm to be described in this section will be referred to as Phase Linking (PL).
An overview of the algorithm is given in the block diagram of Fig. 4. The algorithm is made
of two steps, the first is the phase linking, where the set of N linked phases are optimally
estimated by exploiting the N(N − 1)/2 interferograms. These phases corresponds to the
optical path, hence at a second step, the APS, the DEM (the target heights) and the deformation
parameters are retrieved.
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Before going into details, it is important to note that phase triangularity is automatically sat-
isfied if the data covariance matrix is estimated through a single sample of the data, since
∠ (yny∗m) = ∠ (yn)−∠ (ym). It follows that a necessary condition for the PL algorithm to be
effective is that a suitable estimation window is exploited.

Since the interferometric phases affect the data covariance matrix only through their differ-
ences, one phase (say, n = 0) will be conventionally used as the reference, in such a way
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as to estimate the N − 1 phase differences with respect to such reference. Notice that this is
equivalent to estimating N phases under the constraint that ϕ0 = 0. Therefore, not to add
any further notation, in the following the N − 1 phase differences will be denoted through
{ϕn}

N−1
1 . From (7), the log-likelihood function (times −1) is proportional to:

f
(

ϕ1, ..ϕN−1
)

∝
L

∑
l=1

yH (rl , xl) φΓ−1φHy (rl , xl) (37)

∝ trace
(

φΓ−1φHR̂
)

where R̂ is the sample estimate of R or, in other words, it is the matrix of all the available
interferograms averaged over Ω. Rewriting (37), it turns out that the log-likelihood function
may be posed as the following form:

f
(

ϕ1, ..ϕN−1
)

∝ ξH
(

Γ−1 ◦ R̂
)

ξ (38)

where ξH =
[

1 exp (jϕ1) ... exp
(

jϕN−1
) ]

. Hence, the ML estimation of the phases
{ϕn}

N−1
1 is equivalent to the minimization of the quadratic form of the matrix Γ−1 ◦ R̂ under

the constraint that ξ is a vector of complex exponentials. Unfortunately, we could not find any
closed form solution to this problem, and thus we resorted to an iterative minimization with
respect to each phase, which can be done quite efficiently in closed form:

ϕ̂(k)
p = ∠




N

∑
n �=p

{
Γ−1

}
np

{
R̂
}

np
exp

(
jϕ̂(k−1)

n

)

 (39)

where k is the iteration step. The starting point of the iteration was assumed as the phase of
the vector minimizing the quadratic form in (38) under the constraint ξ0 = 1.
Figures (5 - 7) show the behavior of the variance of the estimates of the N − 1 phases {ϕn}

N−1
1

achieved by running Monte-Carlo simulations with three different scenarios, represented by
the matrices Γ. In order to prove the effectiveness of the PL algorithm, we considered two
phase estimators commonly used in literature. The trivial solution, consisting in evaluating
the phase of the corresponding L-pixel averaged interferograms formed with respect to the
first (n = 0) image, namely

ϕ̂n = ∠
({

R̂
}

0n

)
(40)

is named PS-like. The estimator referred to as AR(1) is obtained by evaluating the phases of
the interferograms formed by consecutive acquisitions (i.e. n and n − 1) and integrating the
result. In formula:

ζ̂n = ∠
({

R̂
}

n,n−1

)
; ϕ̂n =

n

∑
k=1

ζ̂n (41)

The name AR(1) was chosen for this phase estimator because it yields the global minimizer
of (38) in the case where the sources decorrelate as an AR(1) process, namely γnm = ρ|n−m|,
where ρ ∈ (0, 1). This statement may be easily proved by noticing that if {Γ}nm = ρ|n−m|,
then Γ−1 is tridiagonal, and thus ζ̂n, in (41), represents the optimal estimator of the phase
difference ϕn− ϕn−1. In literature this solution has been applied to compensate for temporal
decorrelation in (7), (8), (6), even though in all of these works such choice was made after
heuristical considerations. Finally, the CRB for the phase estimates has been computed by

zeroing the variance of the APSs. In all the simulations it has been exploited an estimation
window as large as 5 independent samples.
In Fig. (5) it has been assumed a coherence matrix determined by exponential decorrelation.
As stated above, in this case the AR(1) estimator yields the global minimizers of (38), and so
does the PL algorithm, which defaults to this simple solution. The PS-like estimator, instead,
yields significantly worse estimates, due to the progressive loss of coherence induced by the
exponential decorrelation. In Fig. (6) it is considered the case of a constant decorrelation
throughout all of the interferograms. The result provided by the AR(1) estimator is clearly
unacceptable, due to the propagation of the errors caused by the integration step. Conversely,
both the PS-like and the PL estimators produce a stationary phase noise, which is consistent
with the kind of decorrelation used for this simulation. Furthermore, it is interesting to note
that the Linked Phases are less dispersed, proving the effectiveness of the algorithm also in
this simple scenario. Finally, a complex scenario is simulated in Fig. (7) by randomly choosing
the coherence matrix, under the sole constraints that {Γ}nm > 0 ∀ n, m and that Γ is positive
definite. As expected, none of the AR(1) and the PS-like estimators is able to handle this
scenario properly, either due to error propagation and coherence losses. In this case, only
through the joint processing of all the interferograms it is possible to retrieve reliable phase
estimates.
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Fig. 5. Variance of the phase estimates. Coherence model: {Γ}nm = ρ|n−m|; ρ = 0.8.

5.1 Phase unwrapping
As stated above, the splitting of the MLE into two steps is advantageous provided that the
two resulting sub-problems are actually easier to solve than the original problem. Despite
we could not find a closed form solution to the PL problem, it must be highlighted that the
algorithm does not require the exploration of the parameter space, thus granting an inter-
esting computational advantage over the one step MLE, especially in the case of a complex
initial parametrization. Instead, difficulties may arise when dealing with the estimation of the
original parameters from the linked phases, since the PL algorithm does not solve for the 2π
ambiguity. As a consequence, a Phase Unwrapping (PU) step is required prior to the moving
to the estimation of the parameters of interest. However, the discussion of a PU technique is
out of the scope of this chapter, we just observe that, once a set of liked phases phases ϕ̂nhas
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as to estimate the N − 1 phase differences with respect to such reference. Notice that this is
equivalent to estimating N phases under the constraint that ϕ0 = 0. Therefore, not to add
any further notation, in the following the N − 1 phase differences will be denoted through
{ϕn}

N−1
1 . From (7), the log-likelihood function (times −1) is proportional to:
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∝ trace
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where R̂ is the sample estimate of R or, in other words, it is the matrix of all the available
interferograms averaged over Ω. Rewriting (37), it turns out that the log-likelihood function
may be posed as the following form:
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Γ−1 ◦ R̂
)

ξ (38)

where ξH =
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1 exp (jϕ1) ... exp
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jϕN−1
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. Hence, the ML estimation of the phases
{ϕn}

N−1
1 is equivalent to the minimization of the quadratic form of the matrix Γ−1 ◦ R̂ under

the constraint that ξ is a vector of complex exponentials. Unfortunately, we could not find any
closed form solution to this problem, and thus we resorted to an iterative minimization with
respect to each phase, which can be done quite efficiently in closed form:
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where k is the iteration step. The starting point of the iteration was assumed as the phase of
the vector minimizing the quadratic form in (38) under the constraint ξ0 = 1.
Figures (5 - 7) show the behavior of the variance of the estimates of the N − 1 phases {ϕn}

N−1
1

achieved by running Monte-Carlo simulations with three different scenarios, represented by
the matrices Γ. In order to prove the effectiveness of the PL algorithm, we considered two
phase estimators commonly used in literature. The trivial solution, consisting in evaluating
the phase of the corresponding L-pixel averaged interferograms formed with respect to the
first (n = 0) image, namely

ϕ̂n = ∠
({

R̂
}

0n

)
(40)

is named PS-like. The estimator referred to as AR(1) is obtained by evaluating the phases of
the interferograms formed by consecutive acquisitions (i.e. n and n − 1) and integrating the
result. In formula:

ζ̂n = ∠
({

R̂
}

n,n−1

)
; ϕ̂n =

n

∑
k=1

ζ̂n (41)

The name AR(1) was chosen for this phase estimator because it yields the global minimizer
of (38) in the case where the sources decorrelate as an AR(1) process, namely γnm = ρ|n−m|,
where ρ ∈ (0, 1). This statement may be easily proved by noticing that if {Γ}nm = ρ|n−m|,
then Γ−1 is tridiagonal, and thus ζ̂n, in (41), represents the optimal estimator of the phase
difference ϕn− ϕn−1. In literature this solution has been applied to compensate for temporal
decorrelation in (7), (8), (6), even though in all of these works such choice was made after
heuristical considerations. Finally, the CRB for the phase estimates has been computed by

zeroing the variance of the APSs. In all the simulations it has been exploited an estimation
window as large as 5 independent samples.
In Fig. (5) it has been assumed a coherence matrix determined by exponential decorrelation.
As stated above, in this case the AR(1) estimator yields the global minimizers of (38), and so
does the PL algorithm, which defaults to this simple solution. The PS-like estimator, instead,
yields significantly worse estimates, due to the progressive loss of coherence induced by the
exponential decorrelation. In Fig. (6) it is considered the case of a constant decorrelation
throughout all of the interferograms. The result provided by the AR(1) estimator is clearly
unacceptable, due to the propagation of the errors caused by the integration step. Conversely,
both the PS-like and the PL estimators produce a stationary phase noise, which is consistent
with the kind of decorrelation used for this simulation. Furthermore, it is interesting to note
that the Linked Phases are less dispersed, proving the effectiveness of the algorithm also in
this simple scenario. Finally, a complex scenario is simulated in Fig. (7) by randomly choosing
the coherence matrix, under the sole constraints that {Γ}nm > 0 ∀ n, m and that Γ is positive
definite. As expected, none of the AR(1) and the PS-like estimators is able to handle this
scenario properly, either due to error propagation and coherence losses. In this case, only
through the joint processing of all the interferograms it is possible to retrieve reliable phase
estimates.
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5.1 Phase unwrapping
As stated above, the splitting of the MLE into two steps is advantageous provided that the
two resulting sub-problems are actually easier to solve than the original problem. Despite
we could not find a closed form solution to the PL problem, it must be highlighted that the
algorithm does not require the exploration of the parameter space, thus granting an inter-
esting computational advantage over the one step MLE, especially in the case of a complex
initial parametrization. Instead, difficulties may arise when dealing with the estimation of the
original parameters from the linked phases, since the PL algorithm does not solve for the 2π
ambiguity. As a consequence, a Phase Unwrapping (PU) step is required prior to the moving
to the estimation of the parameters of interest. However, the discussion of a PU technique is
out of the scope of this chapter, we just observe that, once a set of liked phases phases ϕ̂nhas
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been estimated, we just approach PU as in conventional PS processing, that is quite simple
and well tested (1), (5).

6. Parameter estimation

Once the 2π ambiguity has been solved, the linked phases may be expressed in a simple
fashion by modifying the phase model in (3) in such a way as to include the estimate error
committed in the first step. In formula:

ϕ̂ = ψ (θ) + α + υ (42)

where υ represents the estimate error committed by the PL algorithm or, in other words, the
phase noise due to target decorrelation. After the properties of the MLE, υ is asymptotically
distributed as a zero-mean multivariate normal process, with the same covariance matrix as
the one predicted by the CRB (30). In the case of InSAR, the term "asymptotically" is to be
understood to mean that either the estimation window is large or there is a sufficient number
of high coherence interferometric pairs. If these conditions are met, then it sensible to model
the pdf of υ as:

υ ∼ N
(

0, lim
ε→0

(X + εIN)−1
)

(43)

where the covariance matrix of υ has been determined after (23), by zeroing the contribution
of the APSs. Notice that the limit operation could be easily removed by considering a proper
transformation of the linked phases in (42), as discussed in section 4.2. Nevertheless, we
regard that dealing with non transformed phases provides a more natural exposition of how
parameter estimation is performed, and thus we will retain the phase model in (42).
After the discussion in the previous chapter, the APS may be modeled as a zero-mean stochas-
tic process, highly correlated over space, uncorrelated from one acquisition to the other and,
as a first approximation, normally distributed. This leads to expressing the pdf of the linked
phases in as

ϕ̂ ∼ N
(

ψ (θ) , lim
ε→0

(Wε)

)
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where Wε is the covariance matrix of the total phase noise,

Wε = (X + εIN)−1 + σ2
αIN , (44)

and σ2
α is the variance of the APS.

In order to provide a closed form solution for the estimation of θ from the linked phase, ϕ̂,
we will focus on the case where the relation between the terms ψ (θ) and θ is linear, namely
ψ (θ) = Θθ. This passage does not involve any loss of generality, as long as that θ is inter-
preted as the set of weights which represent ψ (θ) in some basis (such as a polynomial basis).
At this point, the MLE of θ from ϕ̂ may be easily derived by minimizing with respect to θ the
quadratic form:

(ϕ̂− Θθ)T W−1
ε (ϕ̂− Θθ) , (45)

which yields the linear estimator
θ̂ = Qϕ̂, (46)

where
Q = lim

ε→0

(
ΘTW−1

ε Θ
)−1

ΘTW−1
ε (47)

Therefore, the MLE of θ from ϕ̂ is implemented through a weighted L2 norm fit of the model
ψ (θ) = Θθ, and W−1

ε may be interpreted as the set of weights which allows to fit the model
accounting for target decorrelation and the APSs. It can be shown that the condition that
ΘTXΘ is full rank is sufficient to ensure the finiteness of the matrix Q.
By plugging (47) into (46) it turns out that θ̂ is an unbiased estimator of θ and that the covari-
ance matrix of the estimates is given by:

E
[(

θ̂− θ
) (

θ̂− θ
)T

]
= QWεQT (48)

= lim
ε→0

(
ΘT

(
(X + εI)−1 + σ2
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been estimated, we just approach PU as in conventional PS processing, that is quite simple
and well tested (1), (5).
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fashion by modifying the phase model in (3) in such a way as to include the estimate error
committed in the first step. In formula:

ϕ̂ = ψ (θ) + α + υ (42)

where υ represents the estimate error committed by the PL algorithm or, in other words, the
phase noise due to target decorrelation. After the properties of the MLE, υ is asymptotically
distributed as a zero-mean multivariate normal process, with the same covariance matrix as
the one predicted by the CRB (30). In the case of InSAR, the term "asymptotically" is to be
understood to mean that either the estimation window is large or there is a sufficient number
of high coherence interferometric pairs. If these conditions are met, then it sensible to model
the pdf of υ as:

υ ∼ N
(

0, lim
ε→0

(X + εIN)−1
)

(43)

where the covariance matrix of υ has been determined after (23), by zeroing the contribution
of the APSs. Notice that the limit operation could be easily removed by considering a proper
transformation of the linked phases in (42), as discussed in section 4.2. Nevertheless, we
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where Wε is the covariance matrix of the total phase noise,
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which is the same as (23). The equivalence between (23) and (48) shows that the two step
procedure herein described is asymptotically consistent with the HCRB, and thus it may be
regarded as an optimal solution at sufficiently large signal-to-noise ratios, or when the data
space is large.
It is important to note that the peculiarity of the phase model (42), on which parameter estima-
tion has been based, is constituted by the inclusion of phase noise due to target decorrelation,
represented by υ.In the case where this term is dominated by the APS noise, model (42) would
tends to default to the standard model exploited in PS processing. Accordingly, in this case the
weighted fit carried out by (47) substantially provides the same results as an unweighted fit.
In the framework of InSAR, this is the case where the LDF is to be investigated over distances
larger than the spatial correlation length of the APS. Therefore, the usage of a proper weight-
ing matrix W−1

ε is expected to prove its effectiveness in cases where not only the average
displacement of an area is under analysis, but also the local strains.

7. Conditions for the validity of the HCRB for InSAR applications

The equivalence between (23) and (48) provides an alternative methodology to compute the
lower bounds for InSAR performance, through which it is possible to achieve further insights
on the mechanisms that rule the InSAR estimate accuracy. In particular, (48) has been derived
under two hypotheses:

1. the accuracy of the linked phases is close to the CRB;

2. the linked phases can be correctly unwrapped.

As previously discussed, the condition for the validity of hypothesis 1) is that either the esti-
mation window is large or there is a sufficient number of high coherence interferometric pairs.
Approximately, this hypothesis may be considered valid provided that the CRB standard de-
viation of each of the linked phases is much lower than π. Provided that hypothesis 1) is
satisfied, a correct phase unwrapping can be performed provided that both the displacement
field and the APSs are sufficiently smooth functions of the slant range, azimuth coordinates
(15), (31). Accordingly, as far as InSAR applications are concerned, the results predicted by
the HCRB in are meaningful as long as phase unwrapping is not a concern.

8. An experiment on real data

This section is reports an example of application of the two step MLE so far developed. The
data-set available is given by 18 SAR images acquired by ENVISAT1 over a 4.5 × 4 Km2 (slant
range, azimuth) area near Las Vegas, US. The scene is characterized by elevations up 600 me-
ters and strong lay-over areas. The normal and temporal baseline spans are about 1400 meters
and 912 days, respectively. The scene is supposed to exhibit a high temporal stability. There-
fore, both temporal decorrelation and the LDF are expected to be negligible. However, many
image pairs are affected by a severe baseline decorrelation. Fig. (8) shows the interferometric
coherence for three image pairs, computed after removing the topographical contributions to
the phase. The first and the third panels (high normal baseline) are characterized by very low
coherence values throughout the whole scene, but for areas in backslope, corresponding to the
bottom right portion of each panel. These panels fully confirm the hypothesis that the scene

1 The SAR sensor aboard ENVISAT operates in C-Band (λ = 5.6 cm) with a resolution of about 9 × 6 m2

(slant range - azimuth) in the Image mode.

Δt = 79 days
Δb  = 1394 m

Δt = 912 days
Δb  = 18 m

Δt = 449 days
Δb  = 530 m

azimuth [Km]

sla
nt

 ra
ng

e 
[K

m
]

0 1 2 3 4
0

1

2

3

4

azimuth [Km]

0 1 2 3 4

azimuth [Km]

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Fig. 8. Scene coherence computed for three image pairs. The coherences have been computed
by exploiting a 3 × 9 pixel window. The topographical contributions to phase have been com-
pensated for by exploiting the estimated DEM.

is to be characterized as being constituted by distributed targets, affected by spatial decorre-
lation. On the other side, the high coherence values in the middle panel (low normal baseline,
high temporal baseline) confirms the hypothesis of a high temporal stability. The aim of this
section is to show the effectiveness of the two step MLE previously depicted by performing a
pixel by pixel estimation of the local topography and the LDF, accounting for the target decor-
relation affecting the data. There are two reasons why the choice of such a data-set is suited
to this goal:

• an a priori information about target statistics, represented by the matrix Γ, is easily
available by using an SRTM DEM;

• the absence of a relevant LDF in the imaged scene represents the best condition to assess
the accuracy.

8.1 Phase Linking and topography estimation
Prior to running the PL algorithm, each SAR image have been demodulated by the interfer-
ometric phase due to topographic contributions, computed by exploiting the SRTM DEM. In
order to avoid problems due to spectral aliasing, each image have been oversampled by a fac-
tor 2 in both the slant range and the azimuth directions. Then the sample covariance matrix
has been computed by averaging all the interferograms over the estimation window, namely:

{
R̂
}

nm
= yH

n ym (49)

where yn is a vector corresponding to the pixels of the n − th image within the estimation
window. The size of the estimation window has been fixed in 3 × 9 pixels (slant range, az-
imuth), corresponding to about 5 independent samples and an imaged area as large as 12× 20
m2 in the slant range, azimuth plane.
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field and the APSs are sufficiently smooth functions of the slant range, azimuth coordinates
(15), (31). Accordingly, as far as InSAR applications are concerned, the results predicted by
the HCRB in are meaningful as long as phase unwrapping is not a concern.

8. An experiment on real data

This section is reports an example of application of the two step MLE so far developed. The
data-set available is given by 18 SAR images acquired by ENVISAT1 over a 4.5 × 4 Km2 (slant
range, azimuth) area near Las Vegas, US. The scene is characterized by elevations up 600 me-
ters and strong lay-over areas. The normal and temporal baseline spans are about 1400 meters
and 912 days, respectively. The scene is supposed to exhibit a high temporal stability. There-
fore, both temporal decorrelation and the LDF are expected to be negligible. However, many
image pairs are affected by a severe baseline decorrelation. Fig. (8) shows the interferometric
coherence for three image pairs, computed after removing the topographical contributions to
the phase. The first and the third panels (high normal baseline) are characterized by very low
coherence values throughout the whole scene, but for areas in backslope, corresponding to the
bottom right portion of each panel. These panels fully confirm the hypothesis that the scene
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is to be characterized as being constituted by distributed targets, affected by spatial decorre-
lation. On the other side, the high coherence values in the middle panel (low normal baseline,
high temporal baseline) confirms the hypothesis of a high temporal stability. The aim of this
section is to show the effectiveness of the two step MLE previously depicted by performing a
pixel by pixel estimation of the local topography and the LDF, accounting for the target decor-
relation affecting the data. There are two reasons why the choice of such a data-set is suited
to this goal:

• an a priori information about target statistics, represented by the matrix Γ, is easily
available by using an SRTM DEM;

• the absence of a relevant LDF in the imaged scene represents the best condition to assess
the accuracy.

8.1 Phase Linking and topography estimation
Prior to running the PL algorithm, each SAR image have been demodulated by the interfer-
ometric phase due to topographic contributions, computed by exploiting the SRTM DEM. In
order to avoid problems due to spectral aliasing, each image have been oversampled by a fac-
tor 2 in both the slant range and the azimuth directions. Then the sample covariance matrix
has been computed by averaging all the interferograms over the estimation window, namely:

{
R̂
}

nm
= yH

n ym (49)

where yn is a vector corresponding to the pixels of the n − th image within the estimation
window. The size of the estimation window has been fixed in 3 × 9 pixels (slant range, az-
imuth), corresponding to about 5 independent samples and an imaged area as large as 12× 20
m2 in the slant range, azimuth plane.
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The PL algorithm has been implemented as shown by equations (38), (39), where the matrix
Γ has been computed at every slant range, azimuth location as a linear combination between
the sample estimate within the estimation window and the a priori information provided by
the SRTM DEM. Then, all the interferograms have been normalized in amplitude, flattened
by the linked phases, and added up, in such a way as to define an index to assess the phase
stability at each slant range, azimuth location. In formula:

Υ = ∑
nm

yH
n ym

‖yn‖ ‖ym‖
exp (j (ϕ̂m − ϕ̂n)) (50)

The precise topography has been estimated by plugging the phase stability index defined
in (50) and the linked phases, ϕ̂n, into a standard PS processors. More explicitly, the phase
stability index has been used as a figure of merit for sampling the phase estimates on a sparse
grid of reliable points, to be used for APS estimation and removal. After removal of the APS,
the residual topography has been estimated on the full grid by means of a Fourier Transform
(1), (5), namely:

q̂ = arg max
q

{∣∣∣∣∣∑n
exp (j (ϕ̂n − kz (n) q))

∣∣∣∣∣

}
(51)

where q̂ is the topographic error with respect to the SRTM DEM and kz (n) is the height to
phase conversion factor for the n − th image.
The resulting elevation map shows a remarkable improvement in the planimetric and altimet-
ric resolution, see Fig. (9). In order to test the DEM accuracy, the interferograms for three
different image pairs have been formed and compensated for the precise DEM and the APS,
as shown in Fig. (10, top row). Notice that the interferograms decorrelate as the baseline
increases, but for the areas in backslope. In these areas, it is possible to appreciate that the
phases are rather good, showing no relevant residual fringes.
The effectiveness of the Phase Linking algorithm in compensating for spatial decorrelation
phenomena is visible in Fig. (10, bottom row), where the three panels represent the phases
of the same three interferograms as in the top row obtained by computing the (wrapped)
differences among the LPs: ϕ̂nm = ϕ̂n − ϕ̂m. It may be noticed that the estimated phases
exhibit the same fringe patterns as the original interferogram phases, but the phase noise is
significantly reduced, whatever the slope.
This is remarked in Fig. 11, where the histogram of the residual phases of the 1394 m inter-
ferogram (continuous line) is compared to the histogram of the estimated phases of the same
interferogram (dashed line). The width of the central peak may be assessed in about 1 rad,
corresponding to a standard deviation of the elevation of about 1 m.
Finally, Fig. 12 reports the error with respect to the SRTM DEM as estimated by the approach
depicted above (left) and by a conventional PS analysis (right). More precisely, the result in
the right panel has been achieved by substituting the linked phases with the interferogram
phases in (51). Note that APS estimation and removal has been based in both cases on the
linked phases, in such a way as to eliminate the problem of the PS candidate selection in the
PS algorithm. The reason for the discrepancy in the results provided by the Phase Linking
and the PS algorithms is that the data is affected by a severe spatial decorrelation, causing the
Permanent Scatterer model to break down for a large portion of pixels.

Fig. 9. Absolute height map in slant range - azimuth coordinates. Left: elevation map pro-
vided by the SRTM DEM. Right: estimated elevation map

8.2 LDF estimation
A first analysis of the residual fringes (see Fig. 10, middle panels) shows that, as expected,
no relevant displacement occurred during the temporal span of 912 days under analysis. This
result confirms that the residual phases may be mostly attributed to decorrelation noise and to
the residual APSs. Thereafter, all the N − 1 estimated residual phases have been unwrapped,
in order to estimate the LDF as depicted in section 6. For sake of simplicity, we assumed a
linear subsidence model for each pixel, that is

Θ =
4π

λ

[
∆t1 ∆t2 · · · ∆tN

]T (52)

being λ the wavelength and ∆tn the acquisition time of the n − th image with respect to the
reference image. The weights of the estimator (47) have been derived from the estimates of Γ,
according to (44). As pointed up in section 6, the weighted estimator (47) is expected to prove
its effectiveness over a standard fit (in this case, a linear fitting) in the estimation of local scale
displacements, for which the major source of phase noise is due to target decorrelation. To
this aim, the estimated phases have been selectively high-pass filtered along the slant range,
azimuth plane, in such a way as to remove most of the APS contributions and deal only with
local deformations.
Figure (13) shows the histograms of the estimated LOS velocities obtained by the weighted es-
timator (47) and the standard linear fitting. As expected, the scene does not show any relevant
subsidence and the weighted estimator achieves a lower dispersion of the estimates than the
standard linear fitting. The standard deviation of the estimates of the LOS velocity produced
by the weighted estimator (47) may be quantified in about 0.5 mm/year, whereas the HCRB
standard deviation for the estimate of the LOS velocity is 0.36 mm/year, basing on the average
scene coherence.
The reliability of the LOS velocity estimates has been assessed by computing the mean square
error between the phase history and the fitted model at every slant range, azimuth location,
see Fig. (14). It is worth noting that among the points exhibiting high reliability, few also
exhibit a velocity value significantly higher that the estimate dispersion.
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PS algorithm. The reason for the discrepancy in the results provided by the Phase Linking
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no relevant displacement occurred during the temporal span of 912 days under analysis. This
result confirms that the residual phases may be mostly attributed to decorrelation noise and to
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linear subsidence model for each pixel, that is

Θ =
4π

λ

[
∆t1 ∆t2 · · · ∆tN

]T (52)

being λ the wavelength and ∆tn the acquisition time of the n − th image with respect to the
reference image. The weights of the estimator (47) have been derived from the estimates of Γ,
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timator (47) and the standard linear fitting. As expected, the scene does not show any relevant
subsidence and the weighted estimator achieves a lower dispersion of the estimates than the
standard linear fitting. The standard deviation of the estimates of the LOS velocity produced
by the weighted estimator (47) may be quantified in about 0.5 mm/year, whereas the HCRB
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9. Conclusions

This section has provided an analysis of the problems that may arise when performing in-
terferometric analysis over scenes characterized by decorrelating scatterers. This analysis has
been performed mainly from a statistical point of view, in order to design algorithms yield-
ing the lowest variance of the estimates. The PL algorithm has been proposed as a MLE of
the (wrapped) interferometric phases directly from the focused SAR images, capable of com-
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pensating the loss of information due to target decorrelation by combining all the available
interferograms. This technique has been proven to be very effective in the case where the
target statistics are at least approximately known, getting close to the CRB even for highly
decorrelated sources. Basing on the asymptotic properties of the statistics of the phase esti-
mates, a second MLE has been proposed to optimally fit an arbitrary LDF model from the
unwrapped estimated phases, taking into account both the phase noise due target decorrela-
tion and the presence of the APSs. The estimates have been to shown to be asymptotically
unbiased and minimum variance.
The concepts presented in this chapter have been experimentally tested on an 18 image data-
set spanning a temporal interval of about 30 months and a total normal baseline of about 1400
m. As a result, a DEM of the scene has been produced with 12 × 20 m2 spatial resolution and
an elevation dispersion of about 1 m. The dispersion of the LOS subsidence velocity estimate
has been assessed to be about 0.5 mm/year.
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9. Conclusions

This section has provided an analysis of the problems that may arise when performing in-
terferometric analysis over scenes characterized by decorrelating scatterers. This analysis has
been performed mainly from a statistical point of view, in order to design algorithms yield-
ing the lowest variance of the estimates. The PL algorithm has been proposed as a MLE of
the (wrapped) interferometric phases directly from the focused SAR images, capable of com-
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pensating the loss of information due to target decorrelation by combining all the available
interferograms. This technique has been proven to be very effective in the case where the
target statistics are at least approximately known, getting close to the CRB even for highly
decorrelated sources. Basing on the asymptotic properties of the statistics of the phase esti-
mates, a second MLE has been proposed to optimally fit an arbitrary LDF model from the
unwrapped estimated phases, taking into account both the phase noise due target decorrela-
tion and the presence of the APSs. The estimates have been to shown to be asymptotically
unbiased and minimum variance.
The concepts presented in this chapter have been experimentally tested on an 18 image data-
set spanning a temporal interval of about 30 months and a total normal baseline of about 1400
m. As a result, a DEM of the scene has been produced with 12 × 20 m2 spatial resolution and
an elevation dispersion of about 1 m. The dispersion of the LOS subsidence velocity estimate
has been assessed to be about 0.5 mm/year.
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of a selected point (continuous line) and the correspondent fitted LDF model (dashed line).
The location of this point is indicated by a red circle in the right panel.

One critical issue of this approach, common to any ML estimation technique, is the need for
a reliable estimate of the scene coherence for every interferometric pair, required to drive the
algorithms. In the case where target decorrelation is mainly determined by the target spatial
distribution, it has been shown that a viable solution is to exploit the availability of a DEM in
order to provide an initial estimate of the coherences. The case where temporal decorrelation
is dominant is clearly more critical, due to the intrinsic difficulty in foreseeing the temporal
behavior of the targets. Solving this problem requires the exploitation of either a very large
estimation window or, which would be better, of a proper physical modeling of temporal
decorrelation, accounting for Brownian Motion, seasonality effects, and other phenomena.
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One critical issue of this approach, common to any ML estimation technique, is the need for
a reliable estimate of the scene coherence for every interferometric pair, required to drive the
algorithms. In the case where target decorrelation is mainly determined by the target spatial
distribution, it has been shown that a viable solution is to exploit the availability of a DEM in
order to provide an initial estimate of the coherences. The case where temporal decorrelation
is dominant is clearly more critical, due to the intrinsic difficulty in foreseeing the temporal
behavior of the targets. Solving this problem requires the exploitation of either a very large
estimation window or, which would be better, of a proper physical modeling of temporal
decorrelation, accounting for Brownian Motion, seasonality effects, and other phenomena.
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1. Introduction 

Known from time immemorial to the inhabitants of the Pacific region, tsunamis became 
worldwide known with the great Indian Ocean disaster of December 26, 2004, and its toll of 
about 234'000 deaths, 14'000 missing and over 2,000,000 displaced persons. Beyond 
triggering the international help in managing the immediate post-event, and sustaining 
eventual rehabilitation of about 10'000 km2 of hit coastal areas, the disaster scenario was 
intensively focused on by spaceborne remote sensing. The latter, was the only fast and 
appropriate mean of collecting updated information in as much as 14 hit countries, 
stretching from Indonesia to South Africa across the Indian Ocean. 
Short-term, institutional satellite observation response was mostly centered on the 
International Charter on Space and Major Disasters, a joint endeavor of 17 public and 
private satellite owners worldwide (including the three founding agencies: ESA-European 
Space Agency, CNES-Centre National d'Etudes Spatiales, and CCRS-Canadian Center for 
Remote Sensing) that provided emergency spaceborne imaging and rapid mapping support 
(www.disasterscharter.org/web/charter/activations). 
In disaster response, remote sensing information needs are usually restrained to damage 
assessment, thus have limited duration. This implies that information must be timely and 
timely useable, and be provided with high-to-very high spatial resolution. 
Conversely, high temporal resolution - useful in repeated damage assessment across 
moderate or long lasting events, as for example storm sequences, earthquake swarms and 
volcanic unrests - is generally unnecessary in the tsunami case, where damage presents 
large amplitude but is assessed once and for all after the main wavetrain has struck. 
A much wider community of institutional and private users of remote sensing information, 
in form of special cartography products, and much longer lasting benefits are experienced if 
information is used for tsunami flooding risk mapping, impact scenario building and the 
inherent contingency planning. 
Benefits are intimately connected to the characteristics of tsunamis that occur seldom, 
propagate at top speeds close to 200 m/s on deep ocean floors, and can hit in a few hours 
areas distant thousands of kilometers from the source. On account of these parameters, 
tsunami impact mitigation cannot simply rely upon response. 
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In 2004, once the earthquake originating the tsunami was felt, it would have been possible to 
give a 2-hour advance impact notice in distant countries as India, Sri Lanka and Maldives. 
This did not happen, because a monitoring-and-alert system as the current PTWC-Pacific 
Tsunami Warning Center managed by NOAA-National Ocean and Atmosphere 
Administration (www.prh.noaa.gov/ptwc/) did not exist yet in the Indian Ocean. 
However, since slowest velocities of tsunami waves are much larger than humans can run 
for escaping them, in lack of efficient emergency plans to enact immediately, it is clear that 
the alert system alone would not have solved the problem. 
We can conclude that the risk can be mitigated acting principally on early warnings and 
preparedness. The latter is by far the leading issue, as preparedness measures can be 
effective even without early warning, whereas early warning is useless without 
accompanying measures. 
Here, we discuss how a multi-technique, integrated remote sensing approach provides the 
essential information to satisfy prevention and response needs in a tsunami prone area, 
located in the heart of the theater of the great 2004 Indian Ocean tsunami. 

 
2. Tsunamis and Storm Surges 

Tsunamis are liquid gravitational waves that are triggered by sudden displacement of water 
bodies by co-seismic seafloor dislocation or underwater landslide mass push/pull. The 
speed (celerity) of tsunami waves is 
 

V= tanh 2
2
g d 
 

 
 
 

    (1) 

 
with g the gravity acceleration, d the thickness of the water layer in meters and  the 
wavelength. If the argument of the hyperbolic tangent is large with d >/2, equation (1) 
reduces to 
 

maxV
2
g


         (2) 

 
whereas in shallow waters and d </20, equation (1) becomes 
 

minV gd          (3) 

 
On account of the steadily large ratio between wavelength and thickness of the water layer, 
the shallow water approximation of equation (3) applies generally. 
The main parameter that discriminates tsunamis from swell, is wavelength: wind generated 
waves present near-constant wavelengths up to a few hundred meters, and periods between 
seconds and tens of seconds. 
Conversely, a tsunami wave as in equation (2) travelling in a 4000m thick ocean water layer, 
locally reaches 200m/s with periods of 100-120 minutes (or wavelenghts of several hundred 
kilometers) and unnoticeable amplitude with respect to wavelength. When approaching the 

 

shore ('shoaling') with velocity dropping below 20 m/s, wavelengths shorten to kilometers, 
and wave amplitudes increase (run-up) before penetrating coastal areas. 
Outstanding wave heights are obtained as a combination of steep seafloor topographic 
gradient, and a short distance from the source. The worst documented such case occurred in 
the near field of a MW=8.0 earthquake in 1946 at Unimak Island, Alaska, where the Scotch 
Cap lighthouse was flushed away by a 35-meter high wave. 
Reportedly, wave heights for the great Indian Ocean tsunami of 26th December 2004, may 
have exceeded 15 m along northern Sumatra coasts (Geist et al., 2007). In Sri Lanka, about 
2000 km away from the epicentre of the MW=9.2±0.1 earthquake, largest wave heights may 
have exceeded 10 m in the East, whereas at least 5000 lives were taken by wavetrains not 
higher than 4 m, in the South and the Southwest of the island. 
 

YEAR DAMAGE AREA (SOURCE AREA) SOURCE TYPE CASUALTIES 
(approx.) 

2004 Eastern and Central Indian Ocean (Sumatra) Earthquake 240000 
1991 Bangladesh, Chittagong (category-5 tropical cyclone) Storm surge 138000 
1970 Bangladesh (Bhola category-4 tropical cyclone) Storm surge 500000 
1908 southern Italy, Messina and Reggio Calabria Earthquake 100000 
1896 Honshu (off-Sanriku, Japan) Earthquake 27000 
1883 Indonesia, Sunda strait (Krakatau) Volcanic eruption 35000 
1868 South America Pacific coasts (Peru-Chile, Arica) Earthquake 70000 
1771 Japan, Ryukyu Islands Earthquake 13000 
1755 Portugal, Lisbon (Alentejo fault and Carrincho bank) Earthquake 60000 
1741 Japan, Oshima and Hokkaido (controversial amplitude) Volcano landslide 2000-15000 

Table 1. Top-10 deadly seawater floodings worldwide in the last three Centuries, in inverse 
temporal order. Most frequent tsunami triggers relate to earthquakes, either directly (co-
seismic displacement) or indirectly (submarine landslides; Tinti et al., 2005): in terms of 
ground floor dislocation alone, earthquake Magnitudes Mw<7 are not believed to trigger 
tsunamis. In tropical areas of strong cyclogenetic activity as the Bay of Bengal and the Gulf 
of Mexico, the combination of strong tropical storms and low topographic gradient of 
coastal areas, may lead to massive inland penetration of sea waters called 'storm surge'. 
 
With little modifications, the above concepts may consistently apply to storm driven water 
surges, or 'storm surges', a threat provided with much higher repeat frequency (yearly) than 
tsunamis. Storm surges, typically associated to tropical cyclones, are a near-permanent 
elevation of the sealevel for the duration of the event, arising from the combination of 
extreme atmospheric pressure drop and push of the associated strong winds. Storm surges 
are common in tropical areas worldwide. Storm surges were responsible of the largest, flood 
related, mass casualty ever scored (in Bangladesh, Bengal Bay, 1970; ca. 500’000, see Table 1). 
In economic terms, the costliest tropical storm surge  was that associated to hurricane 
Katrina, August 2005, with over 100 Billion USD of direct and indirect losses. 

 
3. Rationale 

As stated earlier, operational effectiveness in tsunami impact mitigation requires taking 
major preparedness measures to allow exposed populations moving fast to the closest safe 
area nearby. This solution may allow avoiding blanket evacuation of tsunami jeopardized 
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However, since slowest velocities of tsunami waves are much larger than humans can run 
for escaping them, in lack of efficient emergency plans to enact immediately, it is clear that 
the alert system alone would not have solved the problem. 
We can conclude that the risk can be mitigated acting principally on early warnings and 
preparedness. The latter is by far the leading issue, as preparedness measures can be 
effective even without early warning, whereas early warning is useless without 
accompanying measures. 
Here, we discuss how a multi-technique, integrated remote sensing approach provides the 
essential information to satisfy prevention and response needs in a tsunami prone area, 
located in the heart of the theater of the great 2004 Indian Ocean tsunami. 

 
2. Tsunamis and Storm Surges 

Tsunamis are liquid gravitational waves that are triggered by sudden displacement of water 
bodies by co-seismic seafloor dislocation or underwater landslide mass push/pull. The 
speed (celerity) of tsunami waves is 
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with g the gravity acceleration, d the thickness of the water layer in meters and  the 
wavelength. If the argument of the hyperbolic tangent is large with d >/2, equation (1) 
reduces to 
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whereas in shallow waters and d </20, equation (1) becomes 
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On account of the steadily large ratio between wavelength and thickness of the water layer, 
the shallow water approximation of equation (3) applies generally. 
The main parameter that discriminates tsunamis from swell, is wavelength: wind generated 
waves present near-constant wavelengths up to a few hundred meters, and periods between 
seconds and tens of seconds. 
Conversely, a tsunami wave as in equation (2) travelling in a 4000m thick ocean water layer, 
locally reaches 200m/s with periods of 100-120 minutes (or wavelenghts of several hundred 
kilometers) and unnoticeable amplitude with respect to wavelength. When approaching the 

 

shore ('shoaling') with velocity dropping below 20 m/s, wavelengths shorten to kilometers, 
and wave amplitudes increase (run-up) before penetrating coastal areas. 
Outstanding wave heights are obtained as a combination of steep seafloor topographic 
gradient, and a short distance from the source. The worst documented such case occurred in 
the near field of a MW=8.0 earthquake in 1946 at Unimak Island, Alaska, where the Scotch 
Cap lighthouse was flushed away by a 35-meter high wave. 
Reportedly, wave heights for the great Indian Ocean tsunami of 26th December 2004, may 
have exceeded 15 m along northern Sumatra coasts (Geist et al., 2007). In Sri Lanka, about 
2000 km away from the epicentre of the MW=9.2±0.1 earthquake, largest wave heights may 
have exceeded 10 m in the East, whereas at least 5000 lives were taken by wavetrains not 
higher than 4 m, in the South and the Southwest of the island. 
 

YEAR DAMAGE AREA (SOURCE AREA) SOURCE TYPE CASUALTIES 
(approx.) 

2004 Eastern and Central Indian Ocean (Sumatra) Earthquake 240000 
1991 Bangladesh, Chittagong (category-5 tropical cyclone) Storm surge 138000 
1970 Bangladesh (Bhola category-4 tropical cyclone) Storm surge 500000 
1908 southern Italy, Messina and Reggio Calabria Earthquake 100000 
1896 Honshu (off-Sanriku, Japan) Earthquake 27000 
1883 Indonesia, Sunda strait (Krakatau) Volcanic eruption 35000 
1868 South America Pacific coasts (Peru-Chile, Arica) Earthquake 70000 
1771 Japan, Ryukyu Islands Earthquake 13000 
1755 Portugal, Lisbon (Alentejo fault and Carrincho bank) Earthquake 60000 
1741 Japan, Oshima and Hokkaido (controversial amplitude) Volcano landslide 2000-15000 

Table 1. Top-10 deadly seawater floodings worldwide in the last three Centuries, in inverse 
temporal order. Most frequent tsunami triggers relate to earthquakes, either directly (co-
seismic displacement) or indirectly (submarine landslides; Tinti et al., 2005): in terms of 
ground floor dislocation alone, earthquake Magnitudes Mw<7 are not believed to trigger 
tsunamis. In tropical areas of strong cyclogenetic activity as the Bay of Bengal and the Gulf 
of Mexico, the combination of strong tropical storms and low topographic gradient of 
coastal areas, may lead to massive inland penetration of sea waters called 'storm surge'. 
 
With little modifications, the above concepts may consistently apply to storm driven water 
surges, or 'storm surges', a threat provided with much higher repeat frequency (yearly) than 
tsunamis. Storm surges, typically associated to tropical cyclones, are a near-permanent 
elevation of the sealevel for the duration of the event, arising from the combination of 
extreme atmospheric pressure drop and push of the associated strong winds. Storm surges 
are common in tropical areas worldwide. Storm surges were responsible of the largest, flood 
related, mass casualty ever scored (in Bangladesh, Bengal Bay, 1970; ca. 500’000, see Table 1). 
In economic terms, the costliest tropical storm surge  was that associated to hurricane 
Katrina, August 2005, with over 100 Billion USD of direct and indirect losses. 

 
3. Rationale 

As stated earlier, operational effectiveness in tsunami impact mitigation requires taking 
major preparedness measures to allow exposed populations moving fast to the closest safe 
area nearby. This solution may allow avoiding blanket evacuation of tsunami jeopardized 
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areas, that may imply permanent activity banning in large, critical portions of the territory, 
especially if the topografic gradient is very low (as in Sri Lanka and Bangladesh, e.g.) and 
small increase of water levels lead to deep inland flooding. 
In terms of preparedness, this means that escape way solutions must be addressed well in 
advance. Considering that unnoticeably elevated areas close to the shoreline can be good, 
and sometimes unexpected escape places to single out, map and include in emergency 
plans, protection against tsunamis and timeliness of response require the advance drawing 
of quantitative impact scenarios. 
Emergency cartography must be frequently updated to mirror the modifications with time 
in location and value of vulnerable elements (inhabitants, buildings and infrastructures). 
This calls for the use of fast, synoptic and high-to-very high resolution mapping 
technologies: a need that can be satisfied by airborne and spaceborne remote sensing only. 
These concepts drove the design and the carrying out in 2006 - upon request of the 
Government of Sri Lanka to the Italian Government - of a thorough field investigation 
aimed to ease, provide with quantitative grounds and speed-up the national emergency 
planning in tsunami-prone areas. The request addressed the need of drawing a realistic set 
of flooding scenarios for most of the coastal areas of the island, with special emphasis on 
settlements and infrastructures in the reach of a model tsunami or a model storm surge. The 
basic criteria of investigation were broadly inspired by the format of early risk assessment 
and scenario simulation in the reference cases of Northwest USA (Mendocino and 
Humboldt in northern California, Tacoma in Washington, e.g.). 
This portion of the Pacific coast is subjected to frequent tsunami impact from local seismic 
sources in the unresting, undersea Mendocino fault zone (Oppenheimer et al., 1993), and is 
focused on by the US National Tsunami Hazard Mitigation Program (Lander et al., 1993; 
Eisner et al., 2001; Priest et al., 2001; Venturato et al., 2007). 
Downstream to US NTHMP, US Geological Survey provided dissemination of impact maps, 
portraying different scenarios based on possible tsunami impacts heights, and listing the 
number of people that would be affected by tsunamis of 5m, 10m, and 15m height 
respectively, with elevation data based on the SRTM (Shuttle Radar Topography Mission) 
Digital Elevation Model. The latter, is available worldwide. It displays planimetric 
resolution of 90 meters and absolute vertical accuracy of 9.6m (mission specifications). In the 
case of Sri Lanka, these parameters were considered not sufficient for reaching the required 
level of horizontal and vertical resolution compatible with a terrain heterogeneous at all 
scales, densely vegetated, provided with scattered manufacts eventually hidden or partly 
covered by tropical vegetation, and displaying negligible topographic gradients as low as 1-
2% over much of the coastal zones of interest. 
The drawing of quantitative flooding scenarios required collecting the information needed 
for completing the following steps, at the suitable scale: 
i) model tsunami (at sea, before impact): requires detailed 3D knowledge of the seabed, 
aimed to model and forecast, spot by spot, the wavetrain pattern, the energy distribution 
and the run-up before impact. On account of the expected wavelengths to deal with, the 
ideal working scale for accurate modelling was considered to lie between 1/10000 and 
1/20000 within at least 10 km from the shoreline. In lack of such information, and on 
account of unfavorable time and cost implications of an ad-hoc campaign, it was decided to 
rely upon the existing, loose seafloor cartographies by NOAA and British Admiralty, and 
the few wave heights observed in December 2004 (Liu et al., 2005). 

 

ii) Model flooding (on land, after impact): requires very high-resolution 3-D terrain model, 
to simulate the hydraulic behavior of flooded zones at scales of 1/5000 or better, and to 
draw the limits of the impact zone, the expected severity of the areal impacts and, if 
appropriate, the energy absorption on impacted manufacts. In brief, the risk model and the 
scenarios, to permit emergency deciders to plan evacuation and safety measures, and urban 
planners to adopt structural measures finalized to ease citizens' escape in case of alert. 
According to urban planners, this target requires ground resolutions in the order of 1 m, and 
elevation precisions in the order of 0.2+0.3 m to be achieved uniformly over large areas. 
Since the 2004 tsunami losses concentrated in ocean-bound strips of variable width, up to 
observed maxima of as much as 8 km in the East of the island (Batticaloa), the width of 
coastal areas to map and model was fixed at 3 km in average.  
This pointed to an expected 1800 km2 to map in 3D, in very short times (maximum one 
month), and with the resolutions/precisions as above: such target - clearly out of reach for 
standard topography missions - could be achieved only with use of State-of-the-Art active 
and passive remote sensing techniques. 
It was chosen to combine airborne LiDAR and Hyperspectral - for top 3D resolution and 
simultaneous confidence qualification of elevation data - and spaceborne RaDAR (Prati et 
al., 1994) with multispectral mapping (Hirn & Ferrucci, 2005, 2006), aimed to extend Digital 
Elevation Model building and thematic mapping, to the whole of the areas requested by the 
Sri Lankan Government via the Disaster Management Center in Colombo. As a good 
balance between high resolution needs and feasibility issues, operational costs and security 
issues, the inter-Government agreement converged on mapping in 3D and at high-to-very 
high resolution, a portion of the coastal areas hosting at least two-thirds of damage and 
casualties observed in 2004. 
Overall, the island had suffered 34'000 casualties and has experienced - for various reasons - 
over 1'100'000 displaced persons, ca. 500'000 of of which directly related to the tsunami 
destruction. The percentage of tsunami affected coastal populations ranged from 35% in the 
northern coastal districts of Kilinochi, to 80% in the eastern districts of Mullaitivu and 78% 
in Ampara, whereas the southern districts of Galle, Matara, and Hambantota displayed 
about 20% impact, albeit with scattered pockets of severe damage. The location map and the 
survey plan are shown in Figure 1. 

 
4. The HyperDEM campaign 

Following establishment of the inter-Government agreement five months after the 2004 
tsunami, the operational project "'HyperDEM - The precise Digital Elevation Model of the 
coastal areas of Sri Lanka", was launched early in September 2005. 
The work was completed in summer 2006 after acquisition of an overall data volume of 2.7 
TeraBytes. Upon completion of the work, the End Users - the Disaster Management Center 
and the Ministry of Disaster Management and Humanitarian Affairs - were provided with 
ca. 2'500 km2 of Digital Elevation Models of the coastal areas (location maps in Figure 1) 
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Fig. 1. (Left) Location map of areas surveyed by airborne LiDAR, hyperspectral and aerial 
photo (red squares) and spaceborne RaDAR (blue open squares). In the former, both Digital 
Elevation and Digital Surface Models were obtained at 1m resolution; in the latter, only 
DSM, at 30m resolution. (Right) Location of Landsat-7/ETM+ (green) and ERS-1 /ERS-
2/ENVISAT (violet) satellite frames used in HyperDEM. ASTER and QuickBird imagery 
was also used for satisfying interpretation needs eventually arisen during processing of the 
2.7 TeraByte dataset. 

 
4.1 Airborne campaign 
The airborne campaign and the related technical activities, were set up and carried out by 
the Istituto Nazionale di Oceanografia e Geofisica Sperimentale-OGS of Trieste, Italy. The 
survey, planned for integrated operation and combined acquisition of active and passive 
instruments at once, was designed on target ground resolutions of 1 m2 for LiDAR (Figure 2), 
and 4 m2 for hyperspectral (Figures 3, 4). 
 

 

 
Fig. 2. Example of 3D rendering of combined LiDAR (1m planimetric resolution, 0.3 m 
precision in elevation on steady reflectors) and digital camera aerial scenery (resolution of 
0.2 m). Picture taken over the artificial lake of Angunakolapelessa, north of Hambantota, 
south Sri Lanka. 
 
After a long waiting because of a long lasting Autumn Monsoon, the survey was finally 
carried out in about one month after move-in of instruments to Colombo, early on February, 
2006. 
About 1'780 km2 were LiDAR mapped airborne, at the planimetric resolution of 1 meter and 
the elevation precision of 0.3 metres (Figure 1, left), with the following payloads installed on 
the airborne platform, a De Havilland DHC-3 single-propeller "Otter" operated by the Sri 
Lankan private operator Air Taxi : 
 a LiDAR system Optech ALTM 3033. The instrument consisted of a Near Infrared 

(A=1064 nm) Laser beam with pulse repetition rate of 33KHz. A scanning mirror directs 
the Laser optical pulses across the flight path, providing coverage to either sides of the 
flight direction. The forward motion of the aircraft provides coverage in the direction of 
flight. 

ALTM 3033 incorporates a GPS receiver and an Inertial Measurement Unit (IMU), that 
acquires flight attitude data at the frequency of 200 Hz. 
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 A hyperspectral radiometer AISA Eagle 1K by the Finnish firm SPECIM. It is a 
pushbroom scanner made up of a V-NIR hyperspectral sensor, a GPS/INS Applanix 
sensor, and a laptop implemented data acquisition unit. 

AISA Eagle 1K operates at wavelengths between 400-970 nm; it is able to record up to 244 
bands (with spectral sampling of 2.3 nm/pixel) and 1024 spatial pixels. The system is 
flexible enough to allow acquiring data in almost every band combination, simultaneously 
acting on the number of bands and the bandwidth by use of a computer assisted procedure. 
We operated the system with 42-channel configuration, aimed at improving the signal-noise 
ratio in individual spectral bands. 
 A semi-metric digital camera ROLLEI 6008 db45, with digital back Phase-One, model 

H2O. The camera presented a pixel spacing of 9 micrometers, in a scene composed of 
4080 x 5440 pixel with 48-bit dynamics. Acquisition is assisted by a camera 
compensation system to adjust the roll and pitch variations due to aircraft position and 
flight attitude. 

The decision to operate simultaneously the semi-metric digital camera with typical footprint 
in the order of 0.2 m (when operated at the same flight level useful in obtaining the nominal 
LiDAR resolution of 1 m) for assisting in the interpretation of ambiguous elevation features 
in the very-high resolution LiDAR and hyperspectral datasets. 
In cartography applications, indeed, LiDAR raw elevation data are systematically purged of 
false or misleading information as those due to lateral backscattering, multiple scattering, 
returns from strongly reflecting physical surfaces, and so forth (Baltsavias, 1999; Kraus & 
Pfeifer, 1998). 
Such information-cleaning process is performed through a classification process that allows 
assigning physical meaning to scatterers provided with variable signal/noise ratios. First 
pulses are typically associated to strongly reflecting objects, like trees, wires, roofs and 
bridges, whereas later (and weaker) pulses are attributed to returns from "ground" (Kraus & 
Pfeifer, 1998). 
As stated earlier, the average inland extension of prospected area is about 3 km, with an 
isolated maximum of over 10 km in the sensitive area of the artificial basin and the dam of 
Angunakolapelessa (Figures 1-left and 2), immediate north of Hambantota in the south. 
Airborne LiDAR, orthophotos and hyperspectral data were acquired from February 11th and 
21st, in two legs, separated by a four-day interval (17th to 20th February) devoted to process 
acquired data, assess the dataset completeness and plan eventual recoveries. The flight zone 
(Figure 1, left) spanned between Puttalam, in the West, and Pottuvil, in the Southeast. For 
security reasons, authorized flight plans did not include the capital, Colombo, nor some 
specific damaged coastal zones in the East (Trincomalee, Batticaloa, Ampara). Instead, 
eastern areas (Figure 1) were covered by spaceborne RaDAR, and qualified by high 
resolution spaceborne multispectral observation (Figure 1, right). Flight heights ranged 
between 900-2700 metres, as a function of the desired ground resolution, the morphology 
and land-cover of surveyed areas, and the meteorological conditions. 
Flight paths were computed in real time by DGPS (differential kinematic GPS), using data 
simultaneously acquired by one GPS receiver onboard the aircraft and two, twin-frequency 
geodetic GPS receivers Ashtech (mod. Z-Extreme) at the fixed rate of one measurement per 
second. Twin-frequency GPS receivers were operated only on the benchmarks of an ad-hoc 
geodetic frame created by OGS, starting from a re-calculated benchmark of the Sri Lanka 
Survey Department, at the Katunayake International airport, north of Colombo. 

 

 
Fig. 3. Automated identification and contouring of 4x4 m2 pixels unprovided with 
vegetation, done on AISA hyperspectral V-NIR data by use of a patented method, mutuated 
by burn scar analysis (Ferrucci & Hirn, 2005). Processing was conducted on raw data (left), 
aimed to prepare and carry out future operations in real-time. In contoured pixels (center), 
LiDAR elevation measurement are expected to be precise within the error estimate (±0.15m 
averaged over buildings and bare soils). Unlike vegetation, bare rocks, soils and buildings 
are the essential constituents of DSMs (see Figure 5) for flooding and tsunami impact 
simulation. The Level-2 classification (right) was used for pixel-by-pixel elevation quality 
assessment (Figure 4). 
 
All benchmarks of the new geodetic frame were calculated and located on ellipsoids WGS84 
and Everest 1830 in the Transverse Mercator projection. Upon completion of the campaign, 
the Sri Lanka Survey Dept. was provided with the monographs of newly established 
benchmarks. 
The best estimate aircraft trajectory  (SBET), made up of fixes spaced 0.15 cm in average, 
presented rms residual errors < 0.3m, that are compatible with the required precision in 
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second. Twin-frequency GPS receivers were operated only on the benchmarks of an ad-hoc 
geodetic frame created by OGS, starting from a re-calculated benchmark of the Sri Lanka 
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Fig. 3. Automated identification and contouring of 4x4 m2 pixels unprovided with 
vegetation, done on AISA hyperspectral V-NIR data by use of a patented method, mutuated 
by burn scar analysis (Ferrucci & Hirn, 2005). Processing was conducted on raw data (left), 
aimed to prepare and carry out future operations in real-time. In contoured pixels (center), 
LiDAR elevation measurement are expected to be precise within the error estimate (±0.15m 
averaged over buildings and bare soils). Unlike vegetation, bare rocks, soils and buildings 
are the essential constituents of DSMs (see Figure 5) for flooding and tsunami impact 
simulation. The Level-2 classification (right) was used for pixel-by-pixel elevation quality 
assessment (Figure 4). 
 
All benchmarks of the new geodetic frame were calculated and located on ellipsoids WGS84 
and Everest 1830 in the Transverse Mercator projection. Upon completion of the campaign, 
the Sri Lanka Survey Dept. was provided with the monographs of newly established 
benchmarks. 
The best estimate aircraft trajectory  (SBET), made up of fixes spaced 0.15 cm in average, 
presented rms residual errors < 0.3m, that are compatible with the required precision in 
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elevation. Range data were geo-referenced by use of spatial and orientation parameters; 
basic products are vectors of points, including the information on position, GPS time and 
backscattered LiDAR amplitude. All products were delivered in UTM-44N projection, 
WGS84 datum. 
 

 
Fig. 4. Sample output of the automated identification and contouring process of buildings 
and vegetation, done on 56-channel AISA hyperspectral VNIR data by use of a patented 
method, mutuated by burn scar analysis (Ferrucci & Hirn, 2005). In these pixels, LiDAR 
elevation measurement are expected to be precise within the error estimate (0.15m 
averaged over buildings and bare soils). 
 
Finally, bare pixels (without vegetation) were weighted 1, vegetated pixels weighted 0, and 
vegetated pixels for which two LiDAR returns are available (an early reflection from the top 
of canopy, and a late reflection from the underlying ground) were marked 0.5. This 
procedure allowed creating automatically (i) a mask including all points whose elevation is 
fully reliable within the nominal error range (Figure 4), and (ii) a three-dimensional, Level-2 
land-cover of subsets weighted 0.5 and 1. 
The information was completed by carrying out same bare soil classification on 
multispectral, very high-resolution, pre-/post-tsunami QuickBird data. In spite of the 
comparable pixel footprint, however, the 4-band Visible/Near-Infrared spectral content of 
QuickBird provided much poorer information than the airborne 56-band Hyperspectral 
airborne radiometer. 
LiDAR data were also corrected by use of a geodic model derived from the EGM96 model. 
In particular, Digital Elevation Models obtained by airborne LiDAR, were associated to co-
registered airborne Hyperspectral data that underwent unsupervised, Level-2 classification 
for automatically discriminating bare soil from vegetation. 
 

 

 
 

Fig. 5. LiDAR-derived Digital Surface Model (DSM, left) and Digital Ground Model (DGM, 
right). In the DGM, thick walls are emphasized by removal of most of buildings and 
vegetation. Because of such removal, DGMs are suited to standard cartography, but they are 
not to tsunami or storm surge flood modelling since they do not contain anymore relevant 
obstacles and vulnerable structures. The example relates to the 17th  Century Dutch fort in 
Galle, southern Sri Lanka. 

 
4.2 Spaceborne campaign 
The spaceborne campaign was conducted synergetically by the Department of Electronics 
and Information of the Politecnico di Milano, that manufactured products in Synthetic 
Aperture Radar interferometry with the proprietary procedure PS-InSARTM (Prati et al., 
1994; Ferretti et al., 1999, 2001), and the University of Calabria, that manufactured 
multispectral and cartography products exploiting the proprietary procedure MyME2 (Hirn 
& Ferrucci, 2005; Ferrucci & Hirn, 2005). 
The overall process relied upon same strategy as in the air campaign, with elevation data 
founded upon interferometric Synthetic Aperture RaDAR techniques, and pixel 
qualification carried out on Infra-Red multispectral satellite scenery. 
Pixel qualification was based on the automated discrimination of bare soils, buildings and 
infrastructures from vegetation. These classes return highest confidence weight to RaDAR 
measured elevation values in the same pixel, whereas dense canopy returns lower or zero 
values. Overall, the space dataset was composed of 67 images, both RaDAR and 
multispectral, with resolutions ranging from metric (QuickBird) to decametric (ASTER, 
Landsat-7, ERS-1, ERS-2, Envisat). To fit the requirements of HyperDEM, repeat-pass 
interferometry was carried out to provide for two different products: Permanent Scatterers 
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(PS-InSAR™) data and DEM using ERS-1/ERS-2 'Tandem' pair combinations. PS-InSAR is a 
trademark of Politecnico di Milano. 
 

 
 

Fig. 6. View of the eastern coast (North is to the left) from radar satellites ERS (Track 33 - 
Frame 3465) of the European Space Agency. Because of the overall limited dataset, and the 
characteristics of the eastern coast areas (alternating rain forest, extremely flat terrains and 
frequent water bodies), the technical choice switched from PS-InSARTM to Multi-Baseline 
InSAR technique. 
 
The available SAR dataset was composed of 23 scenes along ERS/Envisat track 33 
(Descending orbit), frames 3447 and 3465, acquired since 1992 at uneven rates. Accounting 
for the pixel dimensions (20m x 20m), and the lack of penetration of C-band RaDAR 
radiation across canopy, the elevation model mirrors the envelope of the Earth surface, 
including vegetation. In particular, the characteristics of the land cover make this area very 
sensitive to temporal decorrelation, that is, the loss of coherence between two successive 
images due to a large time interval elapsed between acquisitions. For this reasons, basic 

 

RaDAR analysis was recentred on past ERS-1/ERS-2 tandem pairs, with 1-day intervals 
between over passes and 35-day repeat times. 
 

 

 
 

 

Fig. 7. SAR Multi-image, reflectivity map of a portion of the eastern coast of Sri Lanka 
(North is to the left). Dark shading indicates dense vegetation cover, whereas black areas 
correspond to internal water bodies. Radar scattering is de-organized by foliage, and water 
bodies favor forward scattering instead of backscattering towards the Radar platform. Both 
features in combination give rise to incoherent behaviour within multi-temporal sequences. 
 
The useable SAR dataset, composed of 42 scenes, was theoretically sufficient for carrying 
out thorough PS-InSAR analysis. Conversely, the characteristics of land cover - in 
combination with the characteristics specified above of Synthetic Aperture RaDARs onboard 
the ESA spacecrafts - did not reveal suitable for thorough, Permanent Scatterer analysis 
(Figures 6, 7). 
After elimination of tandem pairs with baseline larger than 1km, only 5 pairs for frame 3465, 
and only 3 for frame 3447 were left. This forced moving from the PS-InSAR™ technique to 
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the Multi-Interferogram approach (Prati et al., 1994; Ferretti et al., 1999): which is less 
precise, but less sensitive to the quantity of data (Figure 8). 
 

 
 

Fig. 8. Multi-interferogram DSM of eastern Sri Lanka: particular of the area of Batticaloa. 
Legend of elevation classes witnesses of a very flat topography that, with rich vegetation 
cover and spatial frequence of water bodies, leads to limited success of PS interferometry 
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Fig. 9. DSM obtained by LiDAR (left), by Multi-Interferogram InSAR (centre) and map of the 
LiDAR-InSAR elevation differences (right). Colorbars shown for elevation (left) and errors 
(right). Minimum standard deviation of 2.56 m is a good estimate of InSAR topography 
accuracy in the whole area. 
 
As for merge of the very-high resolution LiDAR, and moderate-to-high resolution other 
spatial data, it is worth recalling that raw data coming from the LiDAR airborne acquisition 
are in dual form, "first pulse" and "last pulse". First-pulses, allow mapping the reflecting 
envelope surface and give rise to DSM; whereas the last-pulses subset, the DGM or 
"ground", is constituted of rays bouncing back from the ground after crossing void spaces in 
the canopy. 
The generic definition of "DEM" (Digital Elevation Model), applies to elevation of terrain 
referred to bare-Earth without vegetation and/or buildings (Figure 5-right). In order to deal 
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with LiDAR and InSAR data at once, conversely, we had to split models into DGM 
("ground") and DSM ("surface"). Definitely, DGM refers only to LiDAR, whereas DSM 
(Figures 5-left and 8) - that envelopes the whole of reflecting structures above the Earth’s 
surface - refers also to RaDAR. Consequently, a comparison between different results 
obtained in the East - by space and RaDAR - and in the West and South - by air and LiDAR - 
can be performed only on Digital Surface Models. 
 

 
Fig. 10. Difference in resolution of Digital Surface Models of Arugam Bay, southeastern Sri 
Lanka, obtained by LiDAR (left) and Synthetic Aperture Radar (right). The shaded relief 
images show the first-pulse, 1-meter LiDAR shaded relief DSM (left) and its equivalent from 
the 20-meter PS-InSAR™ interferometric DEM. The shoreline of the official cartography 
1/50’000 is also shown (gray line). 
 
Comparison, done over the LiDAR-InSAR, DSM overlap area of Arugam Bay in the 
southeast (see Figures 9 and 10) leads to a satisfactory, least standard deviation value of 2.56 
meters. 
It is worth noting, however, that such comparison is carried out on products displaying a 
two-order of magnitude difference in ground resolution, that is, 1 square meter per pixel for 
LiDAR, vs. 400 square meters for InSAR. 

 
5. Results and products 

Raw data leading to the construction of precise 3-D models of the explored coastal areas of 
Sri Lanka, came from spaceborne Synthetic Aperture RaDAR (SAR) and airborne LiDAR 
surveying. 
Both types of data data were post-processed, to remove errors and fill by resampling and 
interpolation voids arising from acquisition, and to transform clouds of points in (X, Y, Z) in 
a grid of X-Y evenly spaced points endowed with the inherent Z elevation fields. 
Information that can be extracted from LiDAR is dual: "first pulse" and "last pulse". 
First pulses relate to Laser beam reflections from the external envelope of objects (canopy, 
roofs, electric wires, etc.), whereas last detectable pulses in a Laser beam reflection sequence 
can be associated to the last reflector, that is, bare Earth. Such dual LiDAR (Laser Scanner) 

 

datasets, give rise to two, 3-D cartographic products (Figure 5): Digital Ground Model 
(DGM) and Digital Surface Model (DSM) , to be used alone or in combination. 
DGM represents the bare-Earth elevation cleaned of vegetation and manufacts, whereas 
DSM represent the elevation of LIDAR first pulses, including manufacts. DGM is suitable 
for mapping the water penetration in vegetated areas, provided with smooth topography 
and little or nil 3-D manufacts. 
DSM is indicated for detailed inundation mapping in urban areas since it contains 3-D 
footprints of manufacts, that are of utmost relevance in risk assessment if such vulnerable 
elements are in the reach of tsunami or storm surge generated flooding. 
Conversely, spaceborne RaDAR data allow creating one product – DSM - Due to much 
longer wavelength (~6*10-2 metres for Radar against ~1*10-6 metres for LiDAR) and pixel 
size (~500 m2 for Radar against ~1 m2 for LiDAR). However, spaceborne DSM obtained by 
PS-InSAR™ RaDAR interferometry, are accurate enough to approximate realistically the 
terrain in areas with sparse or nil vegetation. 
Post-processed LiDAR products keep a horizontal resolution of 1 meter, displaying an 
accuracy in elevation (pseudo-vertical) better than 30 cm. 
The interferometric RaDAR product presents a horizontal resolution of 20 meters, an 
average vertical precision of ±3 meters, with a resolution in elevation better than 1cm in 
multi-temporal, differential mode only. 
Accounting for the huge data volume, the process of map generation required developing 
an automated procedure to process the dataset, preserve the surface information, and 
minimize time consumption. The nearest neighbour interpolation method was used to 
generate DGMs and DSMs from raw data. 
This kind of interpolation method has the property of not extrapolating above or below 
actual data values coming from input. This has appeared essential, because of (a) the very 
close spacing of input data points, and (b) the fact that other potential methods (e.g. 
polynomial functions or kriging) may substantially modify the representation of some 
terrain attributes like buildings or tree canopy. 
LiDAR models were arranged in tiles of 1000 x 1000 x 1 metre (excepting those along the 
shoreline), for as much as 4600 billion grid points measured in elevation (Baltsavias, 1999; 
Kraus & Pfeifer, 1998; Axelsson, 2000). 
Spaceborne RaDAR Digital Surface Models were arranged in two frames of 1811x3497 and 
894x3202 (columns x rows) respectively, with 20-metre spacing of points, allowing for total 
2.4 million grid points measured in elevation. 

 
6. Simulations 

According to the inter-Government agreement referred to above, the Disaster Management 
Centre in Colombo was provided also with a few inundation examples (Figures 11 and 12), 
aimed to demonstrate the procedures for tsunami and/or storm surge scenario building - 
whose responsibility and exploitation rights stay with the national Authority. 
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Fig. 11. Shaded relief, Digital Surface Model of the town of Galle, in the Southwest, with 
static demonstration of flooding simulation by a 2-meter (center) and a 4-meter (bottom) 
model surge. The synthetic urban flooding scenario shown here, is satisfactorily consistent 
with field evidence observed at Galle in the aftermath of the event of December 26, 2004. 
The full wave cut the 17th Century Dutch Fort (bottom) off from mainland, but did not hit 
the internal streets. This simulation demonstrates that areas allowing safe escape from a 4-
meter tsunami, storm surge or tidal wave, can be found and better reached close to the 
shoreline instead than inland. 
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Fig. 12. Shaded relief, Digital Ground Model in the area of Hambantota, southeastern coast, 
with static flooding simulation by a model surge corresponding to a ca. 5-meter tsunami 
wave estimated by eye-witnesses and later field investigations. The combination of very low 
topographic gradient, and presence of lagoons, rivers and ponds close to the shoreline, led 
to significant inland impact of the incoming wavetrain (over 4 km). 
 
In lack of specific works in scientific literature - that is more focused on the propagation at 
sea and the impact effects on the sea-shore interface - the demonstrations were carried out 
following a simplified static approach, consisting in the consecutive piling-up of 1-meter 
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following a simplified static approach, consisting in the consecutive piling-up of 1-meter 
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thick layers. Since the procedure does not account for the significant, dynamic component of 
tsunami wavetrains, it is probably better suited to storm surges or tidal waves. The sites 
chosen for demontration are the urban area of Galle - in the southwest - and the area of 
Hambantota, in the southeast. 
Galle (Figure 11) and the surrounding coast were the site of major damage and casualty 
(more than 4'000), engendered by a relatively small wave height reported in the order of 4 
meters. In Hambantota, (Figure 12) the impacting tsunami wave was reportedly steeper, 
higher (5-6 meters, according to eye-witnesses) and penetrating the coast by a few 
kilometers. Such significant water ingression is explained by the combination of little 
topographic gradient over ca. 4-5 kilometers, and presence of large lagoons (at the foot of 
Hambantota itself), ponds, and rivers. As in Galle with a 4-meter wave, in Hambantota the 
simulation with a 5-meter wave satisfactorily fits the observed extent of flooding. 
 
7. Conclusions 
In the broad aftermath of the Sri Lanka tsunami disaster, the stack of synoptic procedures 
and remote sensing techniques chosen for satisfying the urgent needs of the User, presented 
the undebated advantage of : (a) allowing to start the work immediately, (b) without relying 
upon ground logistics until the onset of the air campaign, (c) minimizing the duration of the 
work on spot, (d) covering fast - and at an otherwise unreacheable resolution - large 
portions of a difficult-to-penetrate territory, (e) keeping the work sustainable and, overall, (f) 
allowing to carry out the work. This combination of airborne and spaceborne techniques 
was, and is ready-to-use worldwide, and the techniques for flooding simulation and scenario 
building, can be chosen at whatever level of complexity - choosing preferably robustness.  
It is also worth noting further that the new generation of metric resolution, X-band Radar 
satellite constellations (as TerraSAR-X and Cosmo-SkyMED), may allow creating LiDAR-
like products avoiding the air work on spot. Conversely, much is missing on the standpoint 
of Infra-Red observation, that has currently become poor and poorly resoluted in terms of 
SWIR spectral resolution (necessary for vegetation and bare soils applications). Whatever 
the choice of the platform, however, the technique combination holds valid and robust for 
further applications. In conclusion, the HyperDEM products were handed over by the 
Ambassador of Italy in Sri Lanka to the Minister for Disaster Management and 
Humanitarian Affairs, on 7th December 2006, in Colombo, Sri Lanka. 
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1. Introduction 
 

Measurement of air streams movement, particularly speed and direction, always has been a 
subject of steadfast scientific investigations in all areas of human life and activity. It is 
especially important to supervise moving of turbulent air when the researches on 
microwave propagation are carried out. Only when we have full representation in 
behaviour of the turbulent air and synchronous measured parameters of an electromagnetic 
wave it is possible to determine the laws of influence of turbulent air moving on parameters 
of an electromagnetic field (Shirokov et al., 2003). On the other hand it is possible to solve 
reverse task — to control meteorological environment with direct measurements of 
propagated microwave parameters (Shirokov, 2007).  
Investigations in a field of turbulent air movement are not limited by the meteorological one 
or by the researches in microwave propagation. Local measurements of air movements are 
especially useful in industry where the bodies of various mechanisms design. In a last case 
the great attention is paid to aero-dynamic characteristics of mechanisms bodies, taking into 
consideration possible mechanisms move in different gases or liquids.  
Widely used in meteorological supervision mechanical anemometers and instruments for 
measurement of a wind speed and direction are essentially unsuitable when the 
investigations of microwave propagation are carried out. Owing to its inertia, these devices 
allow to get only integrated values of measured magnitudes (Kremlevsky, 1989). At the 
same time, there is certain interest to supervise the air turbulence which some times can 
change the value during carrying out of measurements with mechanical devices.  
The dynamic range and accuracy of mechanical devices are low. Measurements can be 
implemented only in a plane, at the best case.  
In the mentioned above industry applications the mechanical instruments for supervising 
the turbulent air movement are quite unsuitable.  
Other ways of measurements (radar, optical) are unsuitable for local measurements, as they 
demand the extended distances (Nakatani et al., 1980) 
In this paper the acoustic method of measurement of speed and direction of turbulent air 
movement is discussed (Bobrovnikov, 1985) and (Waller, 1980). The working algorithm and 
the block diagram of a measuring instrument are described. The spectrum analysis of signals 
and their contribution to the general error of described measuring system is discussed. 

20
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2. Approach to a Problem 
 

For a possibility of measurement of a direction and speed of a turbulent air movement in 
three-dimensional space, are necessary, at least, three independent measuring channels 
located upon orthogonal coordinates. Thus each of them will measure scalar value of a 
projection of moving air speed. Accordingly, the direction of moving and value of speed of a 
stream can be obtained, due to the processing of signals simultaneously in all channels of 
measuring equipment.  
The principle of operating of a similar measuring instrument is described in (Shirokov et al. 
2006) and (Shirokov et al., 2007).  
The measuring instrument consists of two modules: the sensor unit, which contains of 
ultrasonic transmitter transducer TXT and three ultrasonic receiver transducers RXTi and 
the processing block which carries out the handling of signals from the sensor unit. It will 
consist of three identical mutually perpendicular measuring channels realizing 
measurement of components XV , YV  and ZV  of air stream speed vector V , as shown in 
Figure 1.  

 
Fig. 1. Transducers separation of measuring device   
 
The measured values of components iV  pass to the processing block which carries out the 
calculating of speed of an air stream, and also value of corresponding corners. 
The major requirement to the sensor unit: it must insert the minimal distortions to the 
structure of an air stream, speed and direction of which is measured. For maintenance of 
performance of this requirement sensors should have minimal aperture; radiating and 
receiving elements must have whenever possible small dimensions.  
Let's consider a principle of operation of one of the measuring instrument channels. The 
processing block forms a harmonious signal of a kind: 
 

   0 0 0cosTs t A t    . (1) 
 
This signal is radiated by an ultrasonic radiator in a direction of this channel receiver. When 
the component of the wind directed along an axis of ultrasonic signal propagation of the 

Air stream 

RXT1 

RXT2 

RXT3 

TXT 

 

considered channel is absent the signal on an output of the receive ultrasonic converter will 
be: 

     0 0 0       cos .Rs t A K t t  (2) 
 
The amplitude factor  K t  we will not take into consideration because the only argument of 
equation (2) is of interest for our measurements. We can eliminate the influence of  K t  by 
the deep limiting of received signal. Further we will assume this factor is equal to K . 
The phase progression   of a signal  TRs t  at its propagation from transmitting to 
receiving transducers will be determined as: 
 

f l
c

02 , 
    (3) 

 

where f0 is the frequency of a signal; c is the speed of a sound in the environment (air); d is 
the distance between the transmitting and the receiving ultrasonic transducers. 

When the component of the wind directed along an axis of propagation of an ultrasonic 
signal of the considered channel is present, the signal on an output of the receiving 
converter of the considered channel will be: 
 

   R Ws t A K t0 0 0cos ,         (4) 
 
where  W  is the value of the  component caused by the moving of air, as environment 
carrier of sound. 
Additional phase shift W  will be determined as: 
 

 W
f l v

c v c
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 (5) 

 
where v  is the value of the component of the wind directed along an axis of propagation of 
an ultrasonic signal of the considered channel.  
Value W  can be both positive and negative, as the component of speed of wind can be 
directed as along, as contrary in relation to a direction of propagation of an ultrasonic signal. 
If the speed of the moving of air is negligible, comparing with the speed of sound, this 
formula can be rewritten: 
 

W
f l v
c
0

2

2    
   . (6) 

 
When we carry out the analysis of (6) we can find the resolution of phase measurements will 
be the higher the distance l will be the longer. So, for frequency of ultrasonic 40 kHz and for 
measurement of moving air speed in 0,01 m/c with phase resolution in 1º, we must set 
distance l equal to 1 m. For the meteorological measurements we have taken into account 
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When we carry out the analysis of (6) we can find the resolution of phase measurements will 
be the higher the distance l will be the longer. So, for frequency of ultrasonic 40 kHz and for 
measurement of moving air speed in 0,01 m/c with phase resolution in 1º, we must set 
distance l equal to 1 m. For the meteorological measurements we have taken into account 
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that real wind speed can exceeds 30 m/s. When speed of moving air will reach this value 
the additional difference of phases will reach the value about 4000º. In (Shirokov et al. 2006) 
there was presented an algorithm of processing such values of phase difference, where the 
number of phase cycles was counted. This approach to the problem will be discussed later. 
This approach assumes the measuring of not only phase difference between two signals, 
which itself possible only at orthodox measurements of phase difference, when the 
frequencies of signals are strictly equal and phase difference can change from 0 up to 360°, 
but also it assumes the measurements of cumulative phase of signal, where the number of 
phase cycles is counted. In this case we will measure the difference of total phases of two 
signals. Taking into account such approach, there is an opportunity to carry out the phase 
measurements, when the frequency of one of two signals changes in some range. There is 
nothing non ordinary in this approach, if we will remember that eigenfrequency of any 
oscillations is the derivation of phase of ones: 
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If the phase progression of ultrasonic signal increases or decreases continuously for a certain 
time interval the frequency of received signal will change adequately at that interval. The 
solving of task with this manner assumes the assignment of the certain requirements on 
stability of frequency and phase of all signals. 
The frequency stability of mentioned above signals determines the accuracy of 
measurements. Because there is no problem to realize all of signals with frequency stability 
at several parts per million (ppm), and taking into account that real measured data are of 
interest in 3-4 decimal digits, we can claim: there is no error determined with frequency 
stability. The only thing we must do is to use the crystal clock. 
All of mentioned reasoning will be valid if the length of acoustic link not exceed 3000 
acoustic wave length with frequency stability we have assumed. In other words the 

changing of acoustic wave phase progression kd  ( 2 fk
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constant, d  is the link length) because of frequency instability must not exceed 1°. Taking 
into consideration the length of acoustic wave is near 8 mm, the maximum length of 
acoustic link will be 25 m for the error of phase measurements in 1°. Really, for local air 
turbulence movement measurements we assume the link length to be less than 1 m. So in 
this case the error of phase measurements will be less than 0.04° for frequency instability in 
1 ppm we had assumed. 
For the improving of the resolution of measurements of low-level moving air speeds we 
must increase the resolution of phase measurements up to 0.1º or even better. For the 
frequency of ultrasonic oscillations in 40 kHz it seems some problematic to implement the 
measuring process, because the clock frequency must be equal to 144 MHz or even more in 
this case. In (Shirokov et al. 2006) it was proposed to transform this frequency with 
traditional heterodyne manner up to 4 kHz. For the increasing of resolution of 
measurements in (Shirokov et al., 2007) it’s proposed to transform the initial frequency up to 
400 Hz. It is suggested to form the frequency of heterodyne signal shifted on 1% with 
respect to frequency of acoustic wave signal (result frequency of heterodyne signal will be 

 

40.4 kHz or 39.6 kHz), so that the frequency of mixer's output signal will be 400 Hz. 
Therefore, the reference signal frequency must be equal to 400 Hz too. 
With discussed measurement approach, the phase difference between all of mentioned 
above signals must be strictly constant. In other words all of these signals must be derived 
from single oscillator. 

 
3. Some Aspects of Realization of Homodyne Frequency Converter 
 

Because we are tending to carry out the phase measurements, the heterodyne signal must be 
obtained from initial signal with homodyne method (Gimpilevich & Shirokov, 2006). Such 
approach can be realized with using of phase shifter. The changing of phase of any signal on 
2  over the period of the control signal T is tantamount to the frequency shift of the initial 
signal on the value =2 /T  , according to the well known expression (7). The initial phase of 
frequency transformed signal will be the same as initial phase of origin signal plus initial 
phase of control signal. This fact lets us to carry out the phase measurements without any 
phase errors caused by the using of different oscillators with different derivation of 
frequencies.  
The practical realization of phase shifters, which realises the linear rule of phase changing, is 
a complex problem. In (Jaffe & Mackey, 1965). and (Shirokov et al., 1989) it was shown, that 
for investigations of phase characteristics of objects, the discrete phase shifters with number 
of steps higher than 2 can be used. Discrete phase shifters have very stable repetition 
parameters, and there is the possibility of realization of any rule of phase changing. The 
basic question, which appears on design of this device is how much of steps must be in 
phase shifter (Shirokov & Polivkin, 2004). 
If discrete phase shifter is used in homodyne measuring system, the higher harmonicas of 
main frequency (1) will appear on mixer output. Let’s carry out the spectrum analysis and 
estimate the harmonic factor of this signal by using of different number of steps of phase 
shifter. We will define the level of first harmonic of signal, which approximates the sinusoid 
oscillation by the 3, 4, 5, 8 and 16 steps. 
As it’s well known, any periodic signal ( )s t  can be written as: 
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where 0 /2a  is the constant component of signal, n  is the number of harmonica of signal, 
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It is significant, that in our case ( )s t  is the stepping approximation of sinusoid function. By 
the increasing of number of steps, the approximation step function will be approach to the 
harmonic sinusoid function.  
The approximate signals for  m=3, 4, 5, 8 and 16 of steps of approximation is shown in 
Figure 2. The calculation of levels of step we can define by: 
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Fig. 2. Stepping signals approximating the sinusoidal function (a) at the different number of 
steps: 5 (b), 3 (c), 4 (d), 8 (e), 16 (f) 

 

The stepping signal can be represented as: 
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Equation (12) represents the step signal, which approximates the sinusoid at different 
number of steps m.  
For substitution ( )s t  in (9) it is enough to assign it on a part of period   0... 2

Tt . For this 

transformation: 
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Equation (13) describes the sampling signal at odd number of steps, (14) – at even number of 
steps.  
Let’s put (13) and (14) into (11) and define the amplitudes of spectrum components of signal: 
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Expressions (15) and (16) allow us to determine the amplitudes of spectrum components of 
signal at odd and even number of steps. Results of calculations are summarized in Table 1. 
 

Number 
of steps 

Level of  harmonicas 
1 2 3 4 5 6 7 8 

3 0,82 0,41 0 0,21 0,16 0 0,12 0,1 

4 0,90 0 0,30 0 0,18 0 0,13 0 

5 0,93 0 0 0,23 0 0,16 0 0 

8 0,98 0 0 0 0 0 0,14 0 

16 0,99 0 0 0 0 0 0 0 
Table 1. Level of harmonicas of approximating signal  
 
From table 1, we can see that if number of steps is 4 or higher, the level of first harmonic is 
more than 90 percent from theoretically possible. At increasing of number of steps from 3 to 
4 the growth of level of first harmonica reaches 8 percent. The increasing of number of steps 
to 5 results in the growth of level in 3 percent and additional 5 percent at the increasing of 
number of steps from 5 to 8. When the number of steps increases from 8 to 16, the growth of 
level reaches 1 percent only.  
The number of steps, obviously, must satisfy to the binary law. Such approach simplifies the 
controlling unit and one lets to reduce the number of phase shifter cells. The cells must be 
weighted according the binary law in this case. Consequently, more optimal is the use of 4 
or 8 of steps of phase shifter for using in homodyne measuring systems. If critical condition 
is the simplicity of control unit at normal quality, it's recommended to use 4-step phase 
shifter. If critical condition is the quality of signal, it's recommended to use 8-step phase 
shifter. The application of 16 and more steps of phase shifter complicates the control unit, 
but it not gives considerable advantages and it is unjustified. 
From table 1 one more law is traced. Besides the basic harmonica, the nearest harmonious 
component with an essential level, has a serial number m – 1, where m is the number of 
steps. This fact allows us to determine unequivocally requirements to filtering parts of 
measuring equipment. And with the increasing of number of steps, the filter cut-off 
frequency increases adequately in relation to the frequency of the basic harmonica.   
As mentioned above, the number of steps must satisfy to the binary law. The ultrasonic 
frequency 0f  in 40 kHz is relative low frequency from the point of view of operating of 

 

modern integrated circuits and discrete semiconductors. Thus, there are no any technical 
restrictions to increase the number of steps of phase shifter. Obviously it’s recommended to 
use the reasonably maximal number of steps. Those steps would be 8, what corresponds to 
using of 3 cells of phase shifter in 180°, 90° and 45° respectively.  The step of phase shift will 
be 45°. The ultrasonic signal phase shift sequence must be 0°, 45°, 90°, 135° etc. or 0°, 315°, 
270°, 225° etc. The changing of phase of ultrasonic signal on 2  over the period of the 
control signal with lowest frequency F in 400 Hz (for 180° phase shifter cell) is tantamount to 
the frequency shift of the initial signal frequency 0f  on the value 400F   Hz. So, the first 
law of phase changing results in forming of transformed signal with frequency 

0 39.6f F  kHz, the second law — 0 40.4f F  kHz.  

 
4. Technical Solutions 
 

The main problem of measuring device design is the implementation of phase shifter. There 
is no need to implement the phase shifter separately, but we can form all of needed signals 
by means of unit, the block-diagram of which is shown in Figure 3.  

 
Fig. 3. Block-diagram of signal forming unit  
 
All of signals are synchronized with the single 320 kHz Oscillator. The oscillator realization 
is not on principle. The use of the crystal inexpensive 8 MHz oscillator with modulo 25 
counter is the best solution of the problem. 
The 4-Digit Johnson’s Counter forms multiphase clock. The frequency of each clock is         
40 kHz, number of clocks is 8 and phase difference between neighbour sequences is 45°. 
This multiphase clock or outputs of Johnson’s Counter are connected with 8 inputs of 
Multiplexer. One of these clocks represents 40 kHz Initial Signal, which feeds ultrasonic 
transmitting transducer. 
Transmitting and receiving air ultrasonic transducers for these frequencies are well 
supported, for example electronic parts EC4010-EC4018, Sencera Co. Ltd.    
The Modulo 100 Counter in conjunction with 3-Digit Binary Counter form 400 Hz Reference 
Signal and three meanders with 1.6 kHz, 800 Hz and 400 Hz frequencies. These meanders 
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Expressions (15) and (16) allow us to determine the amplitudes of spectrum components of 
signal at odd and even number of steps. Results of calculations are summarized in Table 1. 
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control the address inputs of Multiplexer. The meander with 400 Hz frequency controls the 
highest address input, meander with 1.6 kHz frequency controls the lowest address input.   
The 8X1 Multiplexer commutes multiphase clock in single output with certain periodicity 
and certain law. So, the commutation period is determined with lowest control frequency in 
400 Hz. The signal phase sequence must be 0°, 45°, 90°, 135° etc. or 0°, 315°, 270°, 225° etc. 
The changing of signal phase over the period T of the controlling signal with lowest 
frequency F=400 Hz by  is tantamount to the frequency shift of the initial signal by the 
frequency T. In this case the initial phase of the control signal is transferred into initial 
signal argument as well as frequency shift. Thus, the first law of phase changing results in 
forming on the multiplexer output of 39.6 kHz heterodyne signal, the second law results in 
forming of 40.4 kHz one. These laws of commutation are determined with the rule of 
operation of 3-Digit Binary Counter. The first law is obtained when this counter operate as 
the summing one. The second law is obtained when this counter operate as subtracting one. 
On the output of Multiplexer the complicated-form signal is formed. Primarily this signal is 
digital-level signal with the frequency of pulses repetition in 40 kHz and periodical phase 
hops in 45°.  
The main harmonica of Multiplexer output signal (heterodyne signal) will be: 
 

   0 0 0 0cos 8 2HETs t A t i m           , (17) 
 
where   1...i m  is the phase uncertainty. This uncertainty takes place in reference signal: 
 

        0 0cos 8 2REFs t A t i m  (18) 
 
and one is eliminated at the phase measurements.  
So, the initial, heterodyne and reference signals of device for measurements of turbulent air 
movement are formed with high frequency stability and strictly constant phase difference. 
The block-diagram of one of receiving channel units is shown in Figure 4. 
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The low pass filter picks up difference signal on the output of each mixer. 
Initial phase of these signals is determined by acoustical length of corresponding link and by 
the corresponding component of air movement.   
After limiting operation there are three signals, the initial phases of which adequately 
represent three orthogonal components of air movement vector. Each of signals is compared 
in phase with the reference signal, described by expression (18). The comparison is carried 
out by means of microcontroller on program manner and in a result we will obtain three 
codes, each of which is proportional to corresponding value of i  and W i : 
 

 i WCODE R    , (20) 
 
where R  is the rating coefficient of phase measurements.  
The value   is constant and there is a possibility to eliminate it during the calibration 
procedure. 
In turn, the next term of sum of phase difference is proportional to corresponding 
component of turbulent air movement vector, which is described by expressions (5) or (6). 
Corresponding component of turbulent air movement vector we can write down as:      
 

 cosi AIR iv v   , (21) 
 
where i  is the angle which is formed with air movement vector and one of orthogonal 
vector respectively.  
Thus, when we carry out the measurements of phase difference of two low-frequency 
signals with phase resolution in 0.036º (clock frequency of microcontrollers is equal to 4 
MHz), we can reach the resolution of measurements of weak moving of air up to 0.0003 
m/c. 
Certainly, the amplitude and phase of acoustic wave, which is propagated through air 
turbulence, change own amounts with relation to turbulence composition. The turbulence 
composition depends on meteorological parameters (temperature, pressure) and on the 
presenting in atmosphere of various gases, dust and other capacity distributed turbulences. 
All of them must be taken into account during measurements.  
Certainly, the phase characteristics of all of parts of equipment must be taken into 
consideration. But these characteristics are constant and can be eliminated by calibration 
procedure.  
The physical lengths of acoustical links are constant. But acoustical length depends on 
medium quality and must be taken into account in conjunction with measurements of air 
temperature, pressure, humidity etc. Certainly, the acoustical wave propagation constant, 
which depends on all off mentioned above factors, determines value   directly. So, taking 
into account the initial phase of all of these signals, we can consider the changes of medium 
characteristics and carry out the measuring of air movement with high accuracy.  
We can use two different approaches for the solving of this problem.  
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The first of them assumes the measurements of air main parameters, such as temperature, 
pressure, humidity and gas composition. Such approach requires the presence of calibration 
line and assumes the implementing of calibration procedures. This approach involves in 
complicating of measuring process. 
The second approach is the creation of additional measurement channel or reference 
channel, where there is no any air movement, but the air has the same parameters as the 
turbulent air. For example the separate semi-closed chamber can be used inside of which the 
transmitting-receiving pair of transducer is placed. By the fixing of all distances of 
measuring channels and reference channel we can eliminate the destabilizing factors 
influence, by the subtracting of result of reference channel measurement from the useful 
channels measurement results. This approach involves in complicating of measuring 
equipment. 
Both approaches can be realized by means of separate calculating device. 

 
5. Measurements of Phase Difference and Calculating of Phase Cycles 
 

In this paper we assume do not measure the phase difference of test signals with standard 
measuring devices, but we assume to combine the calculating and measuring of this 
parameter. The algorithms of calculating of phase difference and total phase are different for 
different values of measured magnitudes. 
The resolution of measurement of phase difference will be depended on resolution of 
measuring device as well as calculating one. There are no reasonable limitations of 
increasing of resolution of measurement procedure. For 0.4 kHz test signal and reference 
one the time clock 4 MHz will be more than enough. So, the phase difference measurement 
resolution will be 0.036°. There are no difficulties to increase the frequency of time clock up 
to 40 MHz and more with increasing of corresponding phase difference measurement 
resolution. The modern microcontrollers with RISC-architecture let us to do that. 
There are no any limitations of increasing of resolution of calculating methods at principle. 
In any case, the resolution of calculating methods with high-order magnitude will be 
realized easily. 
Further, it will be very important to distribute correct the roles between measuring and 
calculating procedures and to assign corresponding microcontroller for each one. There will 
be reasonable to assign for each of channel of receiving the separate microcontroller, which 
will be measure and pre-calculate the required magnitude for each channel apart. The fourth 
microcontroller will collect all of measured data from measuring microcontrollers. This 
calculating microcontroller will control by the measuring microcontrollers and will carry out 
only calculating procedure and will represent the required data.  
According technical solution we have assumed we can not measure the phase difference of 
useful and reference signals directly for obtaining information concerning of large scale 
speed of turbulent air movement, because the phase difference will change in wide range 
and exceeds the value 360° many times. Furthermore, owing to use of combining 
measurement and calculating methods, we have an opportunity to accumulate the history of 
changing of phase difference and obtain the real value of any reasonable phase difference up 
to 4000° and more (air movement speed up to 30 m/c) at any time without any reasonable 
delay. So, we can obtain the phase difference data every 2.5 ms (400 Hz useful and reference 
signals) with high resolution and obtain, thus, the air movement vector data every 5 ms.  

 

 
 
Fig. 5. The algorithm of calculating of total phase 

Waiting for  
Refer. Sign. 

Clear PS 

Begin 

Increment PS 

PL>0.5 

PL>0.75 

PS>0.5 PS>0.5 

PL>0.25 

Decrement PH Increment PH 

PL : = PS  

Yes

Waiting for  
Test Sign. 

No 

End 

No 

No 

No 

No 

No 

Yes

Yes

Yes

Yes

Yes

Yes

No 



3D	Measurement	of	Speed	and	Direction	of	Turbulent	Air	Movement 391

 

The first of them assumes the measurements of air main parameters, such as temperature, 
pressure, humidity and gas composition. Such approach requires the presence of calibration 
line and assumes the implementing of calibration procedures. This approach involves in 
complicating of measuring process. 
The second approach is the creation of additional measurement channel or reference 
channel, where there is no any air movement, but the air has the same parameters as the 
turbulent air. For example the separate semi-closed chamber can be used inside of which the 
transmitting-receiving pair of transducer is placed. By the fixing of all distances of 
measuring channels and reference channel we can eliminate the destabilizing factors 
influence, by the subtracting of result of reference channel measurement from the useful 
channels measurement results. This approach involves in complicating of measuring 
equipment. 
Both approaches can be realized by means of separate calculating device. 

 
5. Measurements of Phase Difference and Calculating of Phase Cycles 
 

In this paper we assume do not measure the phase difference of test signals with standard 
measuring devices, but we assume to combine the calculating and measuring of this 
parameter. The algorithms of calculating of phase difference and total phase are different for 
different values of measured magnitudes. 
The resolution of measurement of phase difference will be depended on resolution of 
measuring device as well as calculating one. There are no reasonable limitations of 
increasing of resolution of measurement procedure. For 0.4 kHz test signal and reference 
one the time clock 4 MHz will be more than enough. So, the phase difference measurement 
resolution will be 0.036°. There are no difficulties to increase the frequency of time clock up 
to 40 MHz and more with increasing of corresponding phase difference measurement 
resolution. The modern microcontrollers with RISC-architecture let us to do that. 
There are no any limitations of increasing of resolution of calculating methods at principle. 
In any case, the resolution of calculating methods with high-order magnitude will be 
realized easily. 
Further, it will be very important to distribute correct the roles between measuring and 
calculating procedures and to assign corresponding microcontroller for each one. There will 
be reasonable to assign for each of channel of receiving the separate microcontroller, which 
will be measure and pre-calculate the required magnitude for each channel apart. The fourth 
microcontroller will collect all of measured data from measuring microcontrollers. This 
calculating microcontroller will control by the measuring microcontrollers and will carry out 
only calculating procedure and will represent the required data.  
According technical solution we have assumed we can not measure the phase difference of 
useful and reference signals directly for obtaining information concerning of large scale 
speed of turbulent air movement, because the phase difference will change in wide range 
and exceeds the value 360° many times. Furthermore, owing to use of combining 
measurement and calculating methods, we have an opportunity to accumulate the history of 
changing of phase difference and obtain the real value of any reasonable phase difference up 
to 4000° and more (air movement speed up to 30 m/c) at any time without any reasonable 
delay. So, we can obtain the phase difference data every 2.5 ms (400 Hz useful and reference 
signals) with high resolution and obtain, thus, the air movement vector data every 5 ms.  

 

 
 
Fig. 5. The algorithm of calculating of total phase 

Waiting for  
Refer. Sign. 

Clear PS 

Begin 

Increment PS 

PL>0.5 

PL>0.75 

PS>0.5 PS>0.5 

PL>0.25 

Decrement PH Increment PH 

PL : = PS  

Yes

Waiting for  
Test Sign. 

No 

End 

No 

No 

No 

No 

No 

Yes

Yes

Yes

Yes

Yes

Yes

No 



Geoscience	and	Remote	Sensing,	New	Achievements392

 

The only thing we must to do is not to measure only phase difference, but obtain total or 
cumulative phase of test signal with respect to reference one.  The algorithm of calculating 
of total phase of signal is presented on Figure 5. 
Here, symbols PS, PL, PH there mean: the register of current phase difference measurement, 
the low register of total phase and the high register of total phase respectively. The 
abbreviation Sig. means “Signal”. The numbers 0.25, 0.5 and 0.75 mean the filling of 
corresponding register. So, the register PS contains the current data of phase measurements. 
The register PL contains the phase difference data too. These data can vary from 0 up to 360° 
too. But this register holds the previous measured data. In other words by the each 
measurement the data into this register are reloaded. Certainly, the digit capacity of both 
registers must be equal.  
If the register is the 8-binary-digit one, the filling 1.0 (hexadecimal number FFh) corresponds 
to phase difference 360°.  
The resolution of phase measurements will be restricted by the digit capacity of counters PS 
and PL, and this resolution will be 1.4° for previous case. 
The register PH contains the data of number of phase cycles. The concatenation of register 
PL and register PH represents the data of total phase of signal. By the analyzing of the 
contents of pair of these registers, we can obtain the air movement data every 0.5 ms (the 
calculating time is negligible). 
Certainly, there are some restrictions on measurement procedure with the mentioned above 
algorithm. So, the changing of phase difference from one to another measurement procedure 
must not exceed 90°. In other words the obtained data will be valid if the gradient of air 
speed not exceeds 0.7 m/s for 2.5 ms time interval, according the formulae (6). These 
restrictions are determined with verification of 25% filling of registers we have assumed in 
this algorithm. For the measurement of larger air movement speed gradient there is need to 
use another algorithm or measuring, based on the reducing of measuring interval. 

 
6. Simulation and Spectral Measurement 
 

There were carried out the simulation of frequency transformations in discussed signal 
forming unit. 
The controlled phase shifter simulates the operating of 4-Digit Johnson’s Counter, 
Multiplexer and 3-Digit Binary Counter.  
The controlling signal of controlled phase shifter results in changing of phase of initial 
ultrasonic oscillation by  over the period T of this controlling signal. For simulation this 
period T in 2.5 ms was chosen. The resulting frequency shift Fn will be 400 Hz. The number 
of steps of controlled phase shifter was chosen equal to 8 for simulation.   
The simulation was carried out in environment MathCAD. For simulation there were taken 
the initial ultrasonic oscillations which are described by the equation (1) where the initial 
phase of these oscillations was equal to 0 and the amplitude factor was equal to 1. 
The law of phase changing of ultrasonic oscillations is described by the following equation: 
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This law of phase changing of ultrasonic oscillations is shown in Figure 6. 
 

 
Fig.  6. The law of initial phase changing of ultrasonic oscillations  
 
Signal on the output of controlled phase shifter will be: 
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Here the initial phase of controlling signal was accepted equal to 0. 
The fragment of periodical signal on the output of phase shifter is shown in Figure 7. 
 

 
Fig. 7. The hop of phase of ultrasonic oscillations  
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The calculated spectrum of signal (22) is shown in Figure 8 and measured spectrum is 
shown in Figure 9. 
 

 
Fig. 8. The spectrum of ultrasonic signal on the output of controlled phase shifter 
 

 
Fig. 9. The spectrum of digital-level signal on the output of multiplexer 
 
As we can see from the Figure 8 the ultrasonic oscillations obtain the frequency shift in 400 
Hz and the frequency of main harmonica of transformed ultrasonic oscillations on the 
output of phase shifter is equal to 40.4 kHz. The order of nearest harmonica with essential 
level is equal to 7, as it was pointed out in previous section (see Table 1). The frequency of 
this harmonica is equal to 42.8 kHz. 

 

All of mentioned above simulations were carried out for a case of sinusoidal signal of initial 
ultrasonic oscillations and for sinusoidal signal on the output of phase shifter with the phase 
hops, as shown in Figure 7.  
Really, the discussed ultrasonic signal has digital-level nature as the digital multiplexer  and 
digital counters are used in our case. 
The spectrum of output multiplexer signal was measured with the digital oscilloscope 
RIGOL DS1052D. This spectrum of digital-level signal on the output of multiplexer is shown 
In Figure 9. 
We must understand the mentioned oscilloscope is not spectrum analyzer. The shown 
spectrum is a result of Fast Fourier Transformation of sequence under the test. This is the 
calculated value, caused with some restrictions and assumptions. Often we can watch 
amazing pictures on screens of similar devices.  These pictures can radically overthrow the 
established views on a problem. Often we can watch on the screen so called “sub-
harmonicas” of signals.  But in our case, on the output of the multiplexer the signal is 
present and we watch the well known spectrum, which is well agreed with theoretical 
knowledge. 

 
7. Conclusion 
 

The considered manner of equipment design for 3D measurements of speed and direction of 
an air stream allows constructing on its basis modern technological measuring instruments 
which can find application in the industry, meteorological researches, etc. Using a data file 
of such measuring instruments, it is possible to receive a picture of spatial moving of air in 
real time. The absence of mobile parts in a considered measuring instrument excludes its 
mechanical deterioration that favourably distinguishes it from existing analogues with 
mechanical converters. 
Thus, placing of three orthogonal acoustical links with single transmitter and three receivers 
it can get an accurate account about local 3D air turbulence with high resolution and 
without any inertia.  
Certainly, the amplitude and phase of acoustic wave, which is propagated through air 
turbulence, change own amounts with relation to turbulence composition. The turbulence 
composition depends on meteorological parameters (temperature, pressure and so on) and 
on the presenting in atmosphere of various gases, dust and other capacity distributed 
turbulences. All of them must be taken into account by the measurements. 
Therefore, in this paper it was shown, that there is a good opportunity to solve the problem 
of ecological monitoring with mentioned above method and (or) to carry out scientific 
investigations on microwave propagation. Furthermore, it can be find another application in 
industry, such as aerodynamics (motor-car- , aircraft- construction) and others. 
Discussed device for supervising the turbulent air movement consists of not expensive 
equipment, which is ended by the microcontroller. Such device can be stand-alone one as 
well as a part of more complicated equipment. Several local turbulent air measuring 
instruments we can joint into a distributed digital system of measurement as each device 
has anyone digital interface according to the accepted definition. Such system let us 
supervise the large scale turbulences of air and predict such natural disasters as tornado and 
so on.  
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1. Introduction   
 

Marine pollution is a matter of public concern because of its strong influence on various 
human activities such as fisheries and tourism, as well as for consequences on health. In this 
context, particular attention is being paid to pollution phenomena on the sea surface, where 
even a small amount of substance can spread over a large area in the form of a thin film.   
A great aid in the effort of monitoring sea surface pollution comes from remote sensing 
techniques. Satellite – borne instruments are able to monitor wide areas and to detect the 
presence of surface slicks; optical instrument can do this by evaluating the change in 
spectral components of visible and infrared radiation, but they are unable to work during 
the night or in bad weather (clouds) conditions. For this reason, active microwave 
instruments play a key role in sea surface observation because electromagnetic waves freely 
propagate in atmosphere and in clouds. 
The aim of this chapter is to explain the usefulness of the Synthetic Aperture Radar (SAR) as 
a tool for sea surface monitoring, especially to detect pollution. This happens because a 
number of pollutant substances produce huge areas of surface film which reduce water 
surface roughness and therefore they can be detected by the Normalized Radar Cross-
Section (NRCS) on SAR images where they appear as dark areas. 
Theoretical basis and practical applications will be described by reviewing literature, in 
order to give a comprehensive view about fundamental concept and the latest advances. 
Theoretical and experimental studies, carried out over the last decades, demonstrate that the 
presence of a monomolecular film is able to modify the spectra of short sea waves. The 
damping ratio, e.g. the ratio between the spectra with clean and slick covered water, shows 
a maximum in the frequency domain, strongly dependent on slick composition and 
thickness. 
Sea surface roughness is due to the short waves (wavelength up to a few tenths of 
centimetres) appearing on sea surface due to external forcing such as wind. The dynamics of 
those short waves (wavelength, velocity, etc.) is driven by the physical characteristics of sea 
water such as density and surface tension. The presence of a surface film modifies the 
surface tension and therefore causes a noticeable damping of centimetric waves: the slick 
covered area appears “flatter” than the surrounding sea. 
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Water surface strongly reflects microwaves; water vapour is transparent instead. SAR is a 
powerful instrument to detect the presence of surface active pollutants, able to operate 
regardless of sunlight and weather conditions. The SAR sends microwaves towards the 
earth and collects the echoes from many radar pulses, processing them into a single radar 
image, allowing high spatial resolutions; radio pulses are sent with high incidence angles 
and therefore scattered by sea surface roughness. Radio wavelengths currently used by SAR 
are Bragg resonant with centimetric water waves: different scattered signals are summed 
with constructive interference and therefore easily detected. 
Marine ecosystems are threatened by various pollution phenomena with possible 
consequences for vegetal and animal forms of life. Some pollutants appear as thin films on 
sea surface, spreading over large areas: this is the case of insoluble surfactant substances 
such as hydrocarbons, coming from pipelines or tank leakage, as well as illegal discharges in 
open seas or natural seeps. Other pollutants, whilst being water soluble, may produce 
macroscopic effects on the surface: a typical example is given by organic substances from 
sewage and land runoff, carried by rivers and then dissolved in sea; chemical modifications 
in seawater composition can cause algae to bloom, which in turn produces mucilage on the 
surface. 
Surface films are able to modify water dynamics, inhibiting gas exchanges and strongly 
modifying the formation of short waves. This is the key point for understanding how SAR 
can be used for remote sensing of marine pollution episodes. 
Satellite – borne SARs have been used since 1978 for sea surface monitoring, as well as for 
mapping applications; there are today various different satellites carrying SAR instruments 
with different technical characteristics.  
The state-of-the-art of SAR instruments and data analysis procedures will be presented, 
with a special focus on algorithm for automatic features extraction from SAR images. The 
limits of those technologies will be also evidenced; front-end technologies and future 
planned advances will be pointed out. 
A number of operational services are currently managed and maintained by public and 
private bodies. A review will be carried out, in order to give a comprehensive view on 
practical issues and advantages. 

 
2. Water surface slicks 
 

Water surface slicks have several terrestrial and marine sources. Most of them are 
constituted by hydrophobic material naturally yielded, for instance as surfactant exuding 
from phytoplankton, composed mainly by homo- and hetero-polysaccharides, found at sea 
surface during phytoplankton blossoming (Zutic et al. 1981). Other natural sources come 
from land, such as the products of vegetables degradation carried by rivers to sea, and can 
have man-made origins such as industrial and oil plants or agricultural activities; 
furthermore, high concentrations of surfactants are found in urban waste water (Liss et al. 
1997). Both soluble and insoluble surface-active substances are present at air-sea interfaces. 
The chemical nature and surface concentrations of these materials are influenced by 
environmental factors, such as distance from shore, local bio ecology, influx of man-made 
effluents from ships and meteorological conditions. Wave motion tends to select and 
accumulate organic materials in relation at their surface activity. With age, the films become 
progressively more water insoluble. Aged films and slicks generally involve multilayered 

 

structure and weak cohesion under wind action, manifesting a tendency to break up to into 
macroscopic discontinuities. These films, concentrated at air-sea interface, cover large 
oceanic surfaces. Even when their concentration is low, they can show important effects, 
such as alterations in the structure of surface waves, foam formation, modification of gas 
exchange at interface and changes in the behaviour of backscattering of electromagnetic 
waves at sea surface. Natural surfactants reduce gas transfer and short waves amplitude 
(Goldmann and Dennet 1983, Bock et al. 1999) and in general films at sea surface can 
influence energy dissipation of capillary waves (Lucassen-Reynders and Lucassen, 1969; 
Huhnerfuss et al. 1987) and gas exchange rates (Frew et al. 1990). 
In the more soluble adsorption films the relaxation process is essentially of a diffusional 
nature. The intermolecular forces between the adsorbed film molecules resist complete 
displacement from the surface by wind and wave dynamics and are of the same order as 
that of the solvent, since surface-active molecules are completely hydrated. In the more 
water-insoluble spreading films, however, when the surface concentration is high, 
interaction forces among hydrophobic chains are strong, and may even reach two-
dimensional micellar conditions. Here the relaxation phenomenon involves structural 
rearrangement. Consequently, one should expect ripple-damping effects, which are greater 
for insoluble films than for films with greater seawater solubility.  
The damping of short ocean surface waves by surfactant films is a well investigated 
phenomenon (Lucassen-Reynders and Lucassen, 1969; Huhnerfuss and Garrett, 1981; 
Lucassen, 1982; Huhnerfuss, 1986; Ermakov et al., 1986; Alpers and Huhnerfuss, 1988; 1989; 
Wu, 1989; Wei and Wu, 1992; Frysinger et al., 1992; Onstott and Rufenach, 1992; Huhnerfuss 
et al., 1994; 1996). 
The theory of rheology of air-water interfaces predicts a maximum in the frequency 
response of the ratio of the damping coefficient of short-gravity waves for water covered by 
an organic surface film to the coefficient for a pure water surface (Cini and Lombardini 
1978). The theoretical analysis, based upon the Navier-Stokes equation and developed for 
the case of small ripples on an interface covered by a surface-active substance, has been 
extended by with a formalism which includes both soluble and insoluble monomolecular 
films for the two coexisting modal solutions: the Laplace or transversal mode and the 
Marangoni or longitudinal mode (Lombardini et al. 1982, Fiscella et al. 1985a).  
According to Lombardini et al. (1989), the analytical form which describes the ratio between 
real parts of the complex radian frequencies on pure water to that for water covered by slick 
(damping ratio) can be given by the  semi – empirical formula: 
 

   
22

2

s 22221
221

XX
XYXfy







  (1) 

 
Where: 





2

D

, 
3

2
0

2
kX





,  



4

kY 0

,  )(lnd
d

0 



 

 
are adimensional quantities and:  
 

 





2
kgk 

f
3

 



Observing	marine	pollution	with	Synthetic	Aperture	Radar 399

 

Water surface strongly reflects microwaves; water vapour is transparent instead. SAR is a 
powerful instrument to detect the presence of surface active pollutants, able to operate 
regardless of sunlight and weather conditions. The SAR sends microwaves towards the 
earth and collects the echoes from many radar pulses, processing them into a single radar 
image, allowing high spatial resolutions; radio pulses are sent with high incidence angles 
and therefore scattered by sea surface roughness. Radio wavelengths currently used by SAR 
are Bragg resonant with centimetric water waves: different scattered signals are summed 
with constructive interference and therefore easily detected. 
Marine ecosystems are threatened by various pollution phenomena with possible 
consequences for vegetal and animal forms of life. Some pollutants appear as thin films on 
sea surface, spreading over large areas: this is the case of insoluble surfactant substances 
such as hydrocarbons, coming from pipelines or tank leakage, as well as illegal discharges in 
open seas or natural seeps. Other pollutants, whilst being water soluble, may produce 
macroscopic effects on the surface: a typical example is given by organic substances from 
sewage and land runoff, carried by rivers and then dissolved in sea; chemical modifications 
in seawater composition can cause algae to bloom, which in turn produces mucilage on the 
surface. 
Surface films are able to modify water dynamics, inhibiting gas exchanges and strongly 
modifying the formation of short waves. This is the key point for understanding how SAR 
can be used for remote sensing of marine pollution episodes. 
Satellite – borne SARs have been used since 1978 for sea surface monitoring, as well as for 
mapping applications; there are today various different satellites carrying SAR instruments 
with different technical characteristics.  
The state-of-the-art of SAR instruments and data analysis procedures will be presented, 
with a special focus on algorithm for automatic features extraction from SAR images. The 
limits of those technologies will be also evidenced; front-end technologies and future 
planned advances will be pointed out. 
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practical issues and advantages. 

 
2. Water surface slicks 
 

Water surface slicks have several terrestrial and marine sources. Most of them are 
constituted by hydrophobic material naturally yielded, for instance as surfactant exuding 
from phytoplankton, composed mainly by homo- and hetero-polysaccharides, found at sea 
surface during phytoplankton blossoming (Zutic et al. 1981). Other natural sources come 
from land, such as the products of vegetables degradation carried by rivers to sea, and can 
have man-made origins such as industrial and oil plants or agricultural activities; 
furthermore, high concentrations of surfactants are found in urban waste water (Liss et al. 
1997). Both soluble and insoluble surface-active substances are present at air-sea interfaces. 
The chemical nature and surface concentrations of these materials are influenced by 
environmental factors, such as distance from shore, local bio ecology, influx of man-made 
effluents from ships and meteorological conditions. Wave motion tends to select and 
accumulate organic materials in relation at their surface activity. With age, the films become 
progressively more water insoluble. Aged films and slicks generally involve multilayered 

 

structure and weak cohesion under wind action, manifesting a tendency to break up to into 
macroscopic discontinuities. These films, concentrated at air-sea interface, cover large 
oceanic surfaces. Even when their concentration is low, they can show important effects, 
such as alterations in the structure of surface waves, foam formation, modification of gas 
exchange at interface and changes in the behaviour of backscattering of electromagnetic 
waves at sea surface. Natural surfactants reduce gas transfer and short waves amplitude 
(Goldmann and Dennet 1983, Bock et al. 1999) and in general films at sea surface can 
influence energy dissipation of capillary waves (Lucassen-Reynders and Lucassen, 1969; 
Huhnerfuss et al. 1987) and gas exchange rates (Frew et al. 1990). 
In the more soluble adsorption films the relaxation process is essentially of a diffusional 
nature. The intermolecular forces between the adsorbed film molecules resist complete 
displacement from the surface by wind and wave dynamics and are of the same order as 
that of the solvent, since surface-active molecules are completely hydrated. In the more 
water-insoluble spreading films, however, when the surface concentration is high, 
interaction forces among hydrophobic chains are strong, and may even reach two-
dimensional micellar conditions. Here the relaxation phenomenon involves structural 
rearrangement. Consequently, one should expect ripple-damping effects, which are greater 
for insoluble films than for films with greater seawater solubility.  
The damping of short ocean surface waves by surfactant films is a well investigated 
phenomenon (Lucassen-Reynders and Lucassen, 1969; Huhnerfuss and Garrett, 1981; 
Lucassen, 1982; Huhnerfuss, 1986; Ermakov et al., 1986; Alpers and Huhnerfuss, 1988; 1989; 
Wu, 1989; Wei and Wu, 1992; Frysinger et al., 1992; Onstott and Rufenach, 1992; Huhnerfuss 
et al., 1994; 1996). 
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an organic surface film to the coefficient for a pure water surface (Cini and Lombardini 
1978). The theoretical analysis, based upon the Navier-Stokes equation and developed for 
the case of small ripples on an interface covered by a surface-active substance, has been 
extended by with a formalism which includes both soluble and insoluble monomolecular 
films for the two coexisting modal solutions: the Laplace or transversal mode and the 
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the dispersion law,  surface tension,  water density, g acceleration of gravity, k wave 
number,  kinematics viscosity; the constant characteristic parameters of the film are: 
elasticity modulus 0, surface concentration , and characteristic frequency D, which, for 
soluble films, depends upon the diffusional relaxation, and for insoluble films, depends 
upon structural relaxation between intermolecular forces. In (1) a plus sign refers to soluble 
films, while a minus sign indicates insoluble films.  
Spectral measurements carried out both in tanks and in many oceanic sites on slicked waters 
clearly show this damping effect. The ratios between spectra measured in pure water and in 
water covered by film have a maximum in the 2-10 Hz range (Cini et al. 1983). From 
observed ratios and theory it is possible to deduce rheological parameters, such as the 
relaxation characteristic frequency and the visco-elastic modulus, as well as the film 
concentration or fragmentation (Fiscella et al. 1995).  
Soluble (adsorption) films have been thoroughly investigated (Lucassen-Reynders and 
Lucassen, 1969). Typical values of the diffusional characteristic frequency D observed in 
saturated conditions are in the order of 10-2 rad/s, or smaller (Loglio et al. 1986). Hence, in 
good approximation, soluble films are characterized by setting D = 0. With this condition 
one can verify that in soluble films the Marangoni waves are too highly attenuated to be of 
practical interest. The study of insoluble (spreading) films on sea surface (Lucassen 1982, 
Cini et al. 1983) have indicated the possibility of obtaining qualitative data on polluting 
films by analysing the short gravity portion of the wave spectrum of a breezy sea.  

 
2.1 Experimental evidences 
 

 
 

Fig. 1. Experimental setup for wave damping measurements 
 
By means of a microwave probe (Fiscella et al. 1982), short gravity and capillary wave 
domain of the sea spectra have been investigated in a variety of field situations. Viscoelastic 
characteristics of insoluble films prepared in laboratory from pure surfactants (e.g. palmitic 
acid methyl ester, hexadecyl trimethyl ammonium bromide) have been then studied by tests 
including spectral measurements performed in a wind tunnel, and attenuation 
measurements of several monochromatic mechanically generated waves in the maximum 
damping ratio range (Fiscella et al. 1985b). Comparisons between the observed data and 

 

theory have produced relaxation characteristic frequencies D in the range 7.5 to 11 rad/s, 
and elasticity modulus 0 in the range 5.0 ·10-3 to 2.2 10-2 N/m. Such values produce a 
damping ratio for the Marangoni mode revealing that the insoluble films sustain both wave 
modes.  
The results of measurements obtained in laboratory using oleyl alcohol as surfactant are 
presented below; the surfactant organic compound, in fact, have been already used in past 
experiments as a good representative of hydrophobic surface substances (Trivero et al. 
2001). 
Oleyl alcohol was used as surfactant substance to study damping effect by meanS of a 
laboratory tempered glass tank (dim. 298 x 27.3 x 29 cm; 235 litres volume) and an 
interferometric microwave wave gauge which measures wave heights on an absolute, self-
calibrating scale with high accuracy; this apparatus has been already used in sea surface 
measurements (Fiscella et al. 1982). The basic element of this probe is a Teflon coated wire. 
The lower end of this wire is held vertically straight and dipped in water, while the other 
end is fed by a microwave source. The microwave energy travels downwards, confined to a 
close proximity of the coated wire (Goubau line). The contact with the water acts as a short 
circuit, giving origin to a reflected wave. In condition of good matching of the microwave 
system the field in the transmission line has a standing wave pattern, which is uniquely 
determined by the location of the water contact with the coated wire.  
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Fig. 2. Damping coefficient vs. frequency for different film thickness 
 
Power spectra are obtained by data segmentation, Hanning windowing, FFT operation and 
subsequent power spectra meaning. In a Goubau line with a copper wire radius of 0.6 mm 
and coating thickness of 0.3 mm, the radius of the area in which 50% of the propagated 
power is concentrated is: ρo = 2.4 mm. This area includes the meniscus (for clean water) and 
implies a Voltage Standing Wave Ratio ≥ 2. In this case the liquid wavelength 4o, i.e., 26 
Hz, may be considered the upper frequency limit of the probe. The measurement of z can 
thus be accomplished with accuracy of the order of few micrometers. In laboratory and 
clean water conditions the time series of the sea water elevation are affected by instrumental 
errors of few micrometers and frequency spectra can be obtained without distortion up to 20 
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Fig. 2. Damping coefficient vs. frequency for different film thickness 
 
Power spectra are obtained by data segmentation, Hanning windowing, FFT operation and 
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Hz. The results obtained are in accord to theory of rheology and confirm even in laboratory 
the damping wave effect showed by surfactant substances at sea surface. 
The experimental apparatus, shown in figure 1, consists of a three Goubau line coated wire 
system. The wires are positioned along wave direction at proper distance in order to 
measure spatial damping of the waves mechanically generated. The same apparatus can be 
used at the sea to obtain information about directional wave spectra. 
Damping measurements versus frequency were performed adding a known oleyl alcohol 
quantity in order to obtain a fixed growing film thickness. Figure 2 shows the damping 
coefficients for pure water and different film thicknesses. 

 
3. SAR observation of marine surface 
 

 
Fig. 3. SAR acquisition geometry 
 
The SAR is basically a conventional radar instrument, carried by a mobile system such as 
aircraft or satellite. The main principle of SAR is the antenna synthesis: when moving, the 
target is observed from different angles and the backscattered signals are put together. 
Observation is lateral rather than perpendicular to the earth’s surface (figure 3).  
The electromagnetic waves, used by SAR, are in the microwave region. Wavelengths are in 
the range from 0.1 to 100 cm and it is divided in different bands with a standard 
nomenclature. Table 1 summarizes the most utilised frequencies and their characteristics. 
The basic mechanism involved is the normalised radar cross-section which, for incidence 
angles higher than 20°, is proportional to the spectral energy density of the sea waves 
having wavelength that obey the Bragg resonance condition: 
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where  is the radar wavelength and  the incidence angle of radar beam; electromagnetic 
waves, backscattered from every water wave front, sum in phase producing a well 
detectable echo (figure 4). For low incidence angles the backscatter is due to specular 
reflection. The sea waves, which are Bragg resonant with microwaves employed by the SAR 
systems, fall in the short gravity wave region where is found a maximum in the ratio 
between spectra measured in pure water and in water covered by film.  
 

Band designator Frequencies (GHz) Wavelength in Free Space  (cm) 
L band 1 to 2 30.0 to 15.0 
S band 2 to 4 15.0 to 7.5 
C band 4 to 8 7.5 to 3.8 
X band 8 to 12 3.8 to 2.5 

Ku band 12 to 18 2.5 to 1.ò7 
K band 18 to 27 1.7 to 1.1 
Ka band 27 to 40 1.1 to 0.75 
V band 40 to 75 0.75 to 0.40 
W band 75 to 110 0.40 to 0.27 

Table 1. radar bands 
 

 
Fig. 4. Bragg condition between water waves and radio waves 
 
Remote sensing radars are usually designed to transmit either vertically polarised or 
horizontally polarised radiation. Likewise, the radar can receive either vertically or 
horizontally polarised radiation, or sometimes both. Polarisation planes are designated by 
the letters H for Horizontal and V for Vertical. When the polarisation of received radiation is 
the same as the transmitted radiation, the image is said to be like-polarised When the 
polarisation of received radiation is the opposite of the transmitted radiation, the image is 
said to be cross-polarised .Cross polarisation requires multiple-scattering by the target and 
therefore results in weaker backscatter than like-polarisation. Cross-polarised signals are 
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reflection. The sea waves, which are Bragg resonant with microwaves employed by the SAR 
systems, fall in the short gravity wave region where is found a maximum in the ratio 
between spectra measured in pure water and in water covered by film.  
 

Band designator Frequencies (GHz) Wavelength in Free Space  (cm) 
L band 1 to 2 30.0 to 15.0 
S band 2 to 4 15.0 to 7.5 
C band 4 to 8 7.5 to 3.8 
X band 8 to 12 3.8 to 2.5 

Ku band 12 to 18 2.5 to 1.ò7 
K band 18 to 27 1.7 to 1.1 
Ka band 27 to 40 1.1 to 0.75 
V band 40 to 75 0.75 to 0.40 
W band 75 to 110 0.40 to 0.27 

Table 1. radar bands 
 

 
Fig. 4. Bragg condition between water waves and radio waves 
 
Remote sensing radars are usually designed to transmit either vertically polarised or 
horizontally polarised radiation. Likewise, the radar can receive either vertically or 
horizontally polarised radiation, or sometimes both. Polarisation planes are designated by 
the letters H for Horizontal and V for Vertical. When the polarisation of received radiation is 
the same as the transmitted radiation, the image is said to be like-polarised When the 
polarisation of received radiation is the opposite of the transmitted radiation, the image is 
said to be cross-polarised .Cross polarisation requires multiple-scattering by the target and 
therefore results in weaker backscatter than like-polarisation. Cross-polarised signals are 
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sometimes too weak to produce a good image, although the use of multiple polarization can 
help in revealing sea surface characteristics (Brekke and Solberg 2005) . 

 
3.1 Wind vector extraction 
Sea surface roughness is directly related to external forces such as wind and currents; for 
this reason, data from SAR observation can be used to compute sea surface parameters. 
When dealing with surface slick observation, the knowledge of wind vector plays a key role 
for at least two reasons. First, surface slicks can be detected if wind intensity is within a  
range of 2 m/s and 20 m/s; a weaker wind cannot produce roughness and therefore the sea 
area appears as flat whether  a slick is present or not. Conversely, a very strong wind can 
produce roughness even on a slick covered area. Secondly, wind forcing and wind – 
induced currents are directly responsible for slick evolution (drift and weathering); 
therefore the wind vector is fundamental in  estimating the fate of a surface slick. 
Wind data are can be get from in-situ measurements (e.g. buoys), meteorological models or 
satellite – borne scatterometers (with poor spatial resolution). In last years, studies have 
been carried out in order to find suitable methods to extract wind field from the SAR image 
itself. 
A popular approach is to use a geophysical model function (GMF), e.g. a nonlinear function 
who describes the NRCS as a function of, wind speed (normalized to 10 m height), wind 
direction, incidence angle and azimuth angle with respect to wind direction); radar 
frequency is also taken into account. Using numerical techniques to invert such a function, 
wind speed can be obtained from SAR image (assuming to have the wind direction). For 
satellite – borne SAR operating at C-band and vertical (VV) polarization in transmission and 
reception, several empirical GMFs have been developed and validated; the most popular 
are:  

 CMOD4 (Stoffolen and Anderson, 1997), utilising ECMWF (the European Center 
for Medium-Range Weather Forecast) weather model results as calibration data; 

 CMOD_IFR2 (Quilfen et al., 1998) developed at Ifremer-France and calibrated 
against in situ measurements, (buoys data and ECMWF model results); 

 CMOD5 (Hersbach, 2003),  an upgraded version of CMOD4. 
These functions are applied on SAR data from ERS-1, ERS-2 and ENVISAT satellites. Other 
similar approaches have been defined for L-band data or from C-band horizontal 
polarization data. 
However, to measure wind speeds from SAR images using such kind of methods, it is 
necessary to have the wind direction. A first approach is to assume a fixed direction for a 
whole SAR image, for example interpolating the wind direction from scatterometer data or 
atmospheric models. 
In last years, several attempt have been done to extract the wind direction field from the 
image itself, exploiting linear features aligned with the wind direction are visible. 
A popular method is the Fast Fourier Transform (FFT) method (Gerling, 1986): the Fourier 
spectrum of the SAR image is computed and the main spectral energy is located 
perpendicular to the orientation of the wind streaks, giving a wind direction with a 180° 
directional ambiguity. 
A recently developed wind direction estimation method is the local gradient (LG) method, 
which derives the orientation of the wind streak by evaluating the local gradient on 
different scales (Horstmann and Koch, 2005; Horstmann et al., 2002; Koch, 2004). Alternative 

 

approaches such as wavelet analysis (Du et al., 2002; Fichaux and Rachin, 2002) and variance 
method (Wackerman et al., 2003) have also been applied. 
A comprehensive review on wind estimation methods can be found in (Lin et al. 2008). 

 
3.2 Surface slicks detection 
It is well known that the surfactants are responsible for sea wave damping and reflectivity 
modulation over a broad range of frequencies from the visible to the microwave regions of 
the spectrum. Measurements of slick-induced damping of short-gravity ocean waves excited 
by the wind provide useful data for the investigation and characterization of ocean micro-
layers on a thermodynamic basis. By means of a theoretical model one can infer the soluble 
or insoluble nature of the substance forming the film itself, the rheological parameters and 
the surface film fragmentation. 
Among all monitoring ways, multi-frequency radar and SAR are powerful tools for the 
detection and characterization of substances forming sea surface film. 
Wave damping, due to surface slick, modifies the backscattering of electromagnetic waves 
and hence it is possible to optically detect slicks (Scully-Power 1986) and measure their 
characteristics by means of radars from platform, airborne and satellite (Fiscella et al. 1985b, 
Espedal et al. 1996, Trivero et al. 2001). However, dark areas can be also due to atmospheric 
effects (Alpers, 1995; Melsheimer et al., 1998). 
 

Illumination Flight Direction NorthIllumination Flight Direction NorthIllumination Flight Direction North

 
Fig. 5. Oil slick observed by L-band (left), C-band (center), X-band (right) 
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Fig. 6. Comparison among damping ratios obtained by radars and by the wave gauge. 
 
The ability of multi-frequency SAR to characterize surface films was tested with data 
obtained during an experiment in October 1990 in the northern Adriatic Sea, when an 
airborne SAR flew over a research platform, on board of which, time series of radar 
backscatter as well as high frequency wave spectra were measured (Trivero et al. 2001). The 
obtained results were confirmed by analogous experiment performed in the North Sea 
during the first SIR-C/X-SAR mission in 1994 (Gade et al. 1998); in that mission, the NASA’s 
space shuttle carried SAR instruments at three different bands simultaneously looking at the 
same areas. Figure 5 shows how the same surface slick is seen in a different way by three 
different frequencies;. 
In June 1991 in the Gulf of Genoa (Italy) another similar experiment was performed 
observing slicked area after oil-tanker accident (Trivero et al. 1998).  
In figure 6, the full line is the display of the ratio of the power spectral components from 
gauge data between pure and slick-covered water; the three (+) and the two () points are 
the plots of  o/ s from multi-frequency scatterometer data and from SAR-580 images, 
respectively. The three (*) points are the plots of  o/ s from SIR-C/X-SAR images. 
The experimental results showed that multi-frequency SAR is an ideal instrument to 
monitor sea surface substances, since SAR data contain information about the spectral 
components affected by damping. 

 
4. Available SAR data 
 

The use of satellite – borne SARs for earth observation is a well tested and established 
technique. The history begun on the 28th June of 1978 when Seasat, the first Earth-orbiting 
satellite designed for remote sensing, was launched.  
Seasat, managed by NASA’s Jet Propulsion Laboratory (JPL), operated for 105 days until 
October 10, 1978, when a short circuit occurred in the satellite electrical system; during the 
mission, the onboard L-band SAR acquired approximately 42 hours of data. Despite this 

 

unhappy ending, Seasat played a key role for earth observation by demonstrating the 
feasibility of global satellite monitoring of sea surface and by helping scientists in defining 
technical requirements (Evans et al. 2005). 
In the following years a number of satellites were launched, carrying SAR instruments with 
very different characteristics. Here, we want to review the currently operating missions, 
with data easily available for scientific and/or commercial use; for these reasons, only 
currently civil operational missions are described, while military only missions have been 
omitted as well as sensors which have reached the end of their operational life. 
For every sensor an overview is given about frequency, resolutions, revisitation frequency 
and data distribution policies; for detailed information, the satellite owner and contact 
details are reported. All the information is correct at the publishing date. 

 
4.1 European Remote Sensing (ERS) satellites 
Managed by European Space Agency (ESA), ERS-1 satellite was launched in 1991 and 
completed its operation in 2000, overlapping with the new ERS-2 launched in 1995 and still 
operating. 
ERS-2 SAR works on C band at fixed VV polarisation. Its best spatial resolution is 12.5 m, 
but limited to 5km x 5km imagettes in “wave mode” acquisition. It can also operate in wave 
mode at 30m spatial resolution with a 100 km swath. 
Full documentation is available on ESA earth observation website http://earth.esa.int/ers/ 
while data availability can be checked online via the EOLI catalogue 
(http://earth.esa.int/EOLi/EOLi.html), also allowing online ordering for ftp delivery. 
Different prices and data policies apply for scientific/non-commercial use rather than 
commercial exploitation. 

 
4.2 Envisat satellite 
Designed and built by ESA, launched in 2002 with the aim to be the ERS follower, Envisat 
carries an improved C-band SAR sensor as well as a number of other active and passive 
instruments. 
Envisat SAR best spatial resolution is ~30m for a ~100 km swath; multiple polarization 
modes are available (VV, HH, VH, HV). A wide swath mode (~400 Km) with a 150m spatial 
resolution is available. 
It has a dedicated section on the ESA website (http://envisat.esa.int/); also Envisat data are 
available on EOLI catalogue. 

 
4.3 Radarsat satellites 
Designed and built by the Canadian Space Agency, the Radarsat – 1 satellite was launched 
in 1995. It operates in C-band with fixed HH polarization; seven imaging modes are 
available with different swaths (from 50 to 500 km) and different spatial resolutions (from 8 
m to 100 m ) 
Radarsat – 2, launched in December 2007, is an enhancement of the previous sensor; all 
polarization modes are now available and a new “ultra fine” acquisition mode (3 m pixel 
and 20 km swath) can be operated. Moreover, Radarsat – 2 is able to look on both right and 
left sides with a switch time of a few minutes, allowing more flexibility on selecting the 
target zone. 
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Radarsat images are distributed by MacDonald, Dettwiler and Associates Ltd. (MDA), a 
Canada based firm (http://gs.mdacorporation.com/products/sensor/index.asp). 

 
4.4 Terrasar satellite 
The TerraSAR-X Earth observation satellite is a joint venture being carried out under a 
public-private-partnership between the German Aerospace Center DLR and EADS Astrium 
GmbH.; TerraSAR-X was launched on June 15th, 2007 and has been in operational service 
since January 2008 ; it operates on X-band  with  single, dual and quad polarization. There 
are three operational imaging modes: SpotLight (1m resolution, 10 km swath); StripMap (3m 
resolution, 30 km swath) ; ScanSAR (18 m resolution, 100 km swath). 
The exclusive commercial exploitation rights are held by the geo-information service 
provider Infoterra GmbH (http://www.infoterra.de/), while data access for scientific (non 
commercial) use is directly managed by DLR.  

 
4.5 Advanced Land Observing Satellite (ALOS) 
Designed and managed by the Japanese space agency JAXA, ALOS was launched in 2006 
being operational in October. It carries, together with other instruments, an L-band SAR 
(named PALSAR) able to acquire in single polarisation (HH or VV) or dual polarisation 
(HH/HV or VV/VH) modes. The best available resolution is 10 m with 70 km swath; the 
widest swath is over 250km at 100m resolution. 
More information can be found at JAXA (http://www.eorc.jaxa.jp/ALOS/en/index.htm) as 
well as ESA (http://earth.esa.int/ALOS/) websites; ESA is also responsible for ALOS data 
distribution in Europe, Africa and Middle East; ALOS images are available on the above 
mentioned EOLI catalogue. 

 
4.6 Cosmo – SkyMed constallation 
Since late 90s the Italian Space Agency ASI started to design a multi - purpose Earth 
Observation System devoted to providing products and services for military and civil use 
through an integrated approach (Dual Use System). The decision to build a constellation 
was driven by the need for the shortest revisit time with the aim to exploit data in critical 
applications such as risk management and environmental monitoring (Rum 2000).  
The first three satellites of the COSMO-SkyMed constellation are already in orbit and 
operational; the launch of the fourth satellite is planned for 2010. The carried sensor is an X-
band right and left looking SAR with a maximum spatial resolution of 1m (on a 10 km 
swath); the “huge” acquisition mode offers a 100 m resolution with a 200 km swath; all 
polarization modes are available. 
Operational mode can be set up in three ways (routine, crisis and very urgent) allowing the 
system to respond to different needs in terms of required programming latency. A User 
Request (in the case of the first level of SAR standard products) can be satisfied in 72 hours 
for the system working in routine mode, 36 hours for the crisis mode and 18 hours for the 
very urgent mode. The management of a constellation rather than a single satellite, as well 
as the high number of degrees of freedom in acquisition management, pose new issues in 
operational management (Bianchessi and Righini, 2008). 
The commercial distribution rights for Cosmo – SkyMed images have been recently granted 
to e-GEOS (http://www.e-geos.it/), a new entity owned 80% by the private firm Telespazio 

 

and 20% by ASI. Technical documentation about Cosmo – SkyMed satellites and products 
can be found on e-GEOS website. 

 
5. Pollution detection algorithms 
 

Damped areas appear as dark spots on SAR images; however, different features are clearly 
identifiable because of their own geometric characteristics. For example, oil slicks usually 
have a linear shape with well defined contours, whilst natural surfactant appears in a 
different way (figure 7). An expert photo interpreter is able to distinguish between 
categories. 
 

 
Fig. 7. Example of oil spill (a) and look-alike feature (b) in SAR images 
 
Since SAR images were available, a number of attempts  have been done in order to develop 
and test automatic procedures for oil spill detection, with the aim OF  definING A  new 
instrument for real time analysis of satellite images in order to prevent pollution. Here we 
want to present some exempla of different approaches based on various mathematical 
techniques. 

 
5.1 Statistical techniques 
Here we describe a procedure, named “Oil Spill Automatic Detector” (OSAD), able to 
distinguish oil spills from other similar sea surface features (look-alike) in SAR images using 
a statistical approach; during last years, the procedure has been updated (Fiscella et al. 2000, 
Nirchio et al. 2002, Nirchio et. al 2005a, Nirchio et al. 2005b). It considers both the 
radiometric and the geometric characteristics of the areas being tested. In order to minimize 
the operator intervention, it adopts automatic selection criteria to extract the potentially 
polluted areas from the images.  
The related operational activities are carried out at the Matera Geodesy Space Centre, where 
the Italian Space Agency Processing and Archiving Facility (PAF) for the European Remote 
Sensing (ERS) satellite sensor data and the ‘Telespazio’ acquisition facility are located. A 
satellite ground station has been operative in Matera (Italy) since November 1999. It 
acquires data trasmitted down by the European satellites ERS 2 and Envisat. The facility is 
composed of an 8 m main dish, a down converter chain and a direct ingestion sub system. 
The acquisition area spans from the North Sea to the Red Sea including the entire 
Mediterranean basin. 
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radiometric and the geometric characteristics of the areas being tested. In order to minimize 
the operator intervention, it adopts automatic selection criteria to extract the potentially 
polluted areas from the images.  
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The acquired data are first recorded and screened for evaluating the quality parameters, and 
then a browse image is generated. At this point data are available for processing and 
distribution to end-users. An operator inspects the browse image, covering an area about 
4000 km long and 100 km wide, and selects those frames 100 km x 100 km which appear 
affected by oil spill. The next step foresees the production of the full resolution image. This 
can be analysed by OSAD that provides the probability that the suspected area is affected by 
an oil spill. The land, eventually present in the image, is masked to allow the identification 
of dark areas potentially interested by oil spills. A threshold is computed, its value depends 
on the average image intensity from which the image standard deviation has been 
subtracted. Those areas whose average backscattering is lower than the threshold are further 
screened for retaining those whose dimensions are larger than 0,3 km2 and smaller than 10 
km2. The small regions are rejected because these eventual slicks are not significant; usually 
they disappear from images in a short time. The large areas are also rejected because they 
are probably due to lack of wind. At the end of the process, several analysis are performed 
on the remaining slicks candidates, the probability the area under test is affected by a spill is 
computed and a detection report is generated and sent to the responsible authority.  
Before operational use, the system must be tuned; this is done by means of a training 
dataset, composed by images that have been classified by an expert photointerpreter as “oil 
spill” or “look-alike”; uncertain images are discarded. For every image family, geometric 
and radiometric characteristics are computed; for every characteristic, the data distribution 
is evaluated in order to find significant parameters for both oil spills and look-alikes. 
In the operational use, every acquired image is first calibrated and the land is masked. On 
sea areas, the significant values are evaluated and then compared with the previously 
described statistical distributions, in order to define the probability to be an oil spill. This 
probability is given as a percentage (“score”) where 0 is the lookalike and 100% in an oil 
spill. 
The first tuning of OSAD system has been done on a set of SAR images corresponding to 153 
cases of oil spill and 237 cases of look-alike detected during 1999 in the Mediterranean Sea 
using ERS-1/2 SAR Precision Image Product (PRI) which dimensions are 100 x 100 km. The 
method has demonstrated an a priori percentage of correct classification higher than 90%, it 
is easy to apply and able to determine the identification probability in an automated way 
(Nirchio et al. 2005b).  
Another statistical approach was proposed by Solberg et al. (1999); the procedure consists of 
first detecting dark spots in the image, then computing a set of features for each dark spot, 
before the spot is classified as either an oil slick or a “look - alike”. The classification rule is 
constructed by combining statistical modelling with a rule-based approach. Prior 
knowledge about the higher probability for the presence of oil slicks around ships and oil 
platforms is incorporated into the model. In addition, knowledge about the external 
conditions like wind level and slick surroundings are taken into account. The algorithm 
accuracy is 94% for the oil slicks and 99% for the look-alikes. 

 
5.2 Neural network approach 
An artificial neural network, usually called “neural network”, is a mathematical model or 
computational model that tries to simulate the structure and/or functional aspects of 
biological neural networks. It consists of an interconnected group of artificial neurons and 
processes information using a connectionist approach to computation.  

 

In more practical terms neural networks are non-linear statistical data modeling tools. They 
can be used to model complex relationships between inputs and outputs or to find patterns 
in data. It can be thought as an adaptive system that changes its structure based on external 
or internal information that flows through the network during the learning phase. 
Using an approach similar to that described on previous paragraph, Calabresi et al. (1999) 
used neural networks in order to find specific values identifying oil slicks, chosen from a 
given set of parameters. Here the network input was a vector containing the values of a set 
of features previously calculated. 
Usually the oil spill candidates (that is the dark areas on SAR image) are identified with 
their geometric and radiometric parameters, then a classification algorithm is applied. In 
Topouzelis et al. (2007) two different neural networks are used: one to detect dark spots on 
sea surface and another to classify the previously found areas as oil spills or look-alikes. The 
proposed method shows good results in detecting dark formations and discriminating oil 
spills from look-alikes as it detects with an overall accuracy of 94% the dark formations and 
discriminate correctly 89% of examined cases. For dark area detection the network unit is 
the pixel, while for classification is a vector made of ten parameters. 
It is worth to note how a neural network approach has been used to classify samples of 
unknown crude oils and distilled fuels on the basis of the results from standard chemical 
analysis (Fonseca et al. 2006, Fernandez – Varela et al. 2008). 

 
5.3 Other techniques 
A number of different mathematic techniques can be found in literature for sea surface 
detection and characterisation of surface slicks. 
As previously said, the first step is the determination of dark areas on SAR image, due to 
low backscattering levels. A first approach is described by Skøelv and Wahl (1993) for ERS-1 
SAR images). A similar approach is described in Vachon et al. (1998) and Manore et al. 
(1998). Solberg et al. (1999, 2003) apply an adaptive algorithm where the threshold is 
dynamically set at k dB below the mean value estimated in a moving window.  
Canny (1986) started the use of hysteresis thresholding, later applied by Kanaa et al. (2003)  
An approach based on the Laplace of Gaussian (LoG) and Difference of Gaussian (DoG) 
operators is described in Change et al. (1996) and Chen et al. (1997). 
Liu et al. (1997) and Wu and Liu (2003) proposed the use of wavelet analysis in ocean 
feature detection, including oil spills. Mercier et al. (2003) suggest a segmentation method 
based on detecting local variations of the wave spectra. Fuzzy logic was investigated as a 
since mid 90s (Barni et al. 1995) 
Fractal mathematics is also used for classification purposes (Keller et al., 1989; Benelli and 
Garzelli 1999; Gade and Redondo 1999).  The topic is still studied and new results presented 
(Marghany et al . 2009). 
Even though we here focus on single frequency and single polarization SAR images, it is 
worth mentioning the possibility of a discrimination algorithm based on differences in 
multi-frequency and multi-polarization signatures. Gade et al. (1996) did some experiments 
to investigate whether spaceborne L-, C- and X-band multipolarization SARs are capable of 
discriminating between films of different chemical properties, and found that discrimination 
is only possible at low to moderate wind. Maio et al. (2001) propose such an algorithm for 
discrimination between oil spills and lookalikes. 
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5.4 SAR limitations 
It must be observed that not always SAR is able to reveal oil spills; even when detection is 
made only the thicker part, typically covering only 10% of the whole oil spills area, is 
imaged (Sabins 1997).  
The detection of oil slicks/spills in SAR images strongly depends on the wind speed at the 
sea surface. Under low wind speed, typically between 0 and 2-3 ms-1, the sea surface looks 
dark on SAR images. In this case the wind-generated waves are not already developed and 
oil films look dark on a dark background: detection in this case is impossible. Wind speed 
between 3 and 6 ms-1 is ideal for oil slick detection, the sea surface roughness is developed 
and oil slicks appear as dark patches on a bright background. However, when wind speed 
reaches 10-12 ms-1, detection is impossible again or obstructed due to the redistribution of 
oil spills/slicks by the surface waves and wind-induced mixing in the upper ocean layer 
(Scott 1986); in this case becomes determinant the compactness of film. As the result slick 
disappears from the sea surface and SAR imagery. The upper wind speed threshold for spill 
detection with SAR is suggested to be between 10 and 14 ms-1 (Gade and Ufermann 1998, 
Ivanov 2000). In the Mediterranean Sea it was demonstrated that oil spills can be detected 
from SAR images if the wind speed results between 2 ms-1 to 10 ms-1; the SAR capability in 
detecting oil spills has given good results at open sea, while in the near-shore region the 
detection percentage drops quickly, because in these cases the effect of wind sheltering 
becomes determinant, that is, the wind screening effect caused by the local topography on 
the areas near-shore (Nirchio et al. 2005b). 
When a slick is detected by SAR, it is not easy to know its evolution state and as a 
consequence its age. The behaviour of oil spill on the sea surface significantly depends on its 
important physical-chemical properties, such as viscosity, density, surface tension and 
elasticity. Moreover, crude oil is a complex mixture of different chemical components 
including heavy and light fractions. Typically, crude oil can be detected during its evolution 
in the sea in different phases of age: oil spill, oil film, emulsion (for the first time oil-water 
emulsion and then water-oil emulsion), blue shine and aggregates. During the lifetime of oil 
spill in the sea it will be exposed to a number of weathering processes, which dramatically 
influence physical-chemical properties: spreading, drift, evaporation, dispersion, 
emulsification, bacterial degradation and photo oxidation (Kotova et al. 1996). With time the 
physical-chemical properties of oil spills are changed due to effect of these processes. These 
processes play important role in oil spill detection using SAR sensors. But relative 
importance of each process is not still well understood. Direct observation seems to show 
that big slicks lifetime is greater than small ones; for example in the Prestige (Spain 2002) 
and Haven (Italy 1991) disasters, the great quantities of oil released into the sea stayed on 
for a long time, although their SAR detection was not been always possible. An estimate of 
the quantity of oil observed at sea is also crucial because oil thickness is difficult to measure 
especially the sea is rough. Moreover, water-in-oil emulsions and viscous oils like heavy 
crude and fuel oil can vary in thickness from millimetres to several centimetres. 

 
6. Future advances 
 

The State-Of-The-Art of sea surface SAR monitoring, as described by this paper, shows good 
results as well as the possibility of being applied for operational issues. However, some 
issues have yet to be resolved. 

 

Revisit time is not yet optimal for real time applications; the preferred way to solve this 
issue is to combine observation with different satellites, by building constellations or by 
signing agreements between operators in order to exchange data. 
Satellite availability is becoming wider with the launch, scheduled in 2010, of the fourth 
Cosmo-SkyMed satellite and the two SAOCOM (L-band SAR, managed by the Argentinean 
space agency CONAE). 
While automatic oil spill detection shows good results, characterizing other pollutants is less 
straightforward; moreover, slick characterization (e.g. to define the chemical composition or 
slick thickness) is still an open issue. It is possible that the use of multi frequency and multi 
polarization data will lead to valuable results. 
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1. Introduction     
 

From the moment of appearance of the first systems of remote sensing of the Earth, allowing 
to carry out survey in a real time mode, one of the main directions of their use is the 
operative control of various emergency situations, first of all fires and high waters. At the 
same time the general principles and methods of space monitoring of high waters and 
flooding have been formulated (Barton & Bathols, 1989). Now this direction still intensively 
develops in the various countries. 
In Kazakhstan such large flooding which are characteristic for the Siberian rivers and 
modern Europe were observed seldom. Therefore real conditions for development of system 
of space monitoring of flooding have appeared after installation at Space Research Institute 
(now it was a part of National Center of Space Research and Technologies) in 2001 reception 
station of the Russian firm SCANEX providing reception of Terra MODIS data (the 
resolution 250 m) in a real time mode. Since then this system actively developed in 
Kazakhstan (Spivak  et al., 2004, 2005; Arkhipkin et al., 2007; Arkhipkin & Sagatdinova , 
2008). It should provide the operative observation of republic territory, detection and 
mapping the real and potential centers of flooding of natural and technogenic character. 
The brief description of technology of work of flood space monitoring system and the most 
important results is presented below. 

 
2. Water system of Kazakhstan 
 

Kazakhstan is located in the centre of the Eurasians continent and enters into ten greatest on 
the area of the countries of the world. Its area is 2,7 million square kilometers. In too time in 
such big territory there lives the small population (only 16 million people). 
Despite the location and arid climate, Kazakhstan has considerable number of various water 
objects /figure 1/. Largest of them well-known all over the world, thanks to the 
environmental problems which make essential impact on considerable territories of the 
Eurasians continent. There are Caspian Sea and Aral Sea. We have also many lakes (more 
than 35 000), including such large as Balkhash, and many (more than 3 000) artificial water 
objects (water basins and ponds). 
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Fig. 1. Main regions of Kazakhstan with high risk of flooding by spring water and flood 
 
In Kazakhstan there is a great number of the rivers. Mainly they have the average and small 
size. The largest rivers are Irtish, Ural, Tobol, Ishim, Syrdaria and Ili. During spring thawing 
snow the volume of flow of these rivers sharply increases, sometimes more than 1000 times. 
They can overflow banks and flood large territories. The maximal hoisting of water 
recorded in the river Ural was in 1942, when the water was pushed up on 10-11 m above the 
normal level.  
Let's notice that all large river systems of Kazakhstan have transboundary character. 
Therefore their problems become the general for the several countries: Russia, China, 
Uzbekistan, the Kyrgyz Republic. In the past years we observed a very interesting situation 
in the region of the Syrdaria River. On the one hand, we observed big shortage of water in 
the Aral Sea, and on the other hand – during the winter-spring period in middle stream of 
the Syrdaria we observed its overabundance. Such situations arose because of inconsistency 
of questions of water use between Kazakhstan, Uzbekistan and Kyrgyzstan. 

 
3. Main tasks of Space monitoring of a water objects of Kazakhstan 
 

At the present time it is more efficient to control water objects on such big territory as 
Kazakhstan using space monitoring. Each class of water objects has its own tasks. 
Environmental problems of the Caspian region are caused by rapid development of oil-
extracting branch around Northern Caspian Sea and sea level rising. Therefore the main 
tasks of space monitoring of water surface of the Caspian Sea are:  
- Operative detection and monitoring of migration of oil spills on the water surface during 
flooding of oil derrick during the period of high water on the Caspian Sea and movement of 
tankers on its water area of Caspian Sea;  
- Monitoring of oil derrick in the Caspian shelf zone, 
- Control of ice conditions in this region. 
A number of organizations of Kazakhstan, including SRI take part in the solution of these 
problems. Base for the solution of these problems is RADARSAT (modes from Fine to 
ScanSAR Wide) and IRS data. 

 

Environmental problems of the Aral region are caused by sharp and fast reduction of the 
water surface. As a result of it the surface of the dried up bottom of Aral Sea which is a 
source of the powerful dust storms extending on considerable distances increases also 
quickly. In this case the primary tasks of space monitoring are: 
- Monitoring of a water surface of the Aral Sea, 
- Detection and monitoring of dynamics of development of dusty storms, 
-Detection and analysis of the dusty storms centers, 
- Modeling of occurrence and dynamics of development of dusty storms. 
Many organizations both in Kazakhstan and in other countries participate in the solution of 
these problems. SRI also takes part in it, including participation in the international grants 
(for example, CALTER). 
The main task of Space monitoring of water objects is mapping of flooding zones during 
passage of freshet waters and flooding. Floods are a considerable menace for the part of the 
population of Kazakhstan living not only on the banks of large rivers, such as the Irtish, 
Ural,Tobol, Ishim, Syrdaria, but also on the banks of small rivers. In recent years the 
situation in the Kyzyl-Orda oblast has become especially aggravated. 
At the previous and initial stage of high water passage we carried out mapping of 
destruction of the snow cover on the territory of the region, and recently we made mapping 
of destruction of an ice cover on large water reservoirs and lakes. In view of worsening of 
flood situation in the middle stream of the Syrdaria during the winter-spring period in the 
past years, the space monitoring of dynamics of filling of the Chardara reservoir was 
formulated as a special task. The development of flood situation in this region strongly 
depends on the Chardara reservoir. Space monitoring of dynamics of filling of the water 
surface of the Chardara reservoir is divided into two tasks. The first is satellite surveying of 
the current situation, and the second is comparison of this situation with the dynamics of 
the situation development in the past years. 

 
4. Space monitoring of snow cover destruction 
 

As it was mentioned above, the first stage of space monitoring of high waters is space 
monitoring of the snow cover destruction. Special programs are devised to automatize the 
process of process of mapping of snow, ice and water covers, which allows to carry out, in 
the automated mode, the procedure of transformation to a required projection, cutting of 
necessary territory, calculation of various indexes (NDSI, NDVI, VI) and classification of 
images in MODIS data. Simultaneously masks of a cloudy cover and maps of temperature of 
of the earth surface are formed. Masks of a cloudy cover specify territories on which the 
condition of an earth surface is not defined. The maps of temperatures combined with 
masks of a snow or ice cover, specify zones of active thawing on which the temperature is 
more 0oC (melt snow). 
By the results of space monitoring of destruction of a snow cover, the special maps 
indicative of the current condition of a snow cover /figure 2/, dynamics and calendar terms 
of destruction a snow cover are constructed /figure 3/. This information is very interesting 
for the forecast of a freshet situation. It allows to estimate terms of the beginning of thawing 
of a snow cover (early, normal, late), and also its rate (fast, normal, slow thawing). 
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Fig. 2. Daily map of snow coverage (East-Kazakhstan oblast, March 22, 2009) 
 

 

Fig. 3. Decade maps of snow melting (Western-Kazakhstan oblast) 
 
Monitoring of destruction of the ice cover on large water objects (Balkhash, Alakol, 
Buhtarma, etc.), represents certain interest for regional emergency agencies. Figure 4 shows 

 

the dynamics of destruction of the ice cover on Lake Balkhash in March, 2007. The figure 
also shows zones of active thawing. 
 

 

 

Fig. 4. Dynamic of ice destruction in Balkhash Lake in 2007 

 
5. System of operative flood space monitoring 
 

5.1 Space segment 
Functional basis of work of flood space monitoring system in an operative mode are the 
reception stations of remote sensing data located in Astana and Almaty. They carry out 
regular receiving of data from NOAA, EOS Terra and Aqua, Indian satellites IRS and 
Canadian radar satellite RADARSAT-1. Zones of radio visibility of receiving stations cover 
Kazakhstan, a significant part of Russia and Asian region. 

 
5.2 Technology of flood space monitoring 
The technology of flood space monitoring /figure 5/ is based on daily EOS-AM Terra 
MODIS images of territories for which there is a high risk of flooding, including the parts 
located in the neighbor countries. The main task is operating mapping of flooding zones 
during floodwater passage. On the basis of these images after thematic processing, masks of 
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flood areas are created. Zones of flooding are defined as a difference of water surfaces in 
normal conditions and during high water. To except cloudy cover and clouds shadows the 
cloud mask is used. To except wet soil the vegetation index NDVI is used. The operative 
situation is compared to maps for the previous day and the most dangerous territories with 
high dynamics of developing of increase water are identified.  
 

 

 

Fig. 5. Functional scheme of the GIS-technology of operative flood space monitoring  
 
In order to estimate the potential danger of flooding special GIS is used. It contains the 
information about settlements and towns, road and railway networks, lines of the electric 
system, oil-and gas pipelines, forests, especially important objects, etc. Combining these 
layers and zones of flooding it is possible to define their location with respect to the nearest 
settlements and especially important objects, and distance up to them. Final maps of 
flooding zones /figure 6/ are sent by e-mail to regional emergency agencies. 
 

 

 

Fig. 6. Map of flood zones on the territory of Kaztalovsky raion of West-Kazakhstan oblast 
in April 8, 2004 

 
5.3 Algorithm of allocation of flooding zones on space images 
The problem of allocation of flooding zones on remote sensing data is solved using the 
algorithms of automatic classification in the programming environment ArcGIS-9.1 passes 
in three stages /figure 7/. At the first stage five basic classes of objects are allocated: a 
cloudy cover, a snow cover, a water surface covered with ice, a water surface and a 
terrestrial surface free from snow. 
 

 

Fig. 7. Algorithm of allocation of flood zones on space images 
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The main interest is presented by a water surface. Therefore at the second stage the 
additional analysis of this class for the purpose of allocation of false objects is carried out. 
First of all, it is shades from clouds, lately ploughed fallows and wet soils. In order to except 
the cloud mask received at the first stage, and fact that shades on a configuration repeat 
clouds are used. In order to remove fallows which are false carried to water objects, masks 
of agricultural fields and analysis of their structure are used. Wet soils are excluded by 
means of analysis using vegetation indexes /figure 8/. Let's notice that sometimes sunlight 
dazzles from a water surface creating additional hindrances. Besides it is necessary to know 
the normal state of water objects in order to indicate deflections in their location. 
 

 

Fig. 8. Classification of water surfaces and wet soil by MODIS data 
 
At the third stage operative maps of the flooded territories /figure 6/ at level of region and 
separate districts are formed using the mask of water surfaces in the normal conditions 
defined on the autumn space images. 

 
6. Estimation of flood risk zones 

First of all, it is necessary to note that concept «the estimation of risk of an emergency situation 
(fires, flooding, etc.) » has dual sense. On the one hand, it is a current estimation of a real 
condition of concrete territory during a concrete period of time which is formed by the 
characteristics of this territory (a relief, vegetation etc.) and its meteorological condition 
(temperature, amount of precipitation, their intensity, storm activity, etc.) during a concrete 
period of time. On the other hand, «the estimation of risk of an emergency situation» can be 
formed on the basis of a statistical estimation of results of long-term supervision of 
investigated territory, including the remote sensing data. Such approach allows to receive an 
integrated estimation at any time period in each concrete place. In this case it is not required to 
know the characteristic of the land environment. We follow the second method of estimation. 

 

In process of accumulation of the information time series remote sensing data (seasonal and 
long-term) are formed. They enable to characterize the development of flood situations in 
time during a current season and to compare them with the previous seasons. Also on the 
basis of of analysis of all long-term series of remote sensing data we can estimate risks of 
flood situations on various territories. The territories are ranged by the degree of risk of 
flooding by freshet waters and floodwater. For this purpose available long-term series of 
remote sensing data are analyzed and the frequency of territory flooding is defined. The 
more often the territory flooded in this period, the higher is the risk of flooding. 
The functional scheme of GIS-technology of zoning of investigated territory by the degree of 
flood risk using the long-term space monitoring data consists of three blocks corresponding 
to three stages of determination of resultant estimation in the programming environment 
ArcGIS-9.1 /figure 9/. The first is formed by the daily data about the areas which have 
suffered from flood (flooding zone), received in the process of operative monitoring. The 
second contains the annual data about the total areas which have suffered from flood which 
are formed of the data of the first block and represent total zones of flooding for each 
concrete year. The third block contains results of zoning of investigated territory by the 
degree of risk of flooding which are calculated from the analysis of the annual data. 
 

 

Fig. 9. Functional scheme of technology of estimation of flood risk zones 
 
Such information is very useful for planning economic activities. Besides it is useful for 
planning protective actions against repeated emergency situations and for analyzing the 
efficiency of the measures accepted by local authorities for struggle against high waters. Not 
all zones of flooding present danger to life and the human economic activities. Some of them 
can be even useful. For example, places of gathering of freshet waters which are used by 
nature and man in the further. 
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7. Practical results of flood space monitoring  
 

Flood space monitoring is exploited in West-Kazakhstan (2003-2009), Karaganda (2005-
2009), East--Kazakhstan (2007-2009) oblasts and Syrdaria river region including a Chardara 
water basin (2003-2009) in real or near real time mode. Space monitoring of high waters is 
carried out in the spring, basically in March - April, and for а middle stream of Syrdarya 
during the winter-spring period. For all observable regions, except Syrdarya, in the recent 
years (2006-2009) weak high waters are observed. In the middle stream of Syrdarya there are 
critical situations every year. Also in 2009 there was a flooding of some settlements located 
around one of the lakes in East Kazakhstan which was caused by climatic features of the 
past years. Earlier these places were not flood. Some results of flood space monitoring are 
described described further. 

 
7.1 Space flood monitoring of West Kazakhstan 
In this region there are the Ural River and many small rivers running and not running into 
the Ural. Local agencies of emergency situations have defined the most important objects for 
space monitoring in a high water period /figure 10/. This group also included the objects 
located in territory of Russia which in many respects define passage of flood waters on the 
Ural River. 
 

 

Fig. 10. Most important regions in flood period on the territory of West-Kazakhstan oblast 
and Russia 
 
The results of long-term monitoring show that more or less intensive high water was 
observed in first three years. In 2003 the high water has begun in the second decade of April, 
reached its peak in the middle of April and practically vanished at the beginning of May. 
Thus the water level in the river Ural Mountains was below the average, and in a number of 

 

small rivers above the average (in some areas it was strong). In 2004 the water level was 
below the average practically everywhere. In 2005 the high water appeared early (at the 
beginning of April) and continued to increase till the middle of May, then it began to 
decrease, but at the beginning of June it did not vanish. Thus the basic water stream passed 
on the Ural River. Further intensity of high waters has considerably decreased. 
It is necessary to note, that high overcast is a vital problem for carrying out of operative 
space monitoring of flooding, especially in the West Kazakhstan. So in 2005 during 45 days 
of high water development we managed to receive 16 space images of territories of West 
Kazakhstan, suitable for mapping of flooding zones. For separate areas this value was even 
less. For example, for the Uralsk area we got 9 images. In 2007 during the high water 
development it was not possible to receive any space images of this territory, suitable for 
mapping of flooding zones. In 2008 and 2009 the situation was better, only there was no 
high water. 
In the West Kazakhstan often happens that at night the overcast is lower than during the 
daytime. Therefore the night images NOAA AVHRR and EOS-AM Terra MODIS in infra-
red band are used for flooding monitoring /figure 11/. The water has higher thermal lag, 
therefore water surfaces at night are warmer than ground (soil). In the paper (Barton & 
Bathols, 1989)  it is noticed that sometimes during the flood the thermal canals at night gave 
better land-flood discrimination than the visible data during the daytime. Certainly radical 
way of solving the a problem of overcast is monitoring of only areas with especially 
dangerous freshet situation of data RADARSAT, but it is limited due to their high cost and 
complexity of the operative order. 
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7. Practical results of flood space monitoring  
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Fig. 10. Most important regions in flood period on the territory of West-Kazakhstan oblast 
and Russia 
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7.2 Space Monitoring of Syrdaria Region 
Last six years in this region the intense situation with flooding is observed. As is has been 
noticed above, the reason of it is not settled question of use of the river water between 
Kazakhstan, Uzbekistan and Kyrgyz Republic. In the Soviet period the Togtogul water basin 
in the Kyrgyz Republic, situated in riverheads, was used mainly for the agricultural 
purposes. In the winter it accumulated water, and in the summer water went down for 
watering of agricultural fields, mainly cotton. Now the Kyrgyz Republic actively uses this 
water basin for electric power generation, especially in winter. As a result, there is active 
discharge of water in winter. Surplus of water arrives at the Chardara water basin located 
downstream. It is located on border of Kazakhstan and Uzbekistan. For prevention of 
danger of overflow of a water basin during the spring high water the Kazakhstan authorities 
are forced to dump part of water downstream. It leads to flooding of territories in middle 
stream of Syrdaria river. 
For the first time such situation arose during the winter of 2003-2004. During the winter of 
2004-2005 a real danger of overflow of the Chardara reservoir was created. The government 
of Kazakhstan hardly managed to convince Uzbekistan to open dump of water in Arnasai 
hollow and stabilize the situation. In 2004-2005 the conditions turned out to be even more 
difficult. The winter of 2003-2004 was not snowy with very early spring. Precipitations were 
heavy in the winter of 2004-2005, they were much higher than the norm. Heavy snowfalls 
created snow stocks in the mountains. Besides, strong frosts held down a thick layer of ice 
on the shoaled river-bed of the Syrdaria. Late spring shifted terms of active high water 
(melting of snow). Therefore the most dangerous situation developed in the middle of 
March.  
The situation on the Chardara water basin is one of the main characteristics of the freshet 
situation. Therefore from the end of 2003 the remote sensing control of filling of Chardara 
reservoir and development of high waters over this region in the real time mode has been 
carried out. Figure 12 shows dynamics of changes of the Chardara reservoir water surface in 
2003-2008. As follows from figure 12 the situation was difficult almost every season. 
However, if during first two seasons the authorities were afraid threat of overflowing of the 
water basin, further the situation was under the control of regional authorities, except two 
critical situations in 2007 and 2008. 
In 2007 the critical situation arose at the end of the first decade of February and led to 
flooding of the populated territories in area of Kzyl-Orda (figure 13). For find out of the 
reasons of this process we gave the regional authorities the information about the dynamics 
of filling of the Chardara reservoir during this period. From figure 13 shows that, firstly, at 
this time there was a discharge of water from the Chardara reservoir (left diagram), and, 
secondly, it was filled by two thirds of the maximal size, which was fixed during many 
years supervision (right diagram). Whether it was the reason of the critical situation, we 
could not prove. The special commission found out this reason. 
 

 

 

Fig. 12. Analysis of Chardara filling dynamic from 2003 to 2008 
 

 

Fig. 13. The analysis of the reasons of break of a dam near Kzyl-Orda in first decade of 
February 2007.  
 
Flooding in the third decade of February 2008 had much more serious consequences both in 
terms of the number of flood victims and destroyed houses. The reason of it was not the 
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Syrdaria. The reasons were storm rains abnormal for this period of the year and abnormal 
cold winter which turned the ground into an ice trench. The settlements which had never 
been flooded and were not ready to such situation suffered from flooding. Actually, high 
water on the Syrdaria passed without special problems (figure 14). We could not fix the 
critical situation during the peak period with the help of MODIS data because of the 
overcast, and used for these purposes RADARSAT data, which did not help either because 
of some objective and subjective reasons, in particular, because of impossibility of the 
operative order.  
 

 

Fig. 14. Development of flood situation in the middle stream of Syrdaria river in spring 2008  
(North part of Kzil-Orda oblast, 28 February; South part of Kzil-Orda oblast, 28 February; 
South part of Kzil-Orda oblast, 8 March; South part of Kzil-Orda oblast, 31 March) 
 
Let's notice that same critical situation has arisen this year in East Kazakhstan (look above 
the text in paragraph 7 beginning).  
In 2009 the high water has passed easy in the middle stream of Syrdaria river. 

 
7.3 Zoning on degree of risk of flooding of territory of the West-Kazakhstan and a 
middle stream of Syrdaria River 
The technology of estimation of flood risk zones described above has been used for zoning 
by the degree of risk of flooding of the territory West Kazakhstan (a six-year number of the 
remote sensing data is analyzed), and middle stream of the Syrdaria River (high waters for 
the last five winter-spring periods are considered). 
Figure 15 maps of zones of risk of flooding on the territory of West-Kazakhstan oblast, as a 
whole and its separate fragments. For these years more or less intensive high water was 

 

observed on the territory only two times, but the same information allows to carry out 
analysis of danger of high waters for various territories. 
 

 

Fig. 15. Zoning territory of West-Kazakhstan oblast by the risk of flooding for 2003-2008 
 
From the insert of figure 15 we can see that territories constantly flooded during 6 years are 
located far from settlements and roads. They do not represent danger and are regular places 
of gathering of flood waters as are located far from constant water objects. On the other 
hand the territories flooded only one or two times, are located in immediate proximity from 
settlements and roads. It is necessary to pay paramount attention to these territories in 
planning of protective actions. 
More difficult situation was with high waters in the middle stream of Syrdaria River where 
practically every year there were critical situations. The results of zoning of the territory in 
the middle and the low stream of the Syrdaria River ( Kazakhstan part of the river) by the 
degree of risk of flooding for the last five winter-spring periods are presented in Figure 16. 
In more details these results are presented in the insert of figure 16 for one of the main 
flooded territories in the middle stream of Syrdaria River. Figure 17 shows the same 
territory with spatial allocation of zones with high frequency of flooding (3-5 times for 5 
seasons) is presented. Especially critical situation developed for settlement Dzhusaly where 
regularly flooded territories are located in immediate proximity from it and on the territory, 
where the railway is located. 
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Fig. 16. Zoning territory in the middle part of Syrdaria river by the risk of flooding for 
winter-spring period of 2003-2008 
 

 

Fig. 17. Zoning territory in the middle part of Syrdaria river by the high risk of flooding for 
2003-2008 

 

7.4 Space monitoring of pollutions of a surface of a water basin  
In the first decade of October 2008 on the water surface of the Shulbinsky water basin the 
green color pollutions, well identified in space images, were detected (figure 18). Pollution 
was observed on 5, 6 and 8 of October. At first, it was supposed that it is industrial pollution 
as drinking of the infected water led to cattle poisoning. As a result of analysis of space and 
ground-based data the agency of emergency situations came to a conclusion that the 
pollution was caused by vegetative objects (seaweed). 
 

 

Fig. 18. Mapping of pollution on the surface of Shulninsky reservoir (East-Kazakhstan 
oblast) 

 
8. Modeling 
 

Recently emergency departments have shown interest to modeling of various extreme 
situations on water objects. It is modeling of zones of flooding as a result of flooding, high 
waters or break of dams; modeling of deformations of river-beds; and modeling of 
protective constructions. The solutions of these tasks are based on the software packages 
(BOR, RIVER, FLOOD) developed in Institute of Power Constructions (Russia) by Belikov 
V.V. 

 
9. Conclusion 
 

Application of the results of space monitoring of flooding in practical work of emergency 
agencies will enable to lower the damage due to early detection of freshet floods and 
realization of preventive measures decreasing the danger of flooding in zones of high risk of 
their occurrence, detected on the long-term remote sensing data. 
Nowadays application of the results of space monitoring of passage of freshet waters and 
flooding has basically information character. One of mainstreams of development of flood 
space monitoring in Kazakhstan is search of optimum variants of use of high-resolution data 
resolution, including radar. In this case the efficiency of monitoring considerably increases. 
At present wide application of such data for operative space monitoring of high waters and 
flooding is limited by their high cost and complexities of the operative order. 
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The other direction of development of technologies of space monitoring of water objects in 
interests of regional emergency departments is use remote sensing data for modeling of 
potential extreme situations (flood, break of dams, washout of coast, etc.). 
The results of territory zoning by the degree of risk of flooding can be useful for planning of 
economic activities: building of industrial enterprises, main gas pipelines, electric mains, etc. 
They can also be used for solving of some other problems. In particular, they are useful in 
planning of protective actions against repeated flooding, and in analyzing efficiency of 
measures taken by local authorities in struggle against them. Another possible application 
can be use of these data by insurance agencies. 
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1. Introduction     
 

The (rain) drop size distribution (DSD) plays a very important role in meteorology 
(determination of radar reflectivity and consequently rain rate, classification of 
precipitation, flood prediction), in microwave radio-communication (determination of rain 
attenuation) and also in many other applications like agriculture and insurance business.  

 
1.1 Quick overview of literature 
There is a large number of papers devoted to the DSD problems. The classical and very 
important study by Marshall-Palmer (1948) has to be mentioned. Almost every scientist is 
using this DSD model for average rain. Rain intensity is a parameter of this DSD. 
The most important recent papers concerning the DSD problem are focused on following 
topics: 
Carolin Richter (1995) declared the Gamma function to be an appropriate analytical 
approximation of DSD. She has studied the dependence of rain rate, median diameter and 
shape factor (-parameter in Gamma approximation) on synoptic events. Clear systematic 
trends in the drop spectra were found. It was possible to distinguish warm advection from 
the cold advection according to the numerical value of the shape factor . Carolin has also 
found that the rain intensity does not influence the shape of DSD as no relation between rain 
rate and shape factor could be found.  
Albert Waldvogel (1974) discussed the intercept parameter No in the exponential 
approximation of DSD. Prof. Waldvogel has found that sudden variations of spectra can be 
recognised easily as No jump versus the time axis. An empirical model is proposed for the 
relation between the type of raindrop spectra and the convective activity of the precipitating 
mass. 
Tokay A. and Short D. (1996) have observed dramatic change in the intercept parameter No 

in the  Gamma approximation of DSD occurring during rainfall events with little change in 
rainfall rate. It can correspond to the transition from rain of convective origin to rain 
originating from the stratiform portion of tropical systems. The authors have presented an 
empirical stratiform-convective classification method based on No and rain rate scatterplot. 
It is worth noting that this study is related only to tropical rains.  

23
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 J. Joss and E. Gori (1978) have defined an “integral” shape factor of DSD different from the 
“” shape factor, which is a parameter in the Gamma approximation. They discussed the 
role of sampling time on the shape factor founding that adding many instant distributions 
from different conditions leads to an exponential distribution such as proposed by Marshall 
and Palmer (1948).  
J. Joss and A. Waldvogel (1968) have modified the Marshal-Palmer DSD for drizzle, 
continuous rain, shower and thunderstorm for conditions of Switzerland. This modification 
cannot be accurate because it is based on short term DSD measurement. 
O.Fišer and M.Hagen (1998) have discussed the influence of integration time on resulting 
DSD. For larger integration time the increasing agreement between experimental DSD and 
its exponential distribution was shown. Also variations of parameters  defining DSD (No , 
and ) with rain rate was illustrated and discussed. Two methods to determine parameters 
of analytical DSDs were shown and discussed (linear regression, method of moments). 
O.Fišer, D.Řezáčová,P.Pešice, Z.Sokol and O.Školoud (1998) realised an attempt to estimate 
the basic rain type from existing rain rate records using the rain event duration, rain 
amount, average and standard deviation of rain rate as predictors. 
O. Fišer (2002b) discussed the role of particular rain drop size on resulting specific rain 
attenuation im micro and mm frequency bands. 
O. Fišer (2003 a,b) compared existing methods for meteorological rain type identification 
using Czech DSD data. A lot of work has to be done because existing criterions were 
devoted for tropical regions only and the mentioned study has an introductory meaning. 
O. Fišer (2004) derived the radar reflectivity-rain intensity (Z-R) analytical approximation 
using the  Czech DSD data.  
O. Fišer (2006) has published a preliminary study showing DSD variability and its frequency 
dependence.  
O. Fišer (2007) analysed  the DSD moments for the estimation of the bilateral relationships 
between DSD products (outputs). 
Jameson, A. R., A. B. Kostinski (2002) have found power law relation between rain rate and 
radar reflectivity factor. It is found that apparently realistic but spurious nonlinear power-
law relations still appear among rainfall parameters even though the rain is not only 
statistically homogeneous but purely random as well. 
Řezáčová D., Kašpar M., Novák P., Setvák M., (2007) have published an overview of 
published and measured DSDs of of  rain (Best,Marhall-Palmer and other distributions). 

 
2. Drop size distribution    
 

The rain drop size distribution (DSD, quantity symbol N) represents the probability density 
of equivolumetric drop diameter D being in the unity volume. The product N(D) dD gives 
the number of rain of the diameter between D and  D+dD in the unity volume. Only rain 
drops of diameters below 7 mm can exist for physical reasons. Example of the DSD 
measured in the Czech Republic is shown in Figure 1 
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Fig. 1. DSD measured in Czech Republic (one year measurement, rain rate is the parameter 
of particular curves) 

 
3. DSD measurement 
 

Generally speaking, the measurement of the DSD is relatively rare. The greatest problem is 
the cost of distrometer. The most developed and user friendly device for the DSD 
measurement is a videodistrometer (videodistrometers developed at the Graz Technical 
University, Austria under ESA contract, are well known). Other electromechanical distrometer 
of the Joss-Waldvogel type, is used at the ETH Zurich and in Bavaria (in the DLR-
Oberpfaffenhofen and in the DWD-Hohenpeissenberg). Optical distrometers are or were used 
in Oberpfaffenofen and in Dubna (Russia). The Rutherford Appleton Laboratory (UK), has 
performed a DSD measurement in Chilbolton (UK) and in Papua New Guinea. On the other 
hand, there is a lot of DSD data which is not processed or which is processed only partially. 
The DSD measurement is not very simple and it is not performed so often in comparison 
with the rain rate measurement. Several DSD measurements were performed in the history 
(e.g. Marshall and Palmer, 1948, Joss and Waldvogel, 1968, Lakomá, 1971, Federer and 
Waldvogel, 1975, Li and Zhang, 1980) or more recently (e.g. Doelling et al., 1996, Hubert et 
al., 1999, Tokay et al., 1999, Tokay et al., 2002, Schönhuber et al., 2000, Bringi et al.,2003) 
using different types of measurement technique (filter or glass catchment, electromechanical 
distrometer, optical distrometer, videodistrometer and others). Many DSD measurements 
have been made by the electromechanical distrometer the concept of which was developed 
by Joss and Waldvogel (e.g. Joss and Waldvogel, 1967).  
The results of the Czech DSD measurement (performed in 1998-1999) was published by 
Fišer et al.,2002, Fišer, 2002b and Fišer, 2004.  

 
4. Analytical approximations of DSD 
 

The exponential and Gamma distribution are the most frequently used analytical 
approximations of the DSD because of their satisfactory correspondence with the typical 
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Fig. 1. DSD measured in Czech Republic (one year measurement, rain rate is the parameter 
of particular curves) 

 
3. DSD measurement 
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the cost of distrometer. The most developed and user friendly device for the DSD 
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of the Joss-Waldvogel type, is used at the ETH Zurich and in Bavaria (in the DLR-
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have been made by the electromechanical distrometer the concept of which was developed 
by Joss and Waldvogel (e.g. Joss and Waldvogel, 1967).  
The results of the Czech DSD measurement (performed in 1998-1999) was published by 
Fišer et al.,2002, Fišer, 2002b and Fišer, 2004.  
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The exponential and Gamma distribution are the most frequently used analytical 
approximations of the DSD because of their satisfactory correspondence with the typical 
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drop size distribution shape in the majority of experimental samples. There are also many 
other DSD models in the literature - for instance the log-normal model (Ajayi, Kozu, 1999). It 
should be remaindered that also many various factors like the rain type, time of integration 
and others influence the analytical DSD modelling. 
 
The equation (1) expresses the Gamma model of distribution function (DSD) 
 

)Dexp(DN)D(N 0    (1) 
 
where  
 
D [mm] is the rain drop diameter  
N(D) [m-3 mm-1-] is the number of drops per unit volume per drop diameter interval (dD) 
N0 [m-3mm-1-] is the intercept parameter of DSD 
 [mm-1] is the slope parameter.  
 [-] is shape of the DSD, to avoid a mismatch it is preferred to call it as “ parameter” 
Examples of numerical values of parameters are shown in Table 1 (Iguchi T., 1999) and 
plotted in Figure 2. 
 

Gamma           No          

Rain type   mm-3-m-3     mm-1 - 

Convective 6.29E5*R-0.416 8.35R-0.185 3 
Stratiform 2.57E4*R0.012 5.5R-0.129 3 

Table 1. Examples of numerical values of the Gamma DSD model parameters (tropical 
region) where R is the rain rate in [mm/h] 
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Fig. 2. Gamma DSD model using parameters from Table 1 for certain rain rate value 

 

The simpler Exponential distribution is used in the form given by the following expression  
 

)Dexp(N)D(N 0   (2) 
 
As it is obvious, the exponential DSD model can be considered as a special case of the 
gamma DSD where the parameter  equals to zero.  
 
The parameter λ in this model can be also expressed in the dependence on rain rate R: 
 

 
(3) 

 
where b=-0,21. 
Typical exponential DSD for various rain types (drizzle, thunderstorm and average rain in 
mild climate) is shown in Figure 3, which is plotted after Table 2. (source:  Joss J. and 
Waldvogel A., 1968). 
 

Rain type No  

 mm-1 m-3 mm-1 

Thunderstorm or shower 1 400 3 * R-0.21 

Continuos rain 7 000 4.1*R-0.21 

Drizzle 30 000 5.7*R-0.21 

Average rain 8 000 4.1*R-0.21 

Table 2. Typical parameters of Exponential DSD model (Europe) where R is the rain rate in 
[mm/h] 
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Fig. 3. Exponential DSD for various rain types (drizzle, thunderstorm and average rain in 
mild climate) 
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5. Determination of DSD parameters from measured values 
 

In this part we describe two techniques determining the values of the model parameters N0, 
, and . After logarithmic linearization of the N(D) approximation (1) the linear regression 
can be applied (least square method, Bartsch, 1996). The moment method uses the definition 
of the DSD moments, which, for the n-th moment, Mn, gives: 
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Using the method of moments following formulas for the parameters No and  in the 
exponential DSD model (2) were derived: 
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where M3 , and M6 are the 3rd, and 6th DSD moments, respectively. Note that the same 
formulas were derived by Prof. Waldvogel (Waldvogel, 1974) where the liquid water 
content W was preferred to the 3rd moment. The third and the sixth moments were chosen to 
approximate the DSD in order to determine the rain intensity (being approximately 
proportional to M3) and the radar reflectivity factor (proportional to M6) from the DSD 
model as accurate as possible.  
 
To determine the parameters of the Gamma approximation (1) the formulas of Tokay and 
Short (Tokay, Short, 1996) can be used. The expressions using M3, M4, and M6 are as follows: 
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where the auxiliary G factor is given by 
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6. Outputs (products) of DSD 

The rain drop size distribution (some times it is called “rain drop spectrum”) determines 
uniquely its outputs (outputs can be called also “products”) as rain rate, radar reflectivity 
factor, rain attenuation and others (see next parts). 

 
6.1 DSD products of no frequency dependence 
a, Rain intensity (rain rate)  
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where Rg [mm/h] is the rain rate (corresponding to the rain rate derived from rain gauge 
measurement) 
v is the terminal falling velocity 
N(D) is the drop size distribution  
D is the equivolumetric drop radius. 
 
b, Radar reflectivity factor z [mm6m-3] 
 
The radar reflectivity factor z  (small letter “z”) is the 6th DSD moment, it can be computed 
from following expression: 
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while for its logarithmic unit Z [dBZ]  (capital letter “Z”)  it is used: 
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If we study electromagnetic energy coming back from rain volume to the radar, we must be 
aware that the reflected energy is not dependent on frequency only in the “Rayleigh region“ 
case (drop diameter D is much smaller in comparison with the wave length λ , i.e. D<<  λ), 
more precisely the Rayleigh region is defined  

D   for n =1 (n is the refractive index.)   or   nD/ <<1  for n > 1 

If we suppose rain with rain drops having diameter up to 4 mm (typical for mild climate), 
the Rayleigh region holds for frequencies below 2,5 GHz. But if we consider the existence of 
maximum rain drop diameter (D=7 mm), the Rayleigh region is met at frequencies lower 
than 1,36 GHz. In practice, it is not so strict and the Rayleigh region is applicable for 
frequencies below 5 GHz. 
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6. Outputs (products) of DSD 

The rain drop size distribution (some times it is called “rain drop spectrum”) determines 
uniquely its outputs (outputs can be called also “products”) as rain rate, radar reflectivity 
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where Rg [mm/h] is the rain rate (corresponding to the rain rate derived from rain gauge 
measurement) 
v is the terminal falling velocity 
N(D) is the drop size distribution  
D is the equivolumetric drop radius. 
 
b, Radar reflectivity factor z [mm6m-3] 
 
The radar reflectivity factor z  (small letter “z”) is the 6th DSD moment, it can be computed 
from following expression: 
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If we study electromagnetic energy coming back from rain volume to the radar, we must be 
aware that the reflected energy is not dependent on frequency only in the “Rayleigh region“ 
case (drop diameter D is much smaller in comparison with the wave length λ , i.e. D<<  λ), 
more precisely the Rayleigh region is defined  

D   for n =1 (n is the refractive index.)   or   nD/ <<1  for n > 1 

If we suppose rain with rain drops having diameter up to 4 mm (typical for mild climate), 
the Rayleigh region holds for frequencies below 2,5 GHz. But if we consider the existence of 
maximum rain drop diameter (D=7 mm), the Rayleigh region is met at frequencies lower 
than 1,36 GHz. In practice, it is not so strict and the Rayleigh region is applicable for 
frequencies below 5 GHz. 
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6.2 DSD products dependent on frequency 
The specific rain attenuation A is strongly dependent on frequency, but rain attenuation is 
negligible for frequencies below 4 GHz.  
For the specific rain attenuation A in [dB/km] next equation is used: 
 

  dDDNDA )()(fIm10343,4 3   (14) 

                                                            
where f is the complex forward scattering function (for exact definition see in part 7) 
λ is the wave length of the used transmission 
Im represents the imaginary part of complex number 
 
The formula (14) is derived in part 9. As one can see, this expression strongly depends on 
the wave length λ (i.e. frequency) in contrast to the no frequency dependence of the radar 
reflectivity factor. 
 
Through the numerical simulations it is possible to search for relationships between 
mentioned quantities (Z, R and A) called “DSD products.”  The term frequency means the 
radio frequency of pertinent technical application in this paragraph. 

 
7. Scattering functions 
 

In literature different definitions of scattering functions are used, see, for instance 
[Uzunoglu et al., 1977]. One of the most used definition of the scattering function is the 
following one: 
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where: 

sE  ... electric field of a scattered wave      [V/m] 
iE   ... electric field of a wave impressing on the raindrop  [V/m] 

0k    ... free space propagation constant [m-1] 
  r     .... observation distance from the scattering drop [m] 

)K,K( 21f  ... scattering function [m], 1K  is the direction of the incident field, 2K  is the 
direction of the scattered field 
especially: 
if K1=K2 ,    the forward scattering function is considered, or 
if K1= - K2 , the backward scattering function is considered 
 
If the propagating radio wave direction is not parallel with horizontal drop axis, formula 
(16) can be used (see geometry in Figure 4). 
 

 

Fig. 4. Geometry of forward propagation direction in the general incidence angle . 
 

f f fh,v h,v( ) ( ) cos ( ) ( ) sin ( )     0
2 20 90  (16) 

 
where 
 is angle between direction of propagation and zenith axis [ °] 

f h,v ( )90 is the scattering function of horizontally respective vertically polarised wave for 

direction of propagation parallel with horizontal drop axis ( = 90o) 

f 0 0( )  is scattering function for the “zenith” propagation ( = 0o), it is not dependent on 
polarisation because of rain drop symmetry  

 
8. Some methods computing scattering functions  
 

8.1 Rayleigh scattering 
The Rayleigh scattering theory was developed and published by Strutt (1871 a,b) – later 
Lord Rayleigh. The theory gives an approximation for the scattering of electro-magnetic 
radiation from spheres. It is valid for sphere diameters significantly smaller than the 
vacuum wavelength of the radiation., i.e. D, see part 6.1. Lord Rayleigh derived a 
scattering function approximation for such case using elementary dipole theory. 
 
The computation of the Rayleigh scattering is very simple (a handy calculator is sufficient) 
but we must be aware of strict limitations. It was proved that the frequency above about 5 
GHz is owing to the usual rain drop diameter out of Rayleigh region.  
 
The Rayleigh scattering helps us to study the frequency and temperature properties of 
attenuation on lower frequencies. It does not enable to compute depolarisation and angular 
dependencies.  

 
8.2 Mie scattering 
The Mie scattering theory was developed and published by Mie (1908). The scattering 
function f  (subscript “f” for forward, “b” for backward scattering) for spherical dielectric 
particles is given by the next formula:  
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where λ denotes the vacuum wavelength of the electro-magnetic radiation, j is the 
imaginary unit and D the diameter of the spherical drops, * is symbol for conjugate 
imaginary numbers. The coefficients an and bn according to Mie depend on the complex 
relative refractivity εr = ε / ε0 of the material (rain water in our case) and on the diameter D 
of the scattering sphere.  
an ,  bn  are the Mie’s coefficient , its evaluation need not to be very complicated. 
The Mie scattering calculation is also possible at this web page:  
http://omlc.ogi.edu/software/mie/ 
For the Mie scattering computation a simple programmable computer is needed under the 
condition that it can work with complex variables. The Mie algorithm can be quite simple if 
the Bessel and Legandre polynomials were replaced by simple complex goniometric 
functions. The infinite series (the above printed formula) can be limited to the n being about 
10 (or even less) of a perfect accuracy, see (Fiser, O., 1993).  
 
Mie scattering helps us to study the frequency and temperature properties of rain 
attenuation if we accept that rain drop shape is spherical (for larger rain drops it is not true). 
Mie scattering does not enable to compute depolarisation and angular dependencies. On the 
other hand, there is no frequency limitation like in the Rayleigh scattering computation case.  

 
8.3 Other methods computing scattering functions 
For full utilisation (angular dependence, polarisation properties), numerical methods 
computing the scattering functions, are required. 
 
The point matching method is much more complicated and general and it enables to study 
not only the properties of scattering functions but also the incident angle dependence, the 
bi-static scattering and depolarization phenomena as well. See, for instance Oguchi, T., 1973.  
Some studies to derive the scattering function using numerical methods are used. For 
instance the MultipleMultiPole (MMP) method was used by Hajny, Mazanek and Fiser at 
the Czech Technical University Prague , cf. Hajny, M. et al, 1998. 

 
9. Derivation of formula for specific rain attenuation in rain volume 
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is summed at the point P(zo) - contributions of the original free space field E0 and scattered 
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model (a very good approximation of spherical wave being very far from the transmitter). 
Here are the formulas: 
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(17) 

 
where λ denotes the vacuum wavelength of the electro-magnetic radiation, j is the 
imaginary unit and D the diameter of the spherical drops, * is symbol for conjugate 
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we obtain: 
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and where F is the radius of the first Fresnel zone. This integral expresses the contributions 
of all rain drops in the infinite plane perpendicular to the direction of radiowave 
propagation. In fact, the contribution is considered from ashlar of the infinitesimal length in 
the direction of propagation (z axis in our picture): 
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where  
τ is the ratio of the attenuated field strength to the non attenuated one (transmission) 
f is the complex scattering function 
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Transmission τ was computed as a product of a number of (L/Δz) ashlars of infinitesimal 
lengths arranging in the series of the certain length L. The formula for specific rain 
attenuation α in the [dB/km] unit is then given as 10 log10(τ): 
 

  
(31) 

 
The next parametrical approximation for the drop size distribution – DSD (symbol N) after 
Marshall-Palmer is used very frequently for so called “average rain:” 
 

  
(32) 

 
where R is rain rate (or rain intensity) in [mm/h] units and D is equivolumetric rain drop 
diameter, see Marshall and Palmer, 1948. The same formula (31) was derived through 
similar way by Van de Hulst (1957). 
The mostly used and very simple approximation for specific rain attenuation is this one: 
 

  

(33) 

 
where a [k alternatively] and b [α alternatively] are constants depending on frequency, 
polarisation and temperature. An example is shown in next table (ITU-R report): 
 
 
 
 
 
 
 
 

 
10. Variability of DSD 
 

The majority of existing models estimating the radar reflectivity or microwave attenuation 
from rain intensity are rough ones (equations 33 or 34) because they are neglecting the DSD 
variability. By other words: two various rain events (shower and continuous rain, for 
instance) of the same rain intensity, say we 5 mm/h, can cause namely different numerical 
value of rain attenuation through the DSD variability (3 dB/km in shower and 2 dB/km in 
continuous rain in our example). 
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lengths arranging in the series of the certain length L. The formula for specific rain 
attenuation α in the [dB/km] unit is then given as 10 log10(τ): 
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The radar reflectivity factor as well as the specific rain attenuation (of the radar signal, or of 
the microwave and mm wave link) depend on the rain rate only roughly. They both depend 
on the drop size distribution (DSD) primarily; this fact is frequently neglected (see equations 
12, 13 and 14).  
 
The DSD variability is obvious from Figure 6. This figure shows the probability density of 
the radar reflectivity factors computed through the equations 12 and 13 from measured 
DSDs corresponding to rain rates between 4.5 and 5.5 mm/h. After the usually used 
Marshal Palmer relation  
 

Z=10log(300 R1.5)   [dBZ]   
 (34) 

 
the radar reflectivity factor would be 35,3 dBZ, but one can see, that Z varies from 27 to 42 
dBZ (radar would announce rain rate between 1 and 6 mm/h in this case!) 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Radar reflectivity factor histogram corresponding to the rain rate between 4.5 and 5.5 
mm/h. 
 
A big dispersion of rain rate values R corresponding to the observed values of the radar 
reflectivity factor Z is also obvious from scatterplots (Figure 7). Again, it is due to the DSD 
variability.  
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Fig. 7. Scatterplot of the R-Z relation (DSD data and equations 11 and 13 were used while 
integraion time being 1 minute) 
 
Similar scatterplots “attenuation versus rain rate” were done considering frequencies in the 
10 - 100 GHz region. A big dispersion is observed, too, but the dispersion depends on the 
frequency of radio communication link. It was found that the rain attenuation at frequencies 
close to 40 GHz depends on the rain rate quite uniquely. 
 
In Figure 8 there are shown imaginary parts of forward scattering functions being 
responsible for the specific rain attenuation (cf. equation 3). It is obvious, that the slope is 
varying with the frequency.  
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Through the mathematical regression we have found the exponent “n” in the approximate 
relationship  
 

Im f ~  Dn    (34) 
                                                                                                                                 
By other words it means that the specific rain attenuation A is approximately proportional 
to the n-th DSD moment Mn  (see equation 4) while “n” varies with the frequency f 
(unfortunately, there is used the same symbol “f” for both, frequency as well as for 
scattering function in the technical literature). The found exponent “n” for frequencies 
between 10 and 100 GHz is shown in Figure 9. Its value is decreasing with the frequency of 
the radio transmission. 
 

1,5

2

2,5

3

3,5

4

4,5

5

10 20 30 40 50 60 70 80 90 100
f [GHz]

 n
  (

 Im
 f 

...
  D

^n
)

 
Fig. 9. Exponent “n” in the Im f ~  Dn   dependence, where D is rain drop diameter 
 
After some speculations it could be concluded that the DSD variability courses the measure 
of the correspondence (uncertainty) between one DSD product (Z,R and A) to another one, 
for instance the Z –R relation. 
 
It is known that the rain rate is given by the 3.67th DSD moment. As the exponent “n” in 
equation 34 approximates the 3.67 value in the case of frequencies within the 18 – 42 GHz 
interval, the A – R relationship is quite unique for this frequency range. On the other hand, 
the 10 GHz specific rain attenuation approximates the 4.5th DSD moment, which is not very 
far from the 6th moment, i.e. from the radar reflectivity factor Z (equation 13). That’s why the 
DSD variation does not very influence the A – Z relation in the 10 GHz case and this 
relationship is not so ambiguous. 
 
The particular contribution of rain drops of certain diameters to the rain attenuation (after 
equation 14) is varying considering varying frequency. More concretely: the role of small 
rain drops is increasing with the frequency. The prevailing contribution is caused by drops 
of the equivolumetric diameter close to 0.7–1.5 mm (see Figure 10) 

 

Fig. 10. Contribution of rain drops of diameter D to the specific rain attenuation; 
transmission frequency is a parameter 
 
All results in this contribution were derived from the actual drop size distributions 
measurement performed by the videodistrometer of ESA, which was lent to the Institute of 
Atmospheric Physics Prague through its manufacturer Joaneum Research Graz (Austria) in 
the period July 1998–July 1999 [Fiser et al., 2002]. The time of integration was chosen to be 1 
minute. 

 
11. Conclusion 
 

The applicability, importance and properties of the rain drop size distribution was 
demonstrated in this chapter. It was also shown that DSD determines rain rate, radar 
reflectivity and rain attenuation of microwave signal. A part of this chapter describes 
scattering functions describing radiowave reflection from rain drop. 
One of the important results of this study is the following one:  the radar reflectivity factor 
derived from the rain rate through the Z-R relation could be incorrect through the DSD 
variability. It is due to the fact, that the radar reflectivity is given by the 6th DSD moment 
while the rain rate depends on 3.67th DSD moment. A bigger rain drop contributes thus 
much more to the radar reflectivity than to the rain rate. 
The rain attenuation at 10 GHz depends on the radar reflectivity factor quite uniquely and 
similarly the dependence of 42 GHz rain attenuation on the rain rate is unambiguous. For 
other relationships between DSD products we recommend the utilisation of the dependence 
of one DSD product on two other DSD products (or DSD moments), for instance to estimate 
the specific rain attenuation from both rain rate and radar reflectivity factor. 
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1. Introduction 
 

Since a spectacular series of missions in the context of the Earth Observing System (EOS) by 
NASA beginning from the late 1990’s, the significance of the satellite remote sensing has 
been recognized all over the world (Kafatos & Qu, 2007; Kaufman et al., 1998). In particular, 
the applications on hazard mitigation and resource exploration have been widely regarded 
as one of basic approaches over the past years (e.g., Barrett et al., 1991; Chuvieco, 2008; Fu et 
al., 2004; Ninomiya et al., 2005; 2006; Realmuto, 2000; Sato et al., 2006; Teeuw, 2007; Urai et 
al., 2007). In general, remote sensing, from different points of view, includes many branches, 
or exactly speaking many application fields, such as environmental and ecological remote 
sensing, geological remote sensing, and military remote sensing. In this chapter, we focus 
our research on geological applications. However, the proposed algorithms and approaches 
might be applicable to every fields associated with image registration processing. Although 
remotely sensed optical images from satellite sensors can meet most needs in the practical 
applications, considerable weather-dependence limits its functional deployment under some 
circumstances. For instance, during the period of the devastating Ms 8.0 Wenchuan 
earthquake in the summer of 2008 (Fu et al., 2009), the most optical images from ASTER 
(Advanced Spaceborne Thermal Emission and Reflection Radiometer) (Yamaguchi et al., 
1998) sensors on the NASA’s Terra satellite can hardly be used to do some refined 
applications just because of heavy clouds contaminated. However, SAR (Synthetic Aperture 
RADAR) images are not influenced by climate and time. In practical applications, the optical 
satellite images, in particular with high resolutions from sensors such as SPOT (Chevrel et 
al., 1981) and IKONOS (Tanaka & Sugimura, 2001), provides excellent legibility, but they 
may be affected by the clouds and weather conditions. On the other hand, SAR images are 
not influenced by climate and they can be obtained day-and-night, but they suffer from a 
serious intrinsic speckle noise (Franceschetti & Lanari, 1999; Lampropoulos & Boulter, 1997). 
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Therefore, the joint application of these two different kinds of data information will be great 
interest for many geological problems associated with the remote sensing (e.g., Chen et al., 
2003). The first major processing for such a combination is to finish an accurate registration. 
That is why registration of images coming from different sources is of increasing importance 
(Le Moigne et al., 2002; Li, 2006; Li et al., 2006c; Li et al., 2008; Schowengerdt, 2006). 
Up to now, many registration methods have been proposed to register SAR and optical 
satellite images manually or (semi-)automatically (e.g., Ali & Clausi, 2002; Cheng et al., 2004; 
Curlander & Kober, 1990; Dare & Dowman, 1996; 2001; Galland et al., 2005; Hong & 
Schowengerdt, 2003; 2005; Inglada & Vadon, 2005; Lampropoulos et al., 2003; Lampropoulos 
et al., 2002; Li et al., 1993; 1995; Li et al., 2007c; Mao et al., 2007; Raucoules & Carnec, 1999; 
Shu & Tan, 2007; Shu et al., 2005; Thepaut et al., 1998; Vornberger & Bindschadler, 1992; 
Wang & Chen, 2003; Wegner & Soergel, 2008a; 2008b; Wu & Maitre, 1990; Yang et al., 2005; 
Zamora et al., 1998; Zhang et al., 2007; Zhang et al., 2004; Zhao & Chen, 2003). In general, 
these methods can be classified into two major categories: feature based method and 
intensity based method (Li et al., 2006c). The feature based registration method has been 
widely implemented into the commercial software, such as ENVI and ERDAS Imagine, 
initially for the mono-modality image registration, but it encounters significant difficulties 
when to-be-matched features are not easily extracted from different source images. For 
example, it is very difficult to extract the features (e.g., roofs and crossroads) from ASTER 
image for very rural area (e.g., Horonobe, Hokaido, Japan) rather than for metropolitan area 
(e.g., Tokyo). Furthermore, for the radar image (e.g., RADARSAT-2), this difficulty becomes 
even heavier than the optical images. Therefore, the corner reflector is often needed to install 
on the ground so as to enhance the accurate registration process (Li et al., 2009). On the 
other hand, the intensity based registration method may be easily implemented as a semi- or 
fully automatic manner, but it is seriously dependent on the choice of similarity measures or 
metrics, and usually needs large amount of computation (Inglada & Giros, 2004). 
Due to the distinct and intrinsic differences of imaging properties between radar and optical 
images, it is not easy to extract corresponding features from them. Moreover, serious speckle 
noise existing in radar images further aggravates this problem. Thus, it is a very challenging 
problem to precisely and automatically register them with a satisfactory accuracy. Wu & 
Maitre (1990) proposed multiresolution approach to register the SPOT-XS and SEASAT SAR 
images by matching the contour lines in different scale space representations, but the 
problems of no distinct features in SAR images still remain. Vornberger & Bindschadler 
(1992) conducted multispectral research of ice sheets over an area of Greenland by 
registering Landsat TM and SAR imagery. They found that significant corrections to the 
SAR data were required to account for range-darkening, non-square pixel dimensions, 
speckle, and relief distortion. The exposed rock was available to be used as corresponding 
control points in one area, while it was absent in another area and lakes and streams were 
used. Li et al. (1993) used an elastic active contour to register the optical and SAR images. 
Using the contours from the optical image as the initial condition, accurate contour locations 
in the SAR image are obtained by applying an active contour model. They found that this 
snake method outperformed manual registration in terms of root mean square error at the 
control points. Dare & Dowman (1996) tried to develop an automatic system for registering 
SAR data to optical data by feature matching. In order to enhance the extraction of features 
from SAR images, they tested various speckle reduction filters and segmentation procedures 
to aid this procedure. Thepaut et al. (1998) proposed an automatic registration method of 

 

multidate and multisensory, i.e. ERS SAR and SPOT, images based on a multichannel 
consensual segmentation scheme. Zamora et al. (1998) also used the segmentation technique 
to register multi-sensor images by adaptive clustering prior to performing preprocessing 
and cepstrum operation to determine the translational displacement. Raucoules & Carnec 
(1999) proposed the use of local correlation to deal with the co-registration of ERS SAR and 
SPOT orthoimage by taking the interferometric phases as additional information. Dare & 
Dowman (2001) introduced an improved model, which is based on their previous work 
(1996), for automatic feature-based image registration, and presents a robust system for 
automatically registering SAR and SPOT imagery by incorporating multiple feature 
extraction and feature matching algorithms. Their experiments on both small and large 
images showed that in each case a large number of accurate tie points could be identified 
fully automatically across the images. Ali & Clausi (2002) conducted an investigation on the 
development of a fully automatic registration system for SAR and optical remote sensing 
images. The registration method is based on the extraction and matching of common 
features that are visible in both images. The algorithm involves the five steps, i.e. noise 
removal, edge extraction, edge linking pattern extraction and pattern matching. The 
experiments showed that accurate ground control points (GCPs) could be identified 
automatically. Hong & Schowengerdt (2003; 2005) proposed an automated precise 
registration approach of ERS2 SAR and Landsat5 TM images using visually-located control 
points based pre-registration and large-scale edge gradient contours based precise-
registrtion. Lampropoulos et al. (2003) presents a proof of concept demonstration to perform 
image registration from dissimilar sources based on multiple transformations of two quite 
dissimilar images into new domains, where local or global similarities are extracted. Wang 
& Chen (2003) proposed an automatic SAR and optical image registration approach based 
on fuzzy linear feature extraction and neural network controlled resampling and image 
transformation. Cheng et al. (2004) proposed a SVM (support vector machine) supported 
edge feature extraction technique to register SAR and optical images. They used a modified 
Hausdorff distance as a similarity measure and genetic algorithm as the search strategy. 
Galland et al. (2005) first presented a SAR-to-optical image registration method by using a 
perfect knowledge of the sensor parameters. They suggested that the feature extraction can 
be used to perform the refinement of parameters, and the registration can be approximated 
by simple polynomial transformations. Inglada & Vadon (2005) proposed a fully automatic 
approach for the fine registration of SPOT5 and ENVISAT/ASAR IMS data. Shu et al. (2005) 
implemented a mutual information based registration method to match SAR and SPOT 
images. They used Gabor filters to extract orientation at four directions to enhance the 
registration process. The experimental results showed that the approach is much better than 
coarse manual registration. Yang et al. (2005) presents a SAR-to-optical image registration 
method by using extracted multiple features to improve the control points. Mao et al. (2007) 
used the approach being similar with Cheng et al. (2004) to register SAR and optical images 
based on linear features using Hausdorff distance and genetic algorithm. Shu and Tan (2007) 
proposed a mutual-information based method to register SAR and SPOT images. The 
novelty is to calculate local contrast of 5x5 windows centred at each point in both images, 
and to obtain two contrast images to be used to accurately register by assigning the contrast 
values to each pixel. Zhang et al. (2007) proposed a region-feature based automatic 
registration workflow for ENVISAT/ASAR and Landsat TM images. Wegner and Soergel 
(2008) proposed a semi-automatic registration approach based on line features for the 
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transformation. Cheng et al. (2004) proposed a SVM (support vector machine) supported 
edge feature extraction technique to register SAR and optical images. They used a modified 
Hausdorff distance as a similarity measure and genetic algorithm as the search strategy. 
Galland et al. (2005) first presented a SAR-to-optical image registration method by using a 
perfect knowledge of the sensor parameters. They suggested that the feature extraction can 
be used to perform the refinement of parameters, and the registration can be approximated 
by simple polynomial transformations. Inglada & Vadon (2005) proposed a fully automatic 
approach for the fine registration of SPOT5 and ENVISAT/ASAR IMS data. Shu et al. (2005) 
implemented a mutual information based registration method to match SAR and SPOT 
images. They used Gabor filters to extract orientation at four directions to enhance the 
registration process. The experimental results showed that the approach is much better than 
coarse manual registration. Yang et al. (2005) presents a SAR-to-optical image registration 
method by using extracted multiple features to improve the control points. Mao et al. (2007) 
used the approach being similar with Cheng et al. (2004) to register SAR and optical images 
based on linear features using Hausdorff distance and genetic algorithm. Shu and Tan (2007) 
proposed a mutual-information based method to register SAR and SPOT images. The 
novelty is to calculate local contrast of 5x5 windows centred at each point in both images, 
and to obtain two contrast images to be used to accurately register by assigning the contrast 
values to each pixel. Zhang et al. (2007) proposed a region-feature based automatic 
registration workflow for ENVISAT/ASAR and Landsat TM images. Wegner and Soergel 
(2008) proposed a semi-automatic registration approach based on line features for the 
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improvement of the bridge scene of interest. They used a road extraction approach based on 
measuring spectral angels in the optical image, and thresholding and morphological 
operators for bridge extraction in the SAR image. The distance maps are calculated to 
transform discrete line segments to continuous two-dimensional information, and such 
distance maps are finally registered using a global transformation and a cross-correlation 
metric. 
Summarizing the past research, we can find most studies used the feature based registration 
method (e.g., Wang & Chen, 2003; Wu & Maitre, 1990). The key problem of such kind of 
methods is how to enhance the extraction process of the corresponding features. The 
registration workflow is usually complicated, and it depends on many assistant means to 
lubricate the whole process. However, few researchers have tried to automate the SAR-to-
optical image registration by using the intensity based approach (e.g., Mao et al., 2007; Shu 
et al., 2005). This kind of registration methods does not need many assistant means, and 
fully utilize the intensity information contained in images. The whole registration workflow 
is driven by an optimization process for similarity measure based object function. This 
search procedure for the transformation parameters usually needs large amount of 
computation. In this chapter, we put forth a novel intensity based method to register 
PALSAR (Kimura & Ito, 2000) and ASTER images based on our previous work (Li et al., 
2007c). The intensity based mutual information is used as the similarity measure to 
automate the registration process. The multiscale steerable Simoncelli filter (Simoncelli & 
Adelson, 1990; Simoncelli & Farid, 1996; Simoncelli & Freeman, 1995; Simoncelli et al., 1992) 
is implemented to lubricate the registration process. A hybrid search technique is used to 
enhance the optimization process of transformation parameters. The experimental results 
showed that the proposed registration scheme is competent and feasible for PALSAR and 
ASTER images. 
The whole chapter consists of five sections. The first section shortly reviews the research 
background of radar and optical image registration, and the latest registration techniques, 
and our novel registration methodology. The second section addresses a generalized 
mathematical model with mutual-information based similarity measure and multiscale 
steerable Simoncelli filter technique. The third section gives the description of PALSAR and 
ASTER satellite imagery. The fourth section discusses the experiment design, process, and 
results. The fifth  section lays out the concluding remarks. 

 
2. Algorithm 
 

2.1 Image registration 
The task of image registration is fundamental in image processing. Therefore, it is common 
problems in nearly all the scientific fields associated with image applications (Brown, 1992; 
Goshtasby, 2005; Maintz & Viergever, 1998; Pluim et al., 2003; Zitova & Flusser, 2003). In the 
literature, image registration is also termed image alignment or image matching (e.g., Chen 
et al., 2007; Chen et al., 2003; Szeliaki, 2005). From a mathematical point of view, image 
registration can be defined as a process to search a transformation which determines a 
mapping that is the best match of two or more images of the same object field, acquired by 
different sensors, or taken by the same sensor at different times (Li, 2006). 

 

For an image pair ( FI , RI ) to be registered, the definition of registering the float image 

( FI ) to the reference image ( RI ) can be expressed mathematically as (1): 
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where  T  is a transformation function, which maps two spatial coordinates  x  and y , to 

the new spatial coordinates  x  and  y  by the set of parameters    as (2): 
 

),(),( yxTyx   (2) 
 
  is a one dimensional intensity or radiometric interpolation function. 
The intensity based image registration can be analyzed as a non-convex optimization 
problem (Li, 2006; Modersitzki, 2004). This can be expressed mathematically as (3): 
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where S  is the similarity measure, and *  is the optima estimated by the search algorithm. 
The generalized registration process using eqns. (1-3) for the intensity based method can 
always be depicted in Figure 1 (Li et al., 2006c; Yoo, 2004). It can be found that the intensity 
based image registration is an iterated process to search for the optimized transformation 
parameters. 
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Fig. 1. A generalized framework for intensity based image registration  
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improvement of the bridge scene of interest. They used a road extraction approach based on 
measuring spectral angels in the optical image, and thresholding and morphological 
operators for bridge extraction in the SAR image. The distance maps are calculated to 
transform discrete line segments to continuous two-dimensional information, and such 
distance maps are finally registered using a global transformation and a cross-correlation 
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registration workflow is usually complicated, and it depends on many assistant means to 
lubricate the whole process. However, few researchers have tried to automate the SAR-to-
optical image registration by using the intensity based approach (e.g., Mao et al., 2007; Shu 
et al., 2005). This kind of registration methods does not need many assistant means, and 
fully utilize the intensity information contained in images. The whole registration workflow 
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is implemented to lubricate the registration process. A hybrid search technique is used to 
enhance the optimization process of transformation parameters. The experimental results 
showed that the proposed registration scheme is competent and feasible for PALSAR and 
ASTER images. 
The whole chapter consists of five sections. The first section shortly reviews the research 
background of radar and optical image registration, and the latest registration techniques, 
and our novel registration methodology. The second section addresses a generalized 
mathematical model with mutual-information based similarity measure and multiscale 
steerable Simoncelli filter technique. The third section gives the description of PALSAR and 
ASTER satellite imagery. The fourth section discusses the experiment design, process, and 
results. The fifth  section lays out the concluding remarks. 
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2.2 Mutual information 
As pointed in Figure 1, similarity measure is an element of the image registration. It is used 
to construct an object function associated with image intensities for the optimization step. It 
should be noted that the term of similarity measure is different from the term of similarity 
metric (Cover & Thomas, 2006). In this chapter, we used the former. Starting in 1995, with 
the successful implementation of mutual information as a novel similarity measure to the 
multimodality medical image registration (Maes et al., 1997; Viola & Wells, 1995), the 
achievement of the intensity based automated image registration becomes possible. Based 
on the information theory (Cover & Thomas, 2006), the standard definition of mutual 
information, ( , )F RMI I I , of two images  FI  and  RI  can be written  as (4): 
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where ( )FH I  and ( )RH I  are the marginal entropies of FI  and RI , and ( , )F RH I I  is 
their joint entropy. Considering the definition in (4), the mutual information is maximal 
when the two images are totally geometrically aligned by a certain transformation matrix. In 
practice, the normalized version (NMI) of the standard mutual information is popular. It 
may be defined as (5): 
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In order to compute of mutual information, the marginal entropies and joint entropy of the 
image pair should be calculated. These entropies can be calculated from the probability 
density functions. Furthermore, these probability density functions can be estimated from 
the histogram of images or other tricks such as Parzen windows (Glavinovic, 1996; Parzen, 
1962). The detailed computation is left out in this chapter and it can be found in (Maes et al., 
1997; Viola & Wells, 1995). 

 
2.3 Simoncelli filter 
The multiresolution decomposition techniques using wavelet-like filters are usually adopted 
to enhance the image registration (Le Moigne et al., 2002). Because the steerable Simoncelli 
filters are more robust to translation, rotation and noise than the standard Daubechies 
wavelet filters (Cole-Rhodes et al., 2003), it enables us to use it for registration of SAR and 
optical satellite images (Li et al., 2007c). 
According to the definition of steerable Simoncelli filters (Simoncelli & Freeman, 1995), the 
steerable pyramid is a multiscale representation that is translation-invariant, but that also 
includes representation of orientation. Furthermore, the representation of orientation is 
designed to be rotation-invariant. The basis and projection functions are oriented (i.e., 
steerable) filters, localized in space and frequency. It is overcomplete to avoid aliasing. It is 
also "tight frame", i.e. the projection functions and basis functions are identical, though it is 
not an orthogonal representation. 

 

The diagram for steerable Simoncelli pyramid may be depicted in Figure 2. The filters {Fhi0, 
Flo0} are used to initially split the image into a highpass residual band and a lowpass 
subband. This lowpass band Flo0 is then split into some lowerpass bands {Flo1, Flo2, ...}. 
{FB0, FB1, ...} represent the oriented subbands which ensure that the representation is 
rotation-invariant. In order to ensure some translation-invariance, the outputs of the high-
pass filter and of the band-pass filters are not subsampled. The resulting transform is 
overcomplete by a factor of 4k/3, where k is the number of oriented band-pass filters. The 
scale tuning of the filters is constrained by the recursive system diagram. The orientation 
tuning is constrained by requiring the property of steerability (Cole-Rhodes et al., 2003; Li et 
al., 2007c; Simoncelli & Freeman, 1995). 
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Fig. 2. A steerable Simoncelli pyramid with three-level decompositions of original image 
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2.4 Workflow 
As shown in Figure 1, the computational process of intensity based image registrations can 
be partitioned into four major modules, i.e., intensity interpolation, mapping 
transformation, similarity measure, and optimization strategy for the parameter space. Till 
now, our developed registration system has implemented 7 interpolation algorithms, 25 
similarity measures, 11 optimization algorithms, and it supported 7 transformations from 
rigid to polynomial mapping (Li et al., 2007a). The whole workflow of image registration in 
this chapter can be depicted in Figure 3. 
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Fig. 3. Workflow of SAR-to-optical image registration 

 
 

 

3. Data 
 

3.1 ASTER 
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor 
instrument was launched in December 18, 1999, onboard the first NASA’s EOS series of 
satellites, Terra. ASTER covers a wide spectral region with 14 bands from visible to thermal 
infrared with high spatial, spectral and radiometric resolution. Three visible and near 
infrared (VNIR) bands, six shortwave infrared (SWIR) bands, and five thermal infrared 
(TIR) bands have a spatial resolution of 15 m, 30 m, and 90 m, respectively. In addition, 
ASTER has a stereoscopic capability for the bands (bands 3N and 3B) in near infrared region 
(Iwasaki & Fujisada, 2005; Yamaguchi et al., 1998), and so far, it can generate Digital 
Elevation Model (DEM) data with high accuracy (Fujisada et al., 2005). 
ASTER-TIR is the first satellite-borne multispectral TIR remote sensing system with spectral, 
spatial and radiometric resolutions adequate for geological applications (e.g., Ninomiya et 
al., 2005). Compared with two bands of Landsat TM or ETM in SWIR region (between 1.6 to 
2.5 microns), ASTER sensor has 6 bands in this region and provides an opportunity to 
identify mineral component of surface rocks in the semi-arid to arid region (e.g., Rowan & 
Mars, 2003). Therefore, ASTER imaging system can provide some important capabilities to 
identify lithologic and mineralogic features on earth surface (e.g., Fu et al., 2007; Ninomiya 
et al., 2005). Especially, ASTER multispectral TIR sensor can provide an important tool for 
monitoring heat flow related to volcanic activities (e.g., Urai et al., 2007). Therefore, ASTER 
can provide a potential tool for mapping the wide multiple-aim geologic products from 
regional to global scales because high-resolution multispectral dada obtained by ASTER can 
cover almost throughout earth surface. 

 
3.2 PALSAR 
PALSAR is the abbreviation of Phased Array type L-band Synthetic Aperture Radar. It is an 
active microwave sensor using L-band frequency, operated at all-weather conditions 
regardless of day and night, launched with ALOS satellite on January 24, 2006 in Japan. It is 
improved based on SAR onboard the first earth observation satellite (JERS-1) with multi-
mode observation functions of multi-polarization, variable off-nadir angle, and switching 
spatial resolution and swath width observation (Igarashi, 2000; Kimura & Ito, 2000). It 
provides higher performance than the JERS-1's SAR with a totally new advantageous 
observation mode (i.e., ScanSAR). PALSAR has incorporated many highly advanced 
observation technologies, and is expected to contribute greatly in areas such as resource 
exploration, environmental monitoring on earth and monitoring of natural disasters (e.g., 
Rosenqvist et al., 2007; Takada et al., 2009). The signals are recorded in complex notation on 
PALSAR sensor from which their amplitude and phases could be computed. The 
specifications of PALSAR sensor can be summarized in Table 1. It should be noted that 
PALSAR sensor can not observe the areas beyond 87.8 Degrees north latitude and 75.9 
Degrees south latitude, when the off-nadir angle is 41.5 Degrees 
(http://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm). 

 
3.3 Image set 
In this chapter, all image pairs were extracted from each of the full scene ASTER and 
PALSAR data. The ASTER L1B Band 1 data and PALSAR fine mode data were used in the 
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experiments. The extracted sub-images for experiments have 128x128, 256x256, 512x512, 
1024x1024 pixels, respectively. The research area covers the part of the city of Tokyo, Japan. 
One sub-image pair has been shown in Figure 4. The very clear difference in terms of visual 
appearance of features can be observed. The same spatial features can not be easily found 
from both images. PALSAR image is inevitably contaminated by the speckle noise and 
strongly scattered signals from any corners on the earth surface. In principle, physical 
properties and viewing geometries between ASTER and PALSAR images are intrinsic 
different. However, the effect resulted from the viewing geometry will be alleviated in flat 
regions. 
 

Mode Fine ScanSAR Polarimetric* 

Center frequency (MHz) 1270 (L-band) 

Chirp bandwidth (MHz) 28 14 14, 28 14 

Polarization HH 
VV 

HH+HV 
VV+VH 

HH 
VV HH+HV+VH+VV 

Incident angle (Degree) 8-60 8-60 18-43 8-30 

Range resolution (m) 7-44 14-88 100 (Multi look) 24-89 

Observation swath (km) 40-70 40-70 250-350 20-65 

Bit length (bits) 5 5 5 3 or 5 

Data rate (Mbps) 240 240 120, 240 240 

NE sigma zero ** (dB) <-23 (Swath width 70km) 
<-25 (Swath width 60km) <-25 <-29 

S/A *** (dB) >16 (Swath width 70km) 
>21 (Swath width 60km) >21 >19 

Radiometric accuracy Scene: 1dB / Orbit: 1.5dB 

* Due to power consumption, the operation time will be limited. 
** Valid for off-nadir angle with 34.3 Degrees (Fine mode), 34.1 Degrees (ScanSAR mode), 
21.5 Degrees (Polarimetric mode). 
*** S/A level may deteriorate due to engineering changes in PALSAR 
 
Table 1. Characteristics of PALSAR 
 

 

      
Fig. 4. ASTER (left) and PALSAR (right) images of Tokyo bay, Japan with 512x512 pixels 

 
4. Experiments 
 

The registration scheme of our proposed method (Figure 3) includes three major stages 
similar with our previous work (Li et al., 2007c). Both SAR and optical image are firstly 
decomposed into a steerable pyramid. Subbands FBi (Figure 2) are utilized to extract 
features in the provided image set. The partial volume intensity interpolation (Li et al., 
2006a) is adopted for the estimation of probability density functions. The particle swarm 
optimization (Li & Sato, 2007) is used to globally search the parameter space of the 
registration function at the coarsest level. The local stochastic gradient search, which is 
conducted by a simultaneous perturbation stochastic approximation technique (Li et al., 
2006b; 2007b), is implemented to optimize the registration function at other levels. The result 
of the global optimization is used as the initial guess of the local stochastic gradient search. 
Figure 5 shows the visualization check of one registration result. By visual comparison, we 
can note that the registration of the proposed scheme is much better than the manual 
method conducted in some commercial software. To do a numerical comparison, we 
manually locate 5-10 pairs of check points with a good distribution and evaluate the 
registration accuracies according to RMSE (root mean squared error). The RMSE values are 
5-7 pixels for manual registration and 1-3 pixels for our registration. This indicates that the 
registration accuracy is greatly improved by our proposed scheme. In particular, the results 
are better than our previous work on the registration of JERS-1 SAR and ASTER images (Li 
et al., 2007c). 
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experiments. The extracted sub-images for experiments have 128x128, 256x256, 512x512, 
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different. However, the effect resulted from the viewing geometry will be alleviated in flat 
regions. 
 

Mode Fine ScanSAR Polarimetric* 

Center frequency (MHz) 1270 (L-band) 

Chirp bandwidth (MHz) 28 14 14, 28 14 

Polarization HH 
VV 

HH+HV 
VV+VH 

HH 
VV HH+HV+VH+VV 

Incident angle (Degree) 8-60 8-60 18-43 8-30 

Range resolution (m) 7-44 14-88 100 (Multi look) 24-89 

Observation swath (km) 40-70 40-70 250-350 20-65 

Bit length (bits) 5 5 5 3 or 5 

Data rate (Mbps) 240 240 120, 240 240 

NE sigma zero ** (dB) <-23 (Swath width 70km) 
<-25 (Swath width 60km) <-25 <-29 

S/A *** (dB) >16 (Swath width 70km) 
>21 (Swath width 60km) >21 >19 

Radiometric accuracy Scene: 1dB / Orbit: 1.5dB 

* Due to power consumption, the operation time will be limited. 
** Valid for off-nadir angle with 34.3 Degrees (Fine mode), 34.1 Degrees (ScanSAR mode), 
21.5 Degrees (Polarimetric mode). 
*** S/A level may deteriorate due to engineering changes in PALSAR 
 
Table 1. Characteristics of PALSAR 
 

 

      
Fig. 4. ASTER (left) and PALSAR (right) images of Tokyo bay, Japan with 512x512 pixels 

 
4. Experiments 
 

The registration scheme of our proposed method (Figure 3) includes three major stages 
similar with our previous work (Li et al., 2007c). Both SAR and optical image are firstly 
decomposed into a steerable pyramid. Subbands FBi (Figure 2) are utilized to extract 
features in the provided image set. The partial volume intensity interpolation (Li et al., 
2006a) is adopted for the estimation of probability density functions. The particle swarm 
optimization (Li & Sato, 2007) is used to globally search the parameter space of the 
registration function at the coarsest level. The local stochastic gradient search, which is 
conducted by a simultaneous perturbation stochastic approximation technique (Li et al., 
2006b; 2007b), is implemented to optimize the registration function at other levels. The result 
of the global optimization is used as the initial guess of the local stochastic gradient search. 
Figure 5 shows the visualization check of one registration result. By visual comparison, we 
can note that the registration of the proposed scheme is much better than the manual 
method conducted in some commercial software. To do a numerical comparison, we 
manually locate 5-10 pairs of check points with a good distribution and evaluate the 
registration accuracies according to RMSE (root mean squared error). The RMSE values are 
5-7 pixels for manual registration and 1-3 pixels for our registration. This indicates that the 
registration accuracy is greatly improved by our proposed scheme. In particular, the results 
are better than our previous work on the registration of JERS-1 SAR and ASTER images (Li 
et al., 2007c). 
 



Geoscience	and	Remote	Sensing,	New	Achievements468

 

      
Fig. 5. Visualizing check of PALSAR and ASTER image (Left: before registration; Right: after 
affine registration) 

 
5. Conclusions 
 

The experimental results showed that proposed scheme can be capable to register radar and 
optical satellite images such as PALSAR and ASTER images. Compared to the traditional 
manual method, the scheme using multiscale filter technique and information measure can 
greatly enhance the registration process. The hybrid search/optimization approach is 
relatively less sensitive to initial guess, and make the registration process robust. 
Meanwhile, our method maintains comparable accuracy comparing with the traditional 
manual method. Except for the computing time, the scheme might encounter difficulties 
when the two images with very time differences. 
Future work should include two parts. The first one is to conduct many more experiments 
on different regions. The other one is to incorporate some feature based technique to speed 
up the search process. 
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Fig. 5. Visualizing check of PALSAR and ASTER image (Left: before registration; Right: after 
affine registration) 

 
5. Conclusions 
 

The experimental results showed that proposed scheme can be capable to register radar and 
optical satellite images such as PALSAR and ASTER images. Compared to the traditional 
manual method, the scheme using multiscale filter technique and information measure can 
greatly enhance the registration process. The hybrid search/optimization approach is 
relatively less sensitive to initial guess, and make the registration process robust. 
Meanwhile, our method maintains comparable accuracy comparing with the traditional 
manual method. Except for the computing time, the scheme might encounter difficulties 
when the two images with very time differences. 
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1. Introduction 
 

Many provinces in China including Shanghai, Tianjin, Jiansu, Hubei, Hangzhou, Suzhou, 
Changzhou, Cangzhou, and Jianxing (Deng and Ju, 1994; Ding et al., 2005; Hu et al., 2004; 
Xue et al., 2005; Yang et al., 2005) are subsiding owing to rapid development and 
urbanization. The cause identified with these subsidence phenomena has been mainly due 
to excessive withdrawal of groundwater (Chai et al., 2004; Shi and Bao, 1984; Xue et al., 2005; 
Yang et al., 2005). The subsidence phenomenon in China occurs mostly in medium-seized 
and large cities with common characteristics of being slow, accumulative and irreversible 
(Xue et al., 2005). At least, 45 cities and municipalities (China Daily, 2003b; Deng and Ju, 
1994; Hu et al., 2004) are experiencing this geological problem owing to massive exploitation 
of underground water to meet the needs of the rapid evolving industries and urbanisation. 
In the case of Shanghai, the massive construction of high-rise buildings in the downtown 
area has also contributed to the subsidence problem (China Daily, 2003b; Zhang et al., 2002). 
About 11 cities, including Shanghai, have recorded accumulative subsidence values 
exceeding 1 m at their subsidence centres (Hu et al., 2004; Yang et al., 2005; Zhang et al., 
2002). The most affected cities, since the early 1900s, are Shanghai, Tianjin and Taiyuan, with 
each of them having accumulative subsidence value greater than 2m (China Daily, 2003b). 
The Chinese government has spent billions of Yuan (RMB$), as direct and indirect economic 
costs, in addressing land subsidence problems in China. Hu et al. (2004) mentioned that the 
estimated total economic loss due to land subsidence in Tianjin is RMB$189.6 billion. In the 
three areas of Suzhou, Wuxi and Changzhou, the total economic loss is estimated at 
RMB$46.87 billion (Yang et al., 2005). For Shanghai,  the China Daily (2003b) and Yang et al. 
(2005) quoted the total economic losses of about RMB$290 billion, in the last 40 years, due to 
land subsidence and its related problems. 
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The city of Shanghai has been experiencing land subsidence mainly due to anthropogenic 
induced factors: (1) intensive exploitation of ground water (Chai et al., 2004; China Daily, 
2003a; 2003b; Hu et al., 2004; Shi and Bao, 1984; Xue et al. 2005; Zhang et al., 2002), and  (2) 
massive construction of high-rise buildings in the downtown area (China Daily, 2003a; 
2003b; Gong et al., 2005; Xue et al. 2005; Zhang and Wei, 2005; Zhang et al., 2002). It is 
estimated that the high-rise buildings contribute about 30 to 40 per cent of the subsidence 
problem. According to Gong et al. (2005), there exist about 7000 high-rise buildings with 
different altitudes (storeys) in Shanghai; additional 2000 high-rise buildings are yet to be 
built. They provided the height distribution of high-rise buildings in Shanghai as follows: 
53% have 9-17 storeys, 31% have 18-24 storeys, 11% have 25-30 storeys, and 5% have over 30 
storeys. Results of dynamic monitoring indicates that, the city centre subsided by 36 mm 
between 1986 and 1990, 53.8 mm between 1991 and 1995, and 98.8 mm between 1996 and 
2000 (Zhang and Wei, 2005). To support the assertion that the concentration of high-rise 
buildings have contributed to the subsidence problem in Shanghai, the China Daily, 11 
December 2003 Edition, added that the Pudong New Area, which houses 1.4 million people 
in a 520 square-kilometre area, suffers most from severe subsidence. 

 
 

 
Fig. 1. Historical development of land subsidence in Shanghai from 1921-2000 (source: 
Zhang et al., 2002) 
 
The problem of land subsidence in Shanghai was first reported in 1921 (Shi and Bao, 1984), 
and the problem continued till 1963 when its impact became more severe. A cumulative 
subsidence value of 2.63 m was observed with greatest subsidence occurring between 1956 
and 1959, at an annual rate of 98 mm. The historical development of land subsidence in 
Shanghai at 6 epochs during the period 1921-2000 is provided in Figure 1. In 1963, some 

 

measures such as restriction and rational usage of ground water, artificial recharge of 
ground water, and adjustment of exploited aquifers (Deng and Ju, 1994; Shi and Bao, 1984), 
were put in place to check the subsidence problem. The enforcement of those measures 
resulted in considerable rebound of water level between 1963 and 1965. The Shanghai 
Municipal Government in 1995 came out with another policy that limited the usage of 
underground water of the whole city to less than 10 million cubic meters per year, and also 
demanded that all deep wells in the city are to operate with official permits (China Daily, 
2003a; Xue et al., 2005). In spite of these measures, Shanghai is still experiencing some 
degree of subsidence (China Daily, 2003a; Xue et al., 2005). The average land subsidence 
rates, gathered from Shanghai Geological Survey Institute are 12.12 mm in 2000, 10.94 mm 
in 2001, and 10.22 mm in 2002 (China Daily, 2003a), and the targeted land subsidence rates 
as perceived by the Shanghai Municipal Land and Resources Administration Bureau are at 
most 10 mm by 2005 and 5 mm by 2010 (Zhang and Wei, 2005).  
 
Subsidence phenomenon in Shanghai has been previously measured or monitored using the 
surveyor’s method of precise levelling, and more recently the global positioning system 
(GPS). Although these methods provide precise measurements they are labour and time 
intensive, costly and are restricted to specific points in the terrain. They cannot therefore be 
used to provide information on detailed ground motions if the area of ground subsidence is 
large. Interferometric synthetic aperture radar (InSAR), a space geodetic method, has 
demonstrated the capability of mapping extensive areas, on pixel-by-pixel basis, and in a 
more convenient manner than the aforementioned geodetic methods. InSAR is capable of 
detecting ground surface elevation changes with very high precisions (Bürgmann et al., 
2000; Gabriel et al., 1989; Zebker et al., 1997). Chen et al. (2000) argued that InSAR is 
presently the only technology capable of monitoring the deformation of the Earth’s surface 
in a large area with dense points, quickly and cost-effective, in day and night under all 
weather conditions.  
 
In this paper, we present results of using the L-Band Japanese Earth Resource Satellite 1 
(JERS-1) SAR data to map the extent and magnitue of land subsidence in Shanghai with the 
differential interferometric synthetic aperture radar (DInSAR) technique. The choice of L-
Band JERS-1 SAR data over the C-Band Earth Resources Satellite 1 and 2 (ERS-1/2) SAR 
data was based on analysis made using appropriate SAR parameters, and results obtained 
from coherence analysis performed using both the C-band and L-band SAR data over a 
section of Shanghai. The JERS-1 SAR has a longer wavelength, and hence a larger critical 
baseline, than the ERS-1/2 SAR. In addition, L-band SAR can penetrate vegetation to 
retrieve ground-surface, making it superior to C-band ERS SAR for mapping vegetated 
areas or low coherence areas such as Shanghai. 

 
2. Coherence Analysis 
 

Coherence which is a measure to check the quality of an interferogram is degraded from 
three different sources, namely spatial, thermal, and temporal decorrelations (Zebker and 
Villasenor, 1992; Zebker et al., 1992). Decorrelation significantly affects the accuracy of 
InSAR measurements (Zebker and Villasenor, 1992; Zebker et al., 1992), and it is a common 
problem associated with the repeat-pass InSAR technique as a result of discrepancies that 
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rates, gathered from Shanghai Geological Survey Institute are 12.12 mm in 2000, 10.94 mm 
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presently the only technology capable of monitoring the deformation of the Earth’s surface 
in a large area with dense points, quickly and cost-effective, in day and night under all 
weather conditions.  
 
In this paper, we present results of using the L-Band Japanese Earth Resource Satellite 1 
(JERS-1) SAR data to map the extent and magnitue of land subsidence in Shanghai with the 
differential interferometric synthetic aperture radar (DInSAR) technique. The choice of L-
Band JERS-1 SAR data over the C-Band Earth Resources Satellite 1 and 2 (ERS-1/2) SAR 
data was based on analysis made using appropriate SAR parameters, and results obtained 
from coherence analysis performed using both the C-band and L-band SAR data over a 
section of Shanghai. The JERS-1 SAR has a longer wavelength, and hence a larger critical 
baseline, than the ERS-1/2 SAR. In addition, L-band SAR can penetrate vegetation to 
retrieve ground-surface, making it superior to C-band ERS SAR for mapping vegetated 
areas or low coherence areas such as Shanghai. 

 
2. Coherence Analysis 
 

Coherence which is a measure to check the quality of an interferogram is degraded from 
three different sources, namely spatial, thermal, and temporal decorrelations (Zebker and 
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arise between two related SAR signals over same location at different epochs. It is therefore 
necessary to assess the temporal coherence situation of scatterers prior to any serious studies 
involving the use of InSAR techniques. Temporal decorrelation occurs when scatterers 
change their behaviors over time. It is one of the major problems that affect interferograms 
covering Shanghai metropolis. Studies conducted by Ding et al. (2005), Damoah-Afari et al. 
(2007) and Damoah-Afari et al. (2008) show that coherence is not maintained in Shanghai 
metropolis after a period of about 10 months with the C-band ERS-1/2 SAR data. Therefore, 
it is problematic to use ERS-1/2 SAR data with long temporal baselines to monitor land 
subsidence characterized by very slow movement, as in the case of Shanghai.  
 
Coherence analysis was performed in a section of Shanghai covering the downtown area 
where the problem of land subsidence is severe in order to assess the behaviour of scatterers 
in Shanghai over time. The region of interest selected for coherence analysis spans 
approximately 9 km in azimuth direction and 8 km in range direction. The coherence 
analysis was also performed to assess which of the SAR data, either the C-band or the L-
band, would be suitable for mapping the subsidence phenomena in Shanghai. Figure 2 
shows both the region of interest selected for the entire study and the coherence analysis 
using ERS-2 SAR amplitude image of Shanghai acquired on 31 March 1998 as a base.  
 

 
 

   
 

Fig. 2. Regions of interest selected for both the entire study and coherence analysis 
 
2.1 Data selection, processing and results 
Data from both the C-band ERS-1/2 and L-band JERS-1 SAR systems were used for the 
analysis. In order to minimize the effect of baseline decorrelation on the final results, only 
InSAR pairs having smaller normal baselines were selected. In the case of ERS-1/2 SAR 
data, interferograms having a normal baseline of at most 200 m were selected, whiles a cut-
off baseline of 1350 m was used for the JERS-1 SAR data. Twenty-seven JERS-1 and 33 ERS-
1/2 interferograms were generated for the coherence analysis. The distribution of normal 

 

baselines (B⊥) and temporal baselines (Bt) from the two datasets used for the coherence 
analysis is presented in Table 1. The total coherence for each InSAR pair was estimated from 
InSAR processing using the EarthView InSAR v3.1 software. Temporal coherence for each 
InSAR pair was then estimated by calculating and removing the influence of both the 
thermal and spatial decorrelations from the total coherence using equation (1) (Zebker and 
Villasenor, 1992) and individual sensor parameters. 
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where γtemporal is temporal decorrelation; γtotal is overall coherence; B⊥ is the normal baseline; 
B⊥c is the critical baseline, and SNR is the signal-to-noise ratio of the SAR sensor (SNR for 
ERS-1/2 SAR data = 12 dB and SNR for JERS-1 SAR data = 5 dB (Cuddy et al., 1993)).  
 

 

  
Fig. 3. Comparison of coherence (total and temporal) of scatterers in Shanghai downtown 
area between the C-Band ERS-1/2 and the L-Band JERS-1 SAR data  
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SAR 
Sensor 

Normal Baselines (m) 
Min. Max. Mean Std Dev. 

ERS-1/2 1 189 76 53 

JERS-1 1 1313 517 363 

 Temporal Baselines (days) 
ERS-1/2 1 2054 891 614 

JERS-1 44 1936 794 507 

Table 1. Distribution of normal and temporal baselines of SAR datasets used for the 
coherence analysis 
 
The result of coherence analysis is presented in Figure 3. It can be seen from the figure that 
temporal coherence for both sensors are higher than their respective total coherences. It is 
also evident from the figure that JERS-1 SAR interferograms have higher coherence (both 
total and temporal) than the ERS-1/2 SAR over the study area, despite the larger normal 
and longer temporal baselines used in the case of JERS-1 SAR data. It can be seen that ERS-
1/2 SAR data do not maintain good coherence levels after a temporal baseline of 7 months. 
It is evident from Figure 3 that majority of the interferometric pairs used in this study have 
coherence levels that fall below the optimum, 0.3. 

 
3. InSAR qualitative mapping of land subsidence in Shanghai 
 

The power of DInSAR is not only limited to its ability to do quantitative measurements, but 
can also consistently and accurately map out the extent or limits of ground surface 
deformation phenomena. This advantage makes DInSAR a powerful cartographic tool for 
qualitative mapping. DInSAR provides very dense and accurate observations with a very 
high level of precision (Gabriel et al., 1989). The results of DInSAR mapping can serve as 
reconnaissance or a base map for engineers in making decisions regarding the location and 
placement of benchmarks for GPS surveys or spirit leveling, and extensometers (Bawden et 
al., 2003). In this section, we present the results of using L-band JERS-1 SAR differential 
interferograms acquired during the period October 1992 to August 1998 to delimit and to 
track the stages of the land subsidence phenomenon of Shanghai. From the previous section, 
it was shown that most of the interferograms produced for coherence analysis had their 
coherence levels falling below the optimum, 0.3. However, they were very useful for 
qualitative analysis of the land subsidence phenomenon in Shanghai.  

 
3.1 Data selection, processing and results 
When using the DInSAR technique to monitor land subsidence that is characterized by a 
very slow velocity, such as the case of land subsidence phenomena in Shanghai, it is 
important to use InSAR pairs with longer temporal baselines. InSAR pairs with longer 
temporal baselines, however, have problem due to temporal decorrelation. It is therefore 
important to set criteria for selecting the kind of SAR data and SAR image pairs that can 
provide satisfactory interferograms for such a study. We used the critical baseline together 
with the result of coherence analysis (Figure 3) to support our choice of using the L-band 

 

JERS-1 SAR data other than the C-band ERS-1/2 SAR data for this study. The critical 
baseline, Bc is defined as (Zebker and Villasenor, 1992) 
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where λ is radar wavelength, Ry is range resolution, r is the distance between the sensor and 
the center of the resolution pixel, and θ is the incidence angle.  
 
Substituting individual sensor parameters (i.e., For ERS-1/2: θ = 23°, Ry = 25 m and r = 853 
km; for JERS-1: θ = 39°, Ry = 18 m and r = 693 km) into equation (2) gives Bc of 
approximately 1150 m for ERS-1/2 SAR data and Bc of approximately 6750 m for the JERS-1 
SAR data. Based on the above analyses, we interpret that JERS-1 SAR enables us to extend 
the normal baseline and the temporal baseline further than the ERS-1/2 SAR to achieve 
satisfactory interferograms. This in fact, is the advantage of longer wavelength SAR data 
over shorter ones for interferometric applications, especially in areas where there are known 
problems of loss of coherence.  
 
A total of 19 L-band differential interferograms and 2 DEMs were generated to track the 
developmental stages of land subsidence in Shanghai. The data has minimum relative 
temporal baseline of 44 days, maximum relative temporal baseline of 1056 days, minimum 
relative normal baseline of 2 m, and maximum relative normal baseline of 971 m. One of the 
DEMs was used to check the effectiveness of using the other to remove topographic phase 
from raw interferograms generated. Table 2 presents JERS-1 DInSAR pairs used for the 
qualitative mapping of land subsidence phenomenon in Shanghai. A major problem 
associated with using JERS-1 SAR data for interferometric applications is with precise orbit 
data to facilitate the removal of flat-earth phase from raw interferograms. Unlike the ERS-
1/2 satellites which have very good orbit information to aid in interferogram flattening 
process, the JERS-1 SAR system had inaccurate orbit data. It was therefore necessary to 
refine the baseline during data processing. It is worthy to mention here that ground control 
points could have been used to aid in the baseline refinement. Unfortunately there were no 
available ground control points at the time of undertaking this study. The interferogram 
flattening was therefore achieved by using a baseline refinement method embedded in the 
EV-InSAR software, where both the normal baseline and the slave yaw angle were adjusted 
intuitively and interactively. Figure 4 shows the results of JERS-1 interferogram flattening 
process using the baseline refinement tool. The figure presents JERS-1 differential 
interferogram pair of 19971024-19980715, with normal baseline of 207 m and temporal 
baseline of 264 days. Experiment indicated that a change in normal baseline of -48.5 m and a 
change in slave yaw angle of 0.0004 rad were good to provide suitable flattened 
interferogram.  
 
Results of the JERS-1 differential interferograms are shown in Figure 5 and 6. A closed 
examination of the JERS-1 differential interferograms in Figure 5 and 6 revealed three stages 
of land subsidence in Shanghai during the period 1992 to 1998. The first stage stretches from 
October 1992 up to April 1995. The second stage emerged by the end of 1995 and continued 
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SAR 
Sensor 

Normal Baselines (m) 
Min. Max. Mean Std Dev. 

ERS-1/2 1 189 76 53 

JERS-1 1 1313 517 363 

 Temporal Baselines (days) 
ERS-1/2 1 2054 891 614 

JERS-1 44 1936 794 507 

Table 1. Distribution of normal and temporal baselines of SAR datasets used for the 
coherence analysis 
 
The result of coherence analysis is presented in Figure 3. It can be seen from the figure that 
temporal coherence for both sensors are higher than their respective total coherences. It is 
also evident from the figure that JERS-1 SAR interferograms have higher coherence (both 
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1/2 SAR data do not maintain good coherence levels after a temporal baseline of 7 months. 
It is evident from Figure 3 that majority of the interferometric pairs used in this study have 
coherence levels that fall below the optimum, 0.3. 

 
3. InSAR qualitative mapping of land subsidence in Shanghai 
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high level of precision (Gabriel et al., 1989). The results of DInSAR mapping can serve as 
reconnaissance or a base map for engineers in making decisions regarding the location and 
placement of benchmarks for GPS surveys or spirit leveling, and extensometers (Bawden et 
al., 2003). In this section, we present the results of using L-band JERS-1 SAR differential 
interferograms acquired during the period October 1992 to August 1998 to delimit and to 
track the stages of the land subsidence phenomenon of Shanghai. From the previous section, 
it was shown that most of the interferograms produced for coherence analysis had their 
coherence levels falling below the optimum, 0.3. However, they were very useful for 
qualitative analysis of the land subsidence phenomenon in Shanghai.  

 
3.1 Data selection, processing and results 
When using the DInSAR technique to monitor land subsidence that is characterized by a 
very slow velocity, such as the case of land subsidence phenomena in Shanghai, it is 
important to use InSAR pairs with longer temporal baselines. InSAR pairs with longer 
temporal baselines, however, have problem due to temporal decorrelation. It is therefore 
important to set criteria for selecting the kind of SAR data and SAR image pairs that can 
provide satisfactory interferograms for such a study. We used the critical baseline together 
with the result of coherence analysis (Figure 3) to support our choice of using the L-band 

 

JERS-1 SAR data other than the C-band ERS-1/2 SAR data for this study. The critical 
baseline, Bc is defined as (Zebker and Villasenor, 1992) 
 

                                                               
θ

λ
2cos2 y

c R
rB =                                                        (2) 

 
where λ is radar wavelength, Ry is range resolution, r is the distance between the sensor and 
the center of the resolution pixel, and θ is the incidence angle.  
 
Substituting individual sensor parameters (i.e., For ERS-1/2: θ = 23°, Ry = 25 m and r = 853 
km; for JERS-1: θ = 39°, Ry = 18 m and r = 693 km) into equation (2) gives Bc of 
approximately 1150 m for ERS-1/2 SAR data and Bc of approximately 6750 m for the JERS-1 
SAR data. Based on the above analyses, we interpret that JERS-1 SAR enables us to extend 
the normal baseline and the temporal baseline further than the ERS-1/2 SAR to achieve 
satisfactory interferograms. This in fact, is the advantage of longer wavelength SAR data 
over shorter ones for interferometric applications, especially in areas where there are known 
problems of loss of coherence.  
 
A total of 19 L-band differential interferograms and 2 DEMs were generated to track the 
developmental stages of land subsidence in Shanghai. The data has minimum relative 
temporal baseline of 44 days, maximum relative temporal baseline of 1056 days, minimum 
relative normal baseline of 2 m, and maximum relative normal baseline of 971 m. One of the 
DEMs was used to check the effectiveness of using the other to remove topographic phase 
from raw interferograms generated. Table 2 presents JERS-1 DInSAR pairs used for the 
qualitative mapping of land subsidence phenomenon in Shanghai. A major problem 
associated with using JERS-1 SAR data for interferometric applications is with precise orbit 
data to facilitate the removal of flat-earth phase from raw interferograms. Unlike the ERS-
1/2 satellites which have very good orbit information to aid in interferogram flattening 
process, the JERS-1 SAR system had inaccurate orbit data. It was therefore necessary to 
refine the baseline during data processing. It is worthy to mention here that ground control 
points could have been used to aid in the baseline refinement. Unfortunately there were no 
available ground control points at the time of undertaking this study. The interferogram 
flattening was therefore achieved by using a baseline refinement method embedded in the 
EV-InSAR software, where both the normal baseline and the slave yaw angle were adjusted 
intuitively and interactively. Figure 4 shows the results of JERS-1 interferogram flattening 
process using the baseline refinement tool. The figure presents JERS-1 differential 
interferogram pair of 19971024-19980715, with normal baseline of 207 m and temporal 
baseline of 264 days. Experiment indicated that a change in normal baseline of -48.5 m and a 
change in slave yaw angle of 0.0004 rad were good to provide suitable flattened 
interferogram.  
 
Results of the JERS-1 differential interferograms are shown in Figure 5 and 6. A closed 
examination of the JERS-1 differential interferograms in Figure 5 and 6 revealed three stages 
of land subsidence in Shanghai during the period 1992 to 1998. The first stage stretches from 
October 1992 up to April 1995. The second stage emerged by the end of 1995 and continued 
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till the ending of 1997, where the third stage began to progress. Figure 7 presents the 
developmental stages of land subsidence phenomenon in Shanghai for the period October 
1992 to August 1998 revealed by L-band JERS-1 SAR data. The accumulative land 
subsidence map of Shanghai produced from land survey methods is shown in Figure 7 
(Bottom right). It is evident from Figure 7 that the accumulative subsidence map of Stage 3, 
obtained from InSAR, has close similarities to that produced by other survey methods. 
However, the extents of the subsidence phenomena have been accurately mapped by InSAR 
technique. Some areas marked as stable with land survey methods have been mapped 
otherwise as deforming areas, and vice versa, by InSAR technique. 
 

 
No. 

Master 
Image 

Slave 
Image 

B⊥ 
(m) 

Bt 
     

(days) 
DEM 

1 19960810 19960923 -893.835 44 
2 19960923 19961106 -546.643 44 

InISAR 
1 19921002 19940906 344.525 704 
2 19921002 19950301 -418.261 880 
3 19921002 19950414 442.313 924 
4 19921115 19930327 814.734 132 
5 19940906 19950414 97.118 220 
6 19940906 19961106 971.135 792 
7 19950301 19971024 167.897 968 
8 19950301 19971207 -91.867 1012 
9 19950301 19980120 861.803 1056 
10 19950414 19961106 871.718 572 
11 19950414 19971024 -691.515 924 
12 19950414 19980120 1.882 1012 
13 19961106 19980120 -870.420 440 
14 19961220 19980601 248.301 528 
15 19970501 19980601 -255.113 396 
16 19970910 19980828 481.129 352 
17 19971024 19980715 39.576 264 
18 19971207 19980715 298.076 220 
19 19980120 19980715 -655.105 176 

Table 2. JERS-1 SAR DInSAR pairs used for mapping the extent and stages of land 
subsidence in Shanghai 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Interferogram flattening process using JERS-1 differential interferogram pair 
19971024-19980715; B⊥ = 207 m, Bt = 264 days, and a DEM pair 19960810-19960923, B⊥ = -894 
m, Bt = 44 days 

 
4. InSAR quantitative mapping of land subsidence in Shanghai 
 

This section presents quantitative mapping of the land subsidence phenomenon in Shanghai 
using the DInSAR technique and datasets acquired by the L-band JERS-1 SAR 
interferometer. Our choice for using JERS-1 SAR data over ERS-1/2 SAR data is based on 
analyses and discussions presented in the previous sections.  

 
4.1 Data selection, processing and results 
JERS-1 SAR data acquired over Shanghai in descending orbit, for the period October 1992 to 
July 1998, were employed in the DInSAR quantitative mapping. Eight JERS-1 SAR images 
were selected based on the temporal and the normal baseline information obtained from 
Japanese Aerospace Exploration Agency (JAXA) website. The data has a minimum relative 
temporal baseline of 44 days and a maximum of 924 days, and a minimum relative normal 
baseline of 96 m and a maximum relative normal baseline of 893 m. They were selected such 
that differential interferograms generated could form a time series right from the first 
acquisition to the last. 
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4. InSAR quantitative mapping of land subsidence in Shanghai 
 

This section presents quantitative mapping of the land subsidence phenomenon in Shanghai 
using the DInSAR technique and datasets acquired by the L-band JERS-1 SAR 
interferometer. Our choice for using JERS-1 SAR data over ERS-1/2 SAR data is based on 
analyses and discussions presented in the previous sections.  

 
4.1 Data selection, processing and results 
JERS-1 SAR data acquired over Shanghai in descending orbit, for the period October 1992 to 
July 1998, were employed in the DInSAR quantitative mapping. Eight JERS-1 SAR images 
were selected based on the temporal and the normal baseline information obtained from 
Japanese Aerospace Exploration Agency (JAXA) website. The data has a minimum relative 
temporal baseline of 44 days and a maximum of 924 days, and a minimum relative normal 
baseline of 96 m and a maximum relative normal baseline of 893 m. They were selected such 
that differential interferograms generated could form a time series right from the first 
acquisition to the last. 
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Fig. 5. Developmental stages of land subsidence in Shanghai mapped by L-band JERS-1 SAR 
data from October 1992 to January 1998 

 

 
Fig. 6. Developmental stages of land subsidence in Shanghai mapped by L-band JERS-1 SAR 
data from March 1995 to August 1998 
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Fig. 6. Developmental stages of land subsidence in Shanghai mapped by L-band JERS-1 SAR 
data from March 1995 to August 1998 
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Fig. 7. Developmental stages of land subsidence in Shanghai from 1992-1998 mapped by 
JERS-1 SAR data. (Top left) Stage 1: accumulative subsidence up to April 1995; (Top right) 
Stage 2: accumulative subsidence up to October 1997; (Bottom left) Stage 3: accumulative 
subsidence map up to August 1998; and (Bottom right) accumulative subsidence map from 
1990-1998 obtained from other survey methods (Source: Zhang et al., 2002) 

 

Three SAR scenes (acquired on the following dates: 10 August 1996, 23 September 1996, and 
6 November 1996), forming 2 possible interferometric pairs with temporal baselines of 44 
days were selected to generate digital elevation models (DEMs) for the removal of 
topographic fringes from all the interferograms. One of the DEMs was used to check the 
effectiveness of the other to remove topographic fringes from the raw interferograms. Six 
out of the 8 images were selected to generate 6 possible differential interferograms using the 
two–pass DInSAR method with the DEMs generated above. Table 3 is a summary of the 
JERS-1 SAR interferometric pairs produced for the quantitative study. The EarthView InSAR 
(EV-InSAR) v.3.1 Software, a product of VEXCEL Corporation, Canada, was used for all 
interferometric processing. Unfortunately there were no available ground control points for 
baseline refinement process at the time of undertaking this study. We therefore removed 
flat-earth fringes from raw interferograms using the approach discussed in Section 3.1.  
 

 
No. 

Master 
Image 

Slave 
Image 

B⊥ 
(m) 

Bt 
     (days) 

DEM 
1 19960810 19960923 -893.835 44 
2 19960923 19961106 -546.643 44 

InISAR 
1 19921002 19940906 346.613 704 
2 19921002 19950414 442.934 924 
3 19940906 19950414 95.672 220 
4 19950414 19961106 870.043 572 
5 19961106 19980120 -869.364 440 
6 19980120 19980715 -653.750 176 

Table 3. JERS-1 interferometric pairs used for quantitative mapping of land subsidence in 
Shanghai 
 
Subsidence maps from the 6 DInSAR pairs were further processed with MATLAB to 
produce the final individual subsidence maps. A region of 1200 pixels in azimuth direction 
by 1300 pixels in range direction was selected for final presentation. Two separate 
accumulative subsidence maps of land subsidence covering the downtown area of 
Shanghai, over the period October 1992 to July 1998, were generated from two different time 
series obtained from the stack of DInSAR pairs. Table 4 shows the two time series and the 
DInSAR pairs forming them.  
 

Time Series DInSAR Pairs or Subsidence maps 

I 
19921002-19940906; 19940906-19950414; 19950414-19961106;  
 

19961106-19980120 and 19980120-19980715. 

II 
19921002-19950414;19950414-19961106; 19961106-19980120  
 

and 19980120-19980715. 
Table 4. Two time series produced from the stack of JERS-1 DInSAR pairs. 
 

Figure 7 presents the subsidence maps obtained for the 1st, 4th and the 6th DInSAR pairs of 
data in Table 3. The result of the two accumulative subsidence maps of Shanghai for the 
period 1992-1998, obtained from the stack of above time series are presented in Figure 8.  
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Figure 7 presents the subsidence maps obtained for the 1st, 4th and the 6th DInSAR pairs of 
data in Table 3. The result of the two accumulative subsidence maps of Shanghai for the 
period 1992-1998, obtained from the stack of above time series are presented in Figure 8.  
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Fig. 8. JERS-1 SAR coherence maps, differential interferograms and deformation maps of 
DInSAR pairs 19921002-19940906 and 19940906-19950414 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. JERS-1 SAR coherence maps, differential interferograms and deformation maps of 
DInSAR pairs 19921002-19940414 and 19940414-19961106 
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Fig. 8. JERS-1 SAR coherence maps, differential interferograms and deformation maps of 
DInSAR pairs 19921002-19940906 and 19940906-19950414 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. JERS-1 SAR coherence maps, differential interferograms and deformation maps of 
DInSAR pairs 19921002-19940414 and 19940414-19961106 
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Fig. 10. JERS-1 SAR coherence maps, differential interferograms and deformation maps of 
DInSAR pairs 19961106-19980120 and 19980120-19980715 

 

Figure 8, 9 and 10 present the coherence maps, differential interferograms and deformation 
or subsidence maps obtained for DInSAR pairs presented in Table 3. The result of the two 
accumulative subsidence maps of Shanghai for the period 1992-1998, obtained from the 
stack of above time series are presented in Figure 11. Figure 12 compares pictorially the 
accumulative subsidence map obtained from Time Series I and the land subsidence map of 
Shanghai for the period 1990-1998 produced from other survey methods. It is evident that, 
the three maps show common characteristics, and the subsidence values in general are in 
agreement. It is also evident that some places presented in the map obtained by 
conventional survey methods and described as stable are actually subsiding. The map of 
deformation rates obtained for the period 1992-1998 is presented in Figure 13.  
 

 
Fig. 11. Accumulative land subsidence map of Shanghai obtained from (a) Stack of Time 
Series I for the period 1992-1998; (b) Stack of Time Series II for the period 1992-1998 
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Fig. 12. Accumulative land subsidence map of Shanghai obtained from (a) Stacking Time 
Series I for the period 1992-1998; (b) Land surveys for the period 1990-1998 (Source: Zhang 
et al., 2002).  
 

 
Fig. 13. The map of deformation rates obtained for the period 1992-1998 by Stacking Time 
Series I (see Table 3 and Table 4) 

 

5. Conclusion 
 

In this paper, we have shown the capability of using InSAR techniques to map land 
subsidence phenomenon in both qualitative and quantitative terms. DInSAR techniques 
make it possible to study the magnitue, extent and pattern of land subsidence phenomenon 
more efficiently than any other method available today. The problem of loss of coherence in 
Shanghai has also been assessed in this study with both the C-band ERS-1/2 and L-band 
JERS-1 SAR data. The strength of using JERS-1 SAR data for DInSAR application in places 
where there are known problems of temporal decorrelation has been demonstrated. Results 
obtained from DInSAR quantitative measurements using the L-band JERS-1 SAR data were 
in agreement with the land subsidence map of Shanghai obtained from other survey 
methods. DInSAR qualitative analysis using JERS-1 differential interferograms revealed 
three stages of land subsidence in Shanghai from 1992 to 1998. The results indicated that the 
extent of land subsidence increased from 1992 through to 1998. It follows therefore that, 
activities taking place in the city might, in one way or the other, influence the progress of 
land subsidence in Shanghai as asserted by some researchers. 
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1. Introduction     
 

Improvement of large scale models developed to study the impacts of global changes in 
polar regions requires a better knowledge of the variability of the different parameters that 
control fluid dynamics and thermodynamics budgets at the interfaces. In the part of a fluid 
influenced by the presence of a solid interface, surface roughness is one of the key 
parameters that control momentum as much as heat (or salts at the ice-water interface) 
vertical exchanges through the boundary layer. This, in turn, makes roughness a data of 
primary importance when coupling ocean and atmosphere.  
First year sea ice is characterized by large scale roughness features resulting from the 
accumulation of ice blocks that are piled above and below the surface under the compression 
and shear stresses induced by winds and currents. They develop linear sinuous features 
several hundred meters in length which on satellite images draw a network of bright 
structures. When illuminated by a SAR beam, the orientation variability of ice block faces in 
ridges increases the probability to receive an enhanced signal resulting from specular 
reflection on point sources. It follows that conditions that enhance specular reflection over 
diffuse scattering translate into a better resolution of the ridge network. This is mostly 
achieved at spring, when, with the snow wetness content increasing, the penetration depth 
into snow and ice becomes negligible. It has been observed that overnight wetness changes 
may cause strong resolution contrast on the ridge network. Late in the afternoon, increased 
wetness and the presence of a liquid film on ice and snow surfaces results in an increased 
forward scattering on most surfaces and an improved resolution of the pressure ridge 
network. On the contrary, on morning the reduced wetness allows some volume scattering to 
occur in the snow surface layer causing an increased diffused scattering that tends to reduce the 
backscattered signal from ridges and increase the signal from flat ice surfaces away from ridges. 
In addition, with coherent imaging systems such as SAR, multiplicative random noise can 
combine to generate a signal strong enough to partly mask large roughness features signature. 
The speckle issue is for ridges of utmost importance. Extending only over several meters 

                                                                 
Based on "Diurnal SAR variability due to ice and snow air interface wetness overnight 
changes.", by Hudier E., J-S. Gosselin & D. Febres, which appeared in the Proceedings of the 
IGARSS, Barcelona 23-27 july 2007. © [2007] IEEE. 
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across, ridges are best resolved at the highest available resolution. However, the reduction of 
speckle is first achieved through simultaneous processing of multiple looks at the expense of 
the spatial resolution. In fact, any attempt at getting information on ridges is hindered by the 
difficulties at extracting the very location of individual ridges out of a speckled image. 
As a consequence, improving roughness extraction techniques requires to thoroughly 
understand and differentiate the physics behind signal coherence. In this chapter we will 
review the geophysical parameters that enhance the detection of the specular coherent 
component backscattered from ridges. In the conclusion we will review speckle properties 
emphasizing the physics differences between coherent summation and specular coherence 
as a mean to filter speckle from polarimetric SAR and improve pressure ridge resolution. 

 
2. Background     
 

The snow cover is an important component of the ice-atmosphere interface. It is known to 
accumulate in the wake of ridges creating mesoscale surface roughness features (Déry & 
Yau, 2001; Gallée et al, 2001). Whereas, during the winter season, the snow cover is mostly 
transparent to microwaves (Garity et al, 1990), at spring, the solar radiation and temperature 
changes cause the metamorphosis of snow crystals which in turn reduce the penetration 
depth and translate into volume scattering (Barber et al, 1998). Later on, as the snow wetness 
content increases, the dielectric properties changes of the wet snow medium reduce 
furthermore the penetration depth of radar electromagnetic waves and eventually turn the 
snow surface into an opaque medium (Koskinen, 2001; Barber et al, 1998).  
At the beginning of the melt season, pressure ridges are  mostly enveloped or coated with 
snow. As volume scattering still dominates, up to 4 % of volumetric wetness, (Koskinen, 
2001; Guneriussen, 1997), they get drowned by the signal component back-scattered by is 
the snow layer and, as a consequence, are not well delineated on satellite images.  
 
Between 5 and 8% humidity, surface scattering becomes the main component of the received 
signal and adds surface slope as a major factor in the analysis of microwave imagery 
(Hallikainen & Winebrenner, 1992). More exactly, the parameter to consider is the actual 
angle that the radar incident beam makes with the normal to snow or ice surfaces. After 
Gohin et al. (1994), and Lewis et al. ( 1994), the back-scattered intensity 0  (in decibels) is 
well described by a linear function of , the angle made between the normal to the iceor 
snow interface and the radar incident beam:  
 

0() = 0(0°) + Ci  (1) 
 
Kim et al. (1984) showed that 0 (0°) and the slope Ci are characteristic of the surface roughness. 
In the case of electromagnetically smooth surfaces, such as an ice block in a pressure ridge, the 
radar return is large at normal incidence and 0 decreases rapidly with  as most of the radar 
energy scatters forward. In contrast, rough surfaces show a reduced dependence with . 
In addition, at spring, the orientation of snow and ice surfaces relative to sun  rays can, 
depending on solar irradiation intensity, translate into a variability in surface snow wetness, 
eventually the development of a film of liquid water on ice surfaces and, as irradiance 
decreases over the day, the re-crystallization and build-up of frost flower structures where 
liquid films formed on ice blocks. Thermodynamically, the snow ice medium is during this 

 

period of the year at the fresh water freezing point (Gow & Tucker III, 1990; Wadhams, 2002; 
Petrenko & Whitworth, 1999). While within the snow layer the heat budget is only balanced 
by melt or freezing of ice crystals or interstitial liquid water, at the air snow interface, 
evaporation comes into play to remove or add heat. As a consequence, while the water 
content within the snow layer changes slowly, at the air interface evaporation can  quickly 
shift the surface temperature below freezing turning a thin layer of snow into a dry medium 
then allowing microwaves to penetrate and generate volume scattering.  
Beside the incident angle, the most important parameter when analyzing SAR images is the 
surface roughness of the snow-air interface (Ulaby et al, 1990; Fung, 1994). Fundamentally, the 
electromagnetic wave interaction with a snow surface is determined by the scattering 
efficiency of surface roughness rms and correlation height. The transition from 
electromagnetically smooth to rough surface depends on an arbitrary criterion that is 
proportional to [/cos], where  is the radar wavelength and  the radar incident angle. On 
terrains that offer surface slope variability such as ice block faces or snow cover surfaces,  
must be seen as the local incident angle relative to a given area. The proportionality factors 
vary from 1/8 (the Rayleigh criterion) to 1/32 (the Fraunhofer criterion). It results that at 
normal incidence (=0) a surface roughness rms between  0.15 cm and 0.6 cm causes a 
transition from smooth to rough surface. On ice surfaces a thin film of water, such as observed 
at spring during sunny afternoons, turn ridge blocks into specular reflectors. This allows for an 
increased contrast between ridges and the snow covered background due to the variability in 
surface orientations and occurrence of multiple reflection on several faces in ridges (Hudier, 
2006; Carlstrom & Ulander, 1995). On the other hand, it can also cause an enhanced forward 
scattering on snow surfaces, generating dark stripes or low backscattering areas where surface 
slopes cause the SAR incident beam to reach the snow interface at a large angle.  

 
3. Field site and image processing. 
 

Images analyzed in this paper were recorded as part of a field work conducted on the east 
coast of the Hudson Bay offshore of Kuujjuarapik, Quebec, Canada (Figure 1). This area is 
covered with a first year landfast sea ice about 1m30 to 1m60 thick. By mid-April the first 
signs of melt can be observed with an increase of snow wetness. By mid-May, most of the 
snow is melted away with some left where sheltered from sun rays on the north side of 
ridges. Figure 2 shows an aerial photograph of the study area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Geographic location of the site where field works were done (white star). 
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2001; Guneriussen, 1997), they get drowned by the signal component back-scattered by is 
the snow layer and, as a consequence, are not well delineated on satellite images.  
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radar return is large at normal incidence and 0 decreases rapidly with  as most of the radar 
energy scatters forward. In contrast, rough surfaces show a reduced dependence with . 
In addition, at spring, the orientation of snow and ice surfaces relative to sun  rays can, 
depending on solar irradiation intensity, translate into a variability in surface snow wetness, 
eventually the development of a film of liquid water on ice surfaces and, as irradiance 
decreases over the day, the re-crystallization and build-up of frost flower structures where 
liquid films formed on ice blocks. Thermodynamically, the snow ice medium is during this 

 

period of the year at the fresh water freezing point (Gow & Tucker III, 1990; Wadhams, 2002; 
Petrenko & Whitworth, 1999). While within the snow layer the heat budget is only balanced 
by melt or freezing of ice crystals or interstitial liquid water, at the air snow interface, 
evaporation comes into play to remove or add heat. As a consequence, while the water 
content within the snow layer changes slowly, at the air interface evaporation can  quickly 
shift the surface temperature below freezing turning a thin layer of snow into a dry medium 
then allowing microwaves to penetrate and generate volume scattering.  
Beside the incident angle, the most important parameter when analyzing SAR images is the 
surface roughness of the snow-air interface (Ulaby et al, 1990; Fung, 1994). Fundamentally, the 
electromagnetic wave interaction with a snow surface is determined by the scattering 
efficiency of surface roughness rms and correlation height. The transition from 
electromagnetically smooth to rough surface depends on an arbitrary criterion that is 
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terrains that offer surface slope variability such as ice block faces or snow cover surfaces,  
must be seen as the local incident angle relative to a given area. The proportionality factors 
vary from 1/8 (the Rayleigh criterion) to 1/32 (the Fraunhofer criterion). It results that at 
normal incidence (=0) a surface roughness rms between  0.15 cm and 0.6 cm causes a 
transition from smooth to rough surface. On ice surfaces a thin film of water, such as observed 
at spring during sunny afternoons, turn ridge blocks into specular reflectors. This allows for an 
increased contrast between ridges and the snow covered background due to the variability in 
surface orientations and occurrence of multiple reflection on several faces in ridges (Hudier, 
2006; Carlstrom & Ulander, 1995). On the other hand, it can also cause an enhanced forward 
scattering on snow surfaces, generating dark stripes or low backscattering areas where surface 
slopes cause the SAR incident beam to reach the snow interface at a large angle.  

 
3. Field site and image processing. 
 

Images analyzed in this paper were recorded as part of a field work conducted on the east 
coast of the Hudson Bay offshore of Kuujjuarapik, Quebec, Canada (Figure 1). This area is 
covered with a first year landfast sea ice about 1m30 to 1m60 thick. By mid-April the first 
signs of melt can be observed with an increase of snow wetness. By mid-May, most of the 
snow is melted away with some left where sheltered from sun rays on the north side of 
ridges. Figure 2 shows an aerial photograph of the study area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Geographic location of the site where field works were done (white star). 
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Fig. 2. Early May picture of the ice sheet offshore Kuujjuarapik, Quebec, Canada. 
 
Overall thirteen Radarsat-1 SAR fine beam mode scenes were processed “table I”. In its fine 
beam mode, the Radarsat antenna looks to the right of the spacecraft at an angle between 
35° and 49° with a resolution 8-9 m and a swath area of 57x50 km. The average local 
overpass times were 5:30 am (descending) and 4:57 pm (ascending). Processing of the data 
were done using ENVI-6.2 software. Fields works were carried out offshore of Kuujjuarapik 
on the East coast of the Hudson Bay. Detailed information about data collection and image 
processing can be found in Hudier (2006). 
From the data set listed below, 7 images (in bold) were recorded after wet conditions were 
observed. All images recorded early in the morning were recorded after a night below 
freezing. Qualitative analysis shows that morning images offer a poor resolution of the ridge 
network. In all instances afternoon images offer a better resolution. Isolating areas that 
could be identified as ridges and areas that didn’t show any sign of a ridge, we computed 
the average change in the backscattered signal between morning and afternoon images. Our 
results show a 4 dB decrease in ridged areas with a 5.5 dB std. In areas away from ridges an 
increase of 1.9 dB with a 2.5 dB std was computed. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. SAR images acquisition 

Recording date Mode Incident angle Orbit 
April 23, 1997 F2 40.3-42.5 Descending 
May 10, 1997 F1 36.8-39.9 Descending 
April 04, 1998 F1 36.8-39.9 Ascending 
April 11, 1998 F1 36.8-39.9 Descending 
April 28, 1998 F1 36.8-39.9 Ascending 
May 05, 1998 F1 36.8-39.9 Descending 
March 26, 2001 F1 36.8-39.9 Descending 
April 26, 2001 F2 40.3-42.5 Descending 
April 29, 2001 F3 41.1-43.1 Ascending 
April 15, 2005 F1 36.8-39.9 Ascending 
April 22, 2005 F1 36.8-39.9 Descending 
April 25, 2005 F4 42.3-44.5 Ascending 
May 02, 2005 F2 40.3-42.5 Ascending 

 

4. Low back-scattering areas paralleling pressure ridges. 
 

4.1 Methods 
Data used in this research work were collected over four field experiments: 1997, 1998, 2001 
and 2005. Field work was done from mid-April to mid-May which covers the melt initiation 
period for this region of the bay. A detailed survey of the snow layer and ridge features was 
performed systematically along a total of eight transects which start and end points were 
geo-referenced. 87 measurement sites were selected along these transects to sample a range 
of ridge orientations relative to SAR incident beams. The mapping of the snow layer 
morphology included: structure orientation, slope, size, lateral extension of the structures 
relatively to the ridge, and normal vs. satellite incidence angle. Ridge characteristics 
measurements included: height, width, block size and distribution. In order to study the 
relation between surface orientation and the backscattering reduction from these regions, 
we measured the angle between the radar incident beam’s orientation and the perpendicular 
to the slope. At each sampling location, data were collected along 4 transects parallel to 
ridge axes at distances of  5, 10, 15 and 20 meters. Measurements were made at regular 
intervals along the different transects. Also, ridge blocks surface characteristics were 
documented as a function of face orientations. In addition, snow temperature and wetness 
were measured using a thermocouple sensor and a snow fork (dielectric measurement 
device). These last data were collected for each SAR scene on the day and time (+/- 30 
minutes) the images were recorded.  
Selected sites were first extracted from the available set of images and sampled areas 
located. Backscattering data were then computed over a set of 3 pixels wide strips oriented 
parallel to ridge axes, a first strip localized over the ridge itself, and a second next to it in the 
area of reduced backscattering. This operation was performed manually by moving a test 
strip across the ridge in order to localize the areas of maximum (the ridge) and minimum 
backscattering. Backscattering statistics and the distance between the areas of reduced 
backscattering and the adjacent ridge were then computed. It must be underlined that for a 
site to be classified as having a “dark band” there had to be continuity between the band of 
minimum backscattering and the middle of the adjacent floe. 

 
4.2 Low backscattering regions associated with ridges. 
As anticipated, areas of reduced backscattering were observed paralleling ridges (Figure 3). 
This result confirms previous observations. We also confirmed that these dark structures get 
more contrasted as the spring melt goes on.  
Overall, they were observed on 61% , 53 out of 87, of our sample locations. However, in most 
of the 53 sites they showed up only on images recorded later at spring (table 2). In the case of  3 
images recorded before mid-April, no such structures were spotted. This period of the season 
is more typical of the winter conditions. The maximum snow wetness amounted then to 0.8 % 
in which conditions volume scattering and other boundary surface scattering become 
important. Snow wetness was observed to be highly variable depending on the sampling point 
location. Surfaces perpendicular to sun rays display the highest surface wetness content, which 
was measured in the first 5 mm of the snow layer. However, when sampling a thicker layer 
(10cm) the snow drift geometry becomes a factor. We observed a lower wetness content on 
crests and maximums in troughs. Table 3 summarizes the average backscattering value 
computed from ridges, dark band areas and on floes away from sampled ridges.  
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Fig. 2. Early May picture of the ice sheet offshore Kuujjuarapik, Quebec, Canada. 
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of the 53 sites they showed up only on images recorded later at spring (table 2). In the case of  3 
images recorded before mid-April, no such structures were spotted. This period of the season 
is more typical of the winter conditions. The maximum snow wetness amounted then to 0.8 % 
in which conditions volume scattering and other boundary surface scattering become 
important. Snow wetness was observed to be highly variable depending on the sampling point 
location. Surfaces perpendicular to sun rays display the highest surface wetness content, which 
was measured in the first 5 mm of the snow layer. However, when sampling a thicker layer 
(10cm) the snow drift geometry becomes a factor. We observed a lower wetness content on 
crests and maximums in troughs. Table 3 summarizes the average backscattering value 
computed from ridges, dark band areas and on floes away from sampled ridges.  
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Fig. 3. Reduced back-scattering in areas bordering pressure ridges on a RadarSAT 1 image of 
a first year sea ice.  
 
 

 
 
 
 
 
 
 
 
 
 
 
                       
 
 
Table 2. Percentage of sampled locations where dark bands were observed. 

Recording date Nb of test sites Sites with dark bands 
April 23, 1997 12 4 
May 10, 1997 7 
April 04, 1998 

23 

0 
April 11, 1998 0 
April 28, 1998 14 
May 05, 1998 14 
March 26, 2001 

20 
0 

April 26, 2001 12 
April 29, 2001 14 
April 15, 2005 

32 

15 
April 22, 2005 17 
April 25, 2005 17 
May 02, 2005 16 

 

 
 
 
 
 
Table 3. First year sea ice signatures 
 
In the lee of pressure ridges snow accumulates behind obstacles to form linear features 
oriented after the wind that developed them. It creates a wave pattern with crests heights 
tapering away from ridges. These structures offer a wide range of surface slopes that 
differentiates this region from the rest of the ice floe. As underlined by data summarized in 
table 4, in cases where physical obstacles may generate slope patterns, pressure ridges can 
not only draw a network of bright linear features but also a network of dark bands parallel 
to these bright features. This also underlines how, when spring melt turns the snow cover 
into an opaque medium, snow slopes and orientation relative to the sun and the satellite 
beam can be as an important parameter as surface roughness. 
 

 (dB) Slope average Std 
Ice floes away from 
ridges  

38 15 

Ridge vicinity where  
is reduced 

72 28 

Ridge vicinity where  
is not reduced  

44 35 

Table 4. Snow surface slope characteristics in three regions: (1) away from ridge influence, 
(2) in the vicinity of the ridge where reduced backscattering was measured and, (3) in the 
vicinity of the ridge where no-reduction of the backscattering intensity was measured.  

 
5. Resolution variability due to overnight wetness changes. 
 

5.1 Overnight resolution loss 
Figure 4 and 5 give an example of resolution variability on two ridge networks. In the 2 
situations the day prior to the image recording was sunny and warm, liquid films were 
observed on snow and ice surfaces during mid-afternoons with water contents over 8% in 
the first centimeter of the snow layer. Figure 4 was recorded at 4 pm with temperatures 
close to the air temperature peak for the day (Figure 6). In the situation pictured on figure 5, 
the image was recorded at 4 am on the morning, after the night temperature went down 
below freezing (Figure 7). At that time, surface wetness was measured at 3.1% and frost 
flower observed where liquid films were spotted the previous afternoon. Similar diurnal 
“patterns of daily melt and nightly freeze” were also reported by Ashcraft and Long (2005) 
to cause a strong increase of the absorption coefficient of the snow due to the introduction of 
liquid water into the snowpack. 
 

 (dB) Average Average distance to ridge 
Ice floes away from ridges  -16.2  
Bright ridges -13.5  
Dark strip  - 17.7 22 (m) 
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Fig. 4. SAR image recorded at 4 pm after a warm and sunny day, East coast of the Hudson 
bay, Canada. 
 

Fig. 5. SAR image recorded at 4 am following a warm and sunny day, and after a night with 
temperatures below freezing, East coast of the Hudson bay, Canada.  
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Fig. 6. Temperatures recorded at the meteorological station of Kuujjuarapik, Quebec, 
Canada, on the day the image displayed on figure 2 was recorded. 

 

Fig. 7. Temperatures recorded at the meteorological station of Kuujjuarapik, Quebec, 
Canada, on the day the image displayed on figure 3 was recorded. 

 
5.2 Field data and discussion 
The wetness content was measured in the first centimetre of the snow cover and at 5 
centimetres below the surface. At the end of the afternoon we observed a light dependence 
between surface wetness and the orientation of the surface slope relative to the zenith. As 
expected, surfaces subject to a higher irradiation showed a higher wetness content. In the 
first centimetre the wetness averaged 7.5 with a std of 2.1 at +/-30 from normal sun 
incidence and 6.3 with a std of 3 for larger incidences. At 5 cm from the surface, surface 
slope orientation does not show any significant influence on the water content. We 
measured an average 3.9 with a std of 2.1. Data collected at 4 am give wetness contents of 3.1 
in the first centimetre with a std of 2.9 and no clear slope dependence. It is to be noted that a 
liquid film was observed on both on most ice and snow surfaces in sampling completed in 
the afternoon. 
The reduced resolution on morning images is the result of two things. First a reduced 
backscattering in ridged areas and secondly an increased backscattering from areas away 
from ridges. This second phenomenon is well explained by an increased penetration depth 
and the resulting volume scattering due to a reduced wetness in the top layer and the 
metamorphosis of the snow cover that is associated the succession of thaw  and freezing that 
occurs overnight (Barber et al., 1998).  
In ridged areas, where some bare wet ice faces were observed mid-afternoon, all ice blocks 
faces were dry on morning. Besides, no “pure ice faces” were observed. Selected ice blocks 
sampled daily showed that where bare wet ice can be found at some point during the day,  a 
thin layer of flower frost develops at night with measured rms values in and above the 
smooth to rough transition range for SAR Radarsat 1.  
 
At spring, when the solar irradiation cycle causes diurnal temperatures to rise above 
freezing during the day and sink below freezing at night, our observations show a clear 
resolution difference between images recorded early in the morning and at the end of warm 
and sunny days. Wetness changes overnight are in the value range that causes the snow 
cover to become opaque to microwave lengths. During the day, the increase of the 
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Fig. 6. Temperatures recorded at the meteorological station of Kuujjuarapik, Quebec, 
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absorption coefficient cause surface scattering to become dominant over volume scattering 
(Ulaby et al., 1990) and, therefore surface slope and roughness to control the microwave 
energy back-scattered toward the antenna. With the development of a liquid film on 
surfaces, microwaves do not penetrate anymore into snow or ice mediums, reflectivity 
increases and forward scattering occurs. As a consequence, all but the surfaces which lie 
almost at a right angle with the satellite beam return a weaker signal. As the probability that 
an ice surface may lie perpendicular to the incident SAR beam is much higher in ridges, this 
increased forward scattering on most surfaces results in an improved resolution of the 
pressure ridge network. As shown on figure 8, most ice blocks are enveloped in a thin layer 
composed of metamorphosed snow crystals, ice and air bubbles. With no porous medium  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Two ridges that gave similar backscattering intensity on the satellite image illustrated 
on figure 4. The probability density that an ice surface lies perpendicular to the incident ice 
beam increases with smaller ice blocks.  
 
beneath, liquid water resulting from surface melt creates a continuous film that reduces 
surface roughness as well as increases its dielectric constant. Microwaves penetration is then 
negligible and most of the SAR beam energy reflected according to Snell’s law. The 
development of a liquid film on ice blocks’ faces turns each of them into an opaque electro-
magnetically smooth surface which increases furthermore their brightness on satellite 
images. 
During the night, temperature below freezing pumps heat out of the top layer of the snow 
cover causing wetness to drop. On morning, at the time the image illustrated on figure 5 
was recorded, the reduced wetness content allows some volume scattering to occur in the 
snow surface layer to completely erase contrast between ridges and flat ice. In ridges, 
freezing removes the liquid film from ice block’s faces turning them into an highly diffusive 
dry ice – snow crystals and air bubbles medium. This allows part of the microwave energy 
to penetrate into it causing a drop in the surface scattering component. Besides, some 
growth of snow flower crystals at the surface increases roughness to cause back-scattering 
from surfaces oriented perpendicularly to the incident SAR beam to drop furthermore. It 
should be observed that despite a loss in ridge resolution, some ridges remain visible 
(Figure 5) mainly because of the areas of reduced back-scattering as discussed in section 3.  

 
 

 

6. Conclusion and polarimetric potential for ridge extraction 
 

Results presented in section 4 and 5 underline the critical impact of wetness changes during 
spring time. With snow temperatures at the freezing point, any change in the snow-
atmosphere heat flux initiates melt or freezing in the top layer of the snowpack. While, 
within the snowpack, water content undergoes only slight variations over a 24 hours period, 
snow crystals within the top layer can turn from wet to dry overnight. More importantly, 
where an ice surface is exposed to the atmosphere, melt and freezing cause the cyclic 
development of a liquid film and a re-crystallized highly diffusive dry layer of snow, ice and 
air bubbles. As liquid water is removed, part of the microwave energy penetrates into this 
layer to be absorbed and scattered. The fact that the ridge network can completely vanish 
overnight emphasizes the importance of specular reflection on electro-magnetically smooth 
surfaces for the extraction of ridges. 
Surface roughness changes not only increase (or decrease) drastically the back-scattering 
from surfaces oriented perpendicularly to the SAR beam but also cause the back-scattered 
electromagnetic wave to be the result of an incoherent (or noncoherent)  or coherent 
reflection. To explore furthermore the implications we need to clarify the concept of 
incoherence. In principle we measure the combined reflections from all scatterers within the 
scene which in term of physics is coherent summation. However, incoherence, in the 
literature, refers to the nature of the scene rather than to the physics of electro-magnetic 
waves. If the scene is viewed twice through the exact same geometry, the same speckle 
pattern should be observed (Raney, 1998). Conversely, due to the random distribution of 
individual scatterers, a slight change in the position of the satellite would give a totally 
different speckle pattern despite the fact that the statistics over the scene would remain 
unchanged. This is the incoherence nature of speckle which turns a mostly uniform area into 
a salt an pepper image. On the other hand, coherent specular reflection describes a highly 
correlated phase structure within  part of a scene, which implies that multiple 
measurements from this same scene would reveal the presence of a specular reflector. This 
requires that the satellite position remains the same in order for the relative geometry of the 
SAR beam angle and target to be about the same.  
Polarimetric SAR are systems that acquire two simultaneous images (HH and VV) of a same 
scene. While the geometry of the relative positions of the satellite and scene are unchanged, 
the physics of coherent summation from multiple scatterers implies that the two images 
would show a different speckle pattern. Conversely, the nature of specular coherent 
reflection implies that a specular reflector would be pinpointed on both images. It follows 
that the cross-correlation of single look HH and VV channels could help filter bright pixels 
generated by speckled coherent summation while revealing the pressure ridge network.   
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